
Towards Assisted Remediation of Security Vulnerabilities

Gabriel Serme∗, Anderson Santana De Oliveira∗, Marco Guarnieri† and Paul El Khoury‡
∗SAP Research

Sophia Antipolis, France
{name.lastname}@sap.com

†Dept. of Information Technology
and Mathematical Methods

University of Bergamo, Italy
0guarnieri.marco0@gmail.com

‡SAP AG
Walldorf, Germany

paul.el.khoury@sap.com

Abstract—Security vulnerabilities are still prevalent in sys-
tems despite the existence of their countermeasures for several
decades. In order to detect the security vulnerabilities missed
by developers, complex solutions are undertaken like static
analysis, often after the development phase and with a loss of
context. Although vulnerabilities are found, there is also an
absence of systematic protection against them. In this paper,
we introduce an integrated Eclipse plug-in to assist developers
in the detection and mitigation of security vulnerabilities
using Aspect-Oriented Programming early in the development
life-cycle. The work is a combination of static analysis and
protection code generation during the development phase. We
leverage the developer interaction with the integrated tool to
obtain more knowledge about the system, and to report back
a better overview of the different security aspects already
applied. We also discuss challenges for such code correction
approach.

Keywords-Security, AOP, Software Engineering, Static Anal-
ysis, Vulnerability Remediation

I. INTRODUCTION

After a decade of existence, Cross-site scripting, SQL
Injection and other of types of security vulnerabilities as-
sociated to input validation can cause severe damage once
exploited. To analyze this fact, Scholte et al. [1] conducted
an empirical study that shows that the number of reported
vulnerabilities is not decreasing.

While computer security is primarily a matter of secure
design and architecture, it is also known that even with best
designed architectures, security bugs will still show up due
to poor implementation. Thus, fixing security vulnerabilities
before shipment can no more be considered optional. Most
of the reported security vulnerabilities are leftovers forgotten
by developers, thought to be some benign code. Such kind
of mistakes can survive unaudited for years until they end
up exploited by hackers.

The software development lifecycle introduces several
steps to audit and test the code produced by developers
in order to detect the security bugs, such as code review

tools for early detection of security bugs to penetration
testing. The tools are used to automate some tasks normally
handled manually or requiring complex processing and data
manipulation. They are able to detect several of errors and
software defects, but developers have to face heterogeneous
tools, each one with a different process to make it run
correctly, and they have to analyze the results of all the
tools, merge them and fix the source code accordingly.
For instance, code scanner tools are usually designed to be
independent from the developers’ environment. Therefore,
they gain in flexibility but loose comprehensiveness and the
possibility to interact with people having the experience
on application code. Thus, tools produce results that are
not directly linked to application defects. It is the case
for example for code scanner tools triggering several false
positives, that are not actual vulnerabilities.

The contributions of this paper are twofold. First, we
focus on static code analysis, an automated approach to
perform code review integrated in developer’s environment.
This technique analyzes the source code and/or binary code
without executing it and identifies anti-patterns that leads to
security bugs. We focus on security vulnerabilities caused
by missing input validation, the process of validating all the
inputs to an application before using it. Although our tool
handles other kinds of vulnerabilities, here we discuss on
three main vulnerabilities caused by missing input valida-
tion, or mis-validation of the input: Cross Site Scripting (also
called XSS), Directory Path Traversal and SQL Injection.
Second, we provide an innovative assisted remediation pro-
cess that employs Aspect-Oriented Programming for semi-
automatic vulnerability correction. The combination of these
mechanisms improve the quality of the software with respect
to security requirements.

The paper is structured as follows : Section II presents
the overall agile approach to conduct code scanning and
correct vulnerability during the development phase. Then,
Section III presents the architecture we adopt to combine



the static analysis with the code correction component. The
Section IV describes the static analysis process with its
integration in the developers’ environment. Then, we explain
techniques for assisted remediation along with pros and
cons in Section V. Finally, we discuss the advantages of
our approach compared to related work in Section VI to
conclude in Section VII.

II. AN AGILE APPROACH

Agile approaches to software development require the
code to be refactored, reviewed and tested at each iteration of
the development lifecycle. While unit testing can be used to
check functional requirements fulfillment during iterations,
checking emerging properties of software such as security
or safety is more difficult. We aim to provide each developer
with a simple way to do daily security static analysis on his
code. That would be properly achieved by providing a secu-
rity code scanner integrated in the development environment,
i.e. Eclipse in this case, and a decentralized architecture that
allows the security experts to assist the developers in any of
the findings. Typically that would include verifying false
positives and correspondingly adjusting the code scanner
test cases, or assisting in reviewing the solutions for the
fixes. It brings several advantages over the approach in
which the static analysis phase stays only at the end. The
expertise of the context in which the code was developed lies
in development groups. Therefore, the interaction between
development team and security experts is faster with less
efforts in finding and applying corrections on the security
functionalities. The experts provide support on a case basis
for a better tuning of false positive detection across teams
and reducing final costs of maintenance : solving security
issues into the development phase can reduce the number of
issues that the security experts should analyze at the end.

Maintaining the separation of roles between the security
experts performing the code scanning and the team members
developing the application raises a critical complication, typ-
ically, from a time perspective, due to the human interaction
between security experts and developers. If such an approach
would have to scale to what most of the agile approaches
describe, the amount of iteration between developers and
experts would need to be reduced. That could be reduced
by up-skilling the developers and reducing the interaction
between them and the security experts for the analysis of
the security scans of the project, which is simplified by the
introduction of our tool.

Our incentive is to harvest the advantages acquired by us-
ing our approach in an agile and decentralized static analysis
process early in the software development lifecycle. It raises
security awareness for the developers at the development
time and reduces maintenance costs. A tool covering the
previous needs should fulfill several requirements:

• easy-to use for users non-experts in security

Figure 1. Vulnerability remediation process. The red corresponds to the
static analysis component. The green one corresponds to the remediation
component. The blue one corresponds to assisted processing

• domain specific with integration into developers’ daily
environment, to maximize adoption and avoid addi-
tional steps to run the tool

• adjustable to maximize project knowledge and reduce
false positives and negatives

• reflexive to adjust accuracy of the scan over time, with
collaborative feedbacks for example

• supportive to assist developers in correcting and under-
stand issues.

• educative to help developers understanding errors, steps
to correct existing error, and techniques to prevent
future vulnerability

We have developed an Eclipse Plugin made of components
leveraging decentralized approach for static analysis. It gives
direct access to detected flaws and global overview on
system vulnerabilities. The developer analyzes its code and
review vulnerabilities when necessary.

The Figure 1 presents the interaction between the two
phases : the static analysis phase allows to scan the code
in order to identify and classify the different vulnerabilities
found. It is described in details in Section IV. The mea-
surement is performed directly by developers who decide
to remediate by undertaken actions, with support from our
second component. The full remediation process is given in
Section V .

III. ARCHITECTURE

Figure 2 represents the architecture of our prototype. First
of all, we consider two main stakeholders involved in the
configuration and usage of the prototype. Security experts
and developers regroup different profiles whose goal is to
provide and configure the knowledge database in order to
avoid false positives and negatives, and to provide better
accuracy during the analysis phase. They have two main
tasks. First, they update the knowledge base, adding to it
classes or methods that can be considered as trusted for
one or more vulnerabilities. Second, the knowledge database
receives feedback from analysis on possible trusted objects
for one or more security vulnerabilities; they must analyze
them more in detail and, if these objects are really trusted
they tag them as trusted into the knowledge base.

The second role is the developer, interacting directly
with the static analysis engine to verify vulnerabilities in
application, code and libraries under its responsibility. The
developer at this stage can be naive, therefore with no



Figure 2. Architecture

focus on complexity of security flow. The knowledge base
is shared among developers. It contains all the security
knowledge about trust: objects that do not introduce security
issues into the code. Security experts and developers with
understanding of security patterns maintain and keep under
control the definitions used by all developers in an easy
way using one admin web application or some web-services.
In this way the code scanner testing rules are harmonized
for the whole application or even on a project-basis. The
knowledge base allows developers to run static analysis that
is perfectly adapted to the context of their project.

In industrial scale projects, daily scans are recommended.
In order to facilitate this task, we provide a plugin for
Eclipse that uses the Abstract Syntax Tree generated by JDT
compiler to simplify the static analysis process. The plugin
accesses the knowledge database via web-services making
it possible to each developer to run independently the code
scanner. We detail its components in the next section.

IV. STATIC ANALYSIS

Static analysis can report security bugs even when scan-
ning small pieces of code. Another family of code scanners
is based on dynamic analysis techniques that acquire infor-
mation at runtime. Unlike static analysis, dynamic analysis
requires a running executable code. Static analysis scans all
the source code while dynamic analysis can verify certain
use cases being executed. The major drawback of static
analysis is that it can report both false positives and false
negatives. The former detects a security vulnerability that is
not truly a security vulnerability, while the latter means that
it misses to report certain security vulnerabilities. Having
false negatives is highly dangerous as it gives one sensation
of protection while vulnerability is present and can be

exploited, whereas having false positives primarily slows
down the static analysis process. Modern static analysis
tools, similarly to compilers, build an Abstract Syntax Tree
- a tree representation of the abstract syntactic structure of
the code - from the source code and analyze it.

A. Static Analysis Process

In a nutshell, our process allows developers to run a check
on their code to uncover potential vulnerabilities by checking
for inputs that have not been validated. It finds information
flows connecting an entry point and exit point that does not
use a trusted object for the considered vulnerabilities. The
algorithm uses an abstract syntax tree of the software in con-
junction with the knowledge base to identify the vulnerable
points. The Figure 3 presents the different analysis steps
performed from the moment developer presses the analysis
button to the display of results.

Figure 3. Static Analysis Activity Diagram

The static analysis works on Document Object Model
generated by the Eclipse JDT component able of handling all
constructs described in the Java Language Specification [2].
The static analysis process is described as follows:

• The engine contacts the knowledge database in order to
retrieve the up-to-date and most accurate configuration
from the shared platform. If the developer cannot re-



trieve the configuration, it can still work independently
with the latest local configuration.

• The process identifies all entry points of interest in
the accessible source code and libraries. The analysis
is based on the previously mentioned AST. We are
gathering the different variables and fields used as
well as the different methods. We apply a first filter
with pattern-matching on the potential entry points :
a method call or a new object instantiation might be
tagged as returning trusted inputs.

• For each entry point the control flow is followed to
create the connections between methods, variables and
fields to discover all the exit points. For instance,
the engine visits assignments, method invocations and
construction of new objects with the variables and fields
detected during the entry point gathering.

• Once the different exit points have been collected, we
check an absence of validation in the flow for the
different kinds of vulnerabilities. For instance, if the
flow from an entry point to an exit point passes through
a method or a class which is known to validate SQL
input, the flow is tagged as trusted for this specific
vulnerability. Of course, the tag runs from the moment
where the method validates for the vulnerability to
the moment of a novel composition with potential
vulnerable code, or until an exit point.

B. Multiple vulnerability analysis

In the previous section, we have presented the global
analysis process. In this section, we discuss more in-depth
the notion of trusted object for the different vulnerabilities
we address. We present the integration with the Eclipse’s
workbench and partial source source code being validated in
Figure 4. The problem of identifying security vulnerabilities
caused by errors in input validation can be translated to
finding an information flow connecting an entry point and an
exit point that does not use a trusted object for the considered
vulnerabilities.

Figure 4. Code Analysis phase

We define an input as a data flow from any external
class, method or parameter into the code being programmed.
We also define as entry point any point into the source
code where an untrusted input enters to the program being
scanned. In an analogous way we define as output any data
flow that goes from the code being programmed into external
objects or method invocations. Our approach relies on our
trusted object definition, that impacts the detection accuracy.
A trusted object is a class or a method that can sanitizes all
the information flow from an entry point to an exit point
for one or more security vulnerabilities. We implemented
the trust definitions into the centralized knowledge base
presented in the previous section. The knowledge database
represents the definitions using a trusting hierarchy that
follows the package hierarchy.

Security experts can tag classes, packages or methods as
trusted for one or more security vulnerabilities, accordingly
to their analysis, feedbacks from developers or static analysis
results. Obviously defining as trusted an element into the
hierarchy trust also all the elements below it (i.e. trusting a
package trusts all the classes and methods into it and trusting
a class trusts all the fields and methods in it). A trusted
object can sanitize one or more security vulnerabilities (e.g.
sanitization for SQL Injection Thus users can tag an object
as trusted for specific vulnerabilities. This approach lets
users and security experts to define strong trust policies. It is
the major contribution to bring deep knowledge of security
for the success of the process.

Defining a trusted object is a strong assertion as it taints
a given flow as valid and free for a given vulnerability.
The definition process to trust a class, a package or a
method is rigorous. The object must not introduce a specific
vulnerability into the code. This is the reason why developers
report feedback and security experts take the decision. The
experts can also analyze, manage and update the base, if the
class, package or method is considered trusted. This phase
allows system tuning that is related to a given organization
and leads to fewer false positives while ensuring no false
negatives.

Figure 5. Code Analysis result

The detected vulnerabilities (Figure 5) are mainly caused
by lack of input validation, namely SQL Injection, Direc-
tory Path Traversal and Cross Site Scripting. The engine



detects also a more general Malformed Input vulnerability
that represent a any input that is not validated using a
standard implementation. The engine can be easily extended
to support new kinds of vulnerabilities caused by missing
input validation. For this simply adding the definition of the
new vulnerability to the centralized knowledge base (and, if
exist, adding trusted objects that sanitize it), and creating a
new class extending an interface, that implements the checks
to be done on the result of the static analysis to detect the
vulnerability.

V. ASSISTED REMEDIATION

Performing static analysis is yet integrated in quality
processes in several companies. But the actual identification
of vulnerabilities does not mean they are correctly mitigated.
Given this problem, we can have several approaches : (i)
refactoring the code, (ii) applying a proxy in inbound and
outbound connections, and finally - the solution we adopted,
(iii) to generate protection code linked to the application
being analysed.

Software refactoring involves the developer into under-
standing the design of its application and the potential
threats, to manually rewrite part of the code. The refactoring
improves the design, performance and manageability of the
code, but is difficult to address. It costs time and is error
prone. Up to six distinct activities have been observed
in [3] from identification to verification of refactoring. The
impacted code is generally scattered over the application,
and some part can be left unchecked easily. This can lead to
an inconsistent state where the application does not reflect
the intended goal. In terms of vulnerability remeditation,
the software refactoring is one of the most powerful due to
the flexibility in terms of code re-writing and architecture
evolution.

The proxy solution is equivalent to a gray-box approach,
with no in-depth visibility of internal processes. It can be
heavy to put in place, specially when the environment is
under control of a different entity than the development
team. For instance, on cloud platforms, one can deploy
its application but has limited management on other ca-
pabilities, leading to the impossibility to apply filter on
the application. The lack of flexibility and the absence of
small adjustments makes it complicated to adopt at the
development phase.

In this work we provide protection inlined with the
application. This solution has several advantages, but bring
also new limitations due to the technology we use: Aspect-
Oriented Programming paradigm (AOP) [4], which is a
paradigm to ease programming concerns that crosscut and
pervade applications. In the next section, we describe our
methodology and provide a comprehensive list of advantages
and drawbacks.

Vulnerability Origin Potential Remediation
Cross-Site
Scripting

Server does not
validate input coming
from external source

Validate input and filter or
encode properly the out-
put depending on the us-
age : the encoding dif-
fers from HTML content
to Javascript content for
example

SQL Injection Server does not vali-
date input and use it
directly in a construct
of a SQL Query

Use a parametrized query
or a safe API. Escape spe-
cial characters. Validate
the input used in the con-
struction of query

Directory Path
Traversal

Application server is
misconfigured, or the
file-system policy con-
tains weaknesses

Enclose the application
with strict policies, that
restrict access to the
filesystem by default.
Filter and validate the
input prior to direct file
access

Other
malformed
input

Misvalidation Validate input, determine
the origin and possible
manipulation from exter-
nals

Table I
LIST OF DETECTED VULNERABILITIES WITH POTENTIAL ORIGIN AND

POTENTIAL REMEDIATION.

A. Methdoology

The approach comprises the automatic discovery of vul-
nerability and weaknesses in the code. In addition, we
integrate a protection phase tied to the analysis process
which guides developers through the correct and semi-
automatic correction of vulnerabilities previously detected.
It uses information from the static analysis engine to know
what vulnerabilities have to be corrected. Then it requires
inputs from the developer to extract knowledge about the
context, like in Figure 6. These steps allow to gather places
in the code where to inject security correction. The security
correction uses AOP. The goal is to bring proper separation
of concerns for cross cutting functionalities, such as security.
Thus, code related to a concern is maintained separately
from the base application. The main advantage using this
technology is the ability to intervene in the control flow of
a program without interfering with the base program code.

The list of vulnerability we cover principally are in
Table I. The Table highlights the potential origin vulnera-
bilities and some of known remediation techniques. These
vulnerabilities are known and subject to high attention. For
instance, we can retrieve them in the OWASP Top Ten [5]
for several years now, but also in the MITRE Top 25 Most
Dangerous Software Errors [6]. Albeit several approaches
exist to remediate the vulnerabilities, we are considering
mainly escaping and validation to consistently remediate the
problems with the aspect-oriented technique.

By adopting this approach, we reduce the time to correct
vulnerabilities by applying semi-automatic and pre-defined
mechanisms to mitigate them. We use the component to



Figure 6. Gathering context for vulnerability protection

apply protection code which is mostly tangled and scattered
over an application.

Correcting a security vulnerability is not trivial. Different
refactoring are possible depending on the issue. For instance,
the guides for secure programming advise SQL prepared
statement to prevent SQL Injection. But developers might be
constrained by their frameworks to forge SQL queries them-
selves. Therefore, developers would try another approach
such as input validation and escaping of special characters.

Figure 7. Example of correction snippet generated for a malformed input

We assist developers by proposing them the best au-
tomated solution possible. For the previously mentioned
correction, our integrated solution would propose to mitigate
the vulnerability with an automatic detection of incoming,
unsafe and unchecked variables. The developer does not
need to be security expert to correct vulnerabilities as our ap-
proach provides interactive steps to generate AOP protection
code, like in Figure 7. Although semi-automation simplifies
the process to introduce protection code, the technique
can introduce several side-effects if the developers are not
following closely what is generated. The plug-in gives an
overview for the developer of all corrected vulnerabilities
(Figure 8), allowing him to manage and re-arrange them

in case of need. Currently, the prototype does not analyze
interaction between the different protection code generated.
By adopting this approach, we allow better understanding
from an user point of view of the different vulnerabilities
affecting the system, and we guide the developer towards
more compliance in its application. The protection code can
be deployed by security expert teams and change without
refactoring.

Figure 8. Correction applied

B. Constraints from Aspect-Oriented Programming

The usage of AOP in the remedition of vulnerability bring
us more flexibility. One can evolve the techniques used to
protect the application, by switching the process to resolve a
problem, making the security solution independent from the
application. But this approach also bring us some limitations
we discuss in this section.

Firstly, the language is designed to modify the application
control flow. One of the limitations we have is related
to the deep modification we need to perform in order to
replace partially a behavior. For example, suppose a SQL
query written manually in the application we would like
to validate. We are able to weave validation and escaping
code, but we can hardly modify the application to construct
a parameterized query.

Secondly, the aspects cover the application in the whole.
When more than one aspect is involved, the cross-cutting
concerns can intersect. Therefore, we need to analyze aspect
interaction and prevent an annihilation of the behavior we
intended to address.

Thirdly, the evolution of the program leads to a different
repartition of vulnerabilities. The vulnerabilities are detected
after the static analysis phase. We are not addressing yet
this problem of evolution to maintain the relation between
the aspects and the application. This differs from the fragile
pointcut problem inherent of aspect using pointcut languages
referring to the syntax of the base language: the evolution
affects the application as a whole, by introducing new
entry points and exit points that need to be considered,
or introducing methods that validate a flow for a given
vulnerability.

The fourth constraint is that aspects have no specific
certification. The actual protection library is defined globally,
but applied locally, with a late binding to the application. The
protection code is the same everywhere, but we put strong
trust in the protection library by assuming that aspects are
behaving properly with the actual modification of the flow
to mitigate the vulnerability.



Finally, the fifth constraint is user acceptance. Since the
developers rely on cross cutting solution, the code itself
does not reflect the exact state of the application. The point
where the aspect interferes with the base application are
not presented in the code. We address this limitation with
the strong interaction with the developer’s environment. The
Eclipse plugin provides a mean to display remediation code
in place at a given time.

VI. RELATED WORK

The interest into static analysis field has lead to several
approaches. They go from simple techniques like pattern
matching and string analysis like in [7]–[10] to more
complex techniques like data flow analysis in [11]–[13].
Commercial tools, such as Fortify1 or CodeProfiler2 propose
better integration in developers’ environment but lack of
decentralized approach and assistance in security manage-
ment. Several tools are based on the Eclipse’s platform and
detect vulnerabilities in web applications [14] , flaws [15],
bugs [16], and propose testing and audit to verify respect
of organizational guidelines [17]. Their main disadvantages
are the lack of context support for correction and poor
integration into the daily development lifecycle.

In [18], the authors use AOP to protect against web
vulnerabilities: XSS and SQL Injection. They use AspectJ -
the mainstream AOP language, to intercept method calls in
an application server then perform validation on parame-
ters. Viega and al. [19] presents simple use case on the
usage of AOP for software security. In [20], the authors
introduce an aspect primitive for dataflow, allowing to detect
vulnerabilities like XSS. Our approach reduces the overhead
brought by the detection of vulnerability patterns at runtime
and allows wider range of vulnerability detection. Also, the
aforementioned approaches do not rely on external tools
to gather security context, but rather a manual processing
to understand the architecture and decide where to apply
aspects. Our approach also bring more awareness to the
developer as he obtain a visual indicator of what is applied
at which place in its application.

A combination of detection and protection is found in
[21] with the proposal of an approach for detecting faults
identified by pre-compiled patterns. Faults are corrected
using a correction module. The difference with our approach
lies in the detection of faults rather than security vulnerabil-
ities. Also, the correction module fixes the faults statically
and prevents further modifications of the introduced code.
A recent work [22] uses static analysis to detect security
points to deploy protection code with aspects, on distributed
tuple space systems. These two approaches suffer from same
limitation as the ones presented in the previous paragraph,
which is a lack of visual support from the tool, and a loose
of context.

1Fortify 360 - https://www.fortify.com/
2CodeProfiler - http://www.codeprofilers.com/

VII. CONCLUSION

We presented how to overcome several security vulnera-
bilities using a combination between a static analyzer that
assists developers to report security vulnerabilities and a
semi-automated correction of these findings with AOP. The
usage of an integrated tool to provide support for security
bugs detection and mitigation has several advantages. It
benefits to several stakeholders at the same time. First,
security teams are able to distribute the maintenance of the
code to the people writing their code and let them mitigate
security bugs whenever they are detected. They can interact
closely to decide of the best solutions for a given situation,
and apply security across development teams. Developers
benefit from this approach, having an operational tool al-
ready configured for their development. They can focus
on writing their functional code and, time to time, verify
the accuracy of their implementation. Security concerns are
often cross cutting the application, which tends to have
security checks spread around application. Using one central
tool to have an overview is more efficient and productive,
and gives the possibility to track all applied protection code.
The automation allows a broader and consistent application
of security across applications. The usage of AOP eases the
deployment and change of security protection code, in a
single environment and during the development phase. The
overall vision we would like to achieve in the future is the
specification and maintenance of security concerns in one
central place, and usage by developers of these concerns by
defining some places in application where they should be
active.

We have designed this plug-in for an improved awareness
of security concerns from a developer point of view. The
automated correction might not be the best choice everytime,
and we encourage developers to look further in vulnerabili-
ties’ descriptions. Also, we do not want developers believe
our solution is bullet-proof. It leads to a false sensation of
security which the opposite of our goal.

Albeit we have listed several benefits for an integrated
tool, we know that it suffers from limitations. For instance,
when we are developing a tool such as an Eclipse plug-in,
we are targeting a platform and a language, thus voluntarily
restricting the scope of application. From the tool itself, we
have designed a working prototype that we have validated
on projects internally at SAP and compared to commercial
softwares. In several cases, the agile approach leads to a
reduction of false positives and an absence of false negatives.
Also, the approach of providing support for correcting the
vulnerability is novel and we focus now in improving
accuracy of the protection code.

ACKNOWLEDGMENT

This work has been partially carried out in the CESSA
project (project id.: 09-SEGI-002-01).

https://www.fortify.com/
http://www.codeprofilers.com/


REFERENCES

[1] T. Scholte, D. Balzarotti, and E. Kirda, “Quo vadis? a study
of the evolution of input validation vulnerabilities in web
applications,” in Proceedings of Financial Cryptography and
Data Security 2011, ser. Lecture Notes in Computer Science,
February 2011.

[2] J. Gosling, B. Joy, G. Steele, and G. Bracha, “Java(TM)
Language Specification,” 2005.

[3] T. Mens and T. Tourwe, “A survey of software refactoring,”
Software Engineering, IEEE Transactions on, vol. 30, no. 2,
pp. 126 – 139, feb 2004.

[4] G. Kiczales, J. Lamping, and al., “Aspect-oriented program-
ming,” in ECOOP, ser. Lecture Notes in Computer Science,
M. Aksit and S. Matsuoka, Eds. Springer Berlin / Heidelberg,
1997, vol. 1241, pp. 220–242.

[5] OWASP, “OWASP Top Ten Project,” http://www.owasp.org/
index.php/OWASP Top Ten Project, 2010.

[6] MITRE, “CWE/SANS Top 25 Most Dangerous Software
Errors,” http://cwe.mitre.org/top25.

[7] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: A
static vulnerability scanner for c and c++ code,” in ACSAC.
IEEE Computer Society, 2000, pp. 257–.

[8] C. Gould, Z. Su, and P. T. Devanbu, “Jdbc checker: A static
analysis tool for sql/jdbc applications,” in ICSE. IEEE
Computer Society, 2004, pp. 697–698.

[9] G. Wassermann and Z. Su, “An analysis framework for
security in web applications,” in Proc. FSE Workshop on
Specification and Verification of Component-Based Systems,
ser. SAVCBS’04, 2004, pp. 70–78.

[10] A. S. Christensen, A. Moller, and M. I. Schwartzbach, “Pre-
cise analysis of string expressions,” in Proc. 10th Interna-
tional Static Analysis Symposium, ser. SAS’03. Springer-
Verlag, 2003, pp. 1–18.

[11] M. S. Lam, J. Whaley, V. B. Livshits, and al., “Context-
sensitive program analysis as database queries,” in Symposium
on Principles of database systems, ser. PODS’05. ACM,
2005, pp. 1–12.

[12] Y. Liu and A. Milanova, “Static information flow analysis
with handling of implicit flows,” Software Maintenance and
Reengineering (CSMR), 2010.

[13] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dy-
namic analysis to validate sanitization in web applications,” in
IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2008, pp. 387–401.

[14] V. B. Livshits and M. S. Lam, “Finding security errors in
Java programs with static analysis,” in Proceedings of the
14th Usenix Security Symposium, Aug. 2005, pp. 271–286.

[15] J. Dehlinger, Q. Feng, and L. Hu, “Ssvchecker: unifying static
security vulnerability detection tools in an eclipse plug-in,” in
Proc. OOPSLA Workshop on eclipse technology eXchange,
ser. Eclipse’06. ACM, 2006, pp. 30–34.

[16] University of Maryland, “Findbugs,” http://findbugs.
sourceforge.net.

[17] Google, “Codepro analytix,” http://code.google.com/
javadevtools/codepro/.

[18] G. Hermosillo, R. Gomez, L. Seinturier, and L. Duchien,
“Aprosec: an aspect for programming secure web applica-
tions,” in ARES. IEEE Computer Society, 2007, pp. 1026–
1033.

[19] J. Viega, J. T. Bloch, and P. Ch, “Applying aspect-oriented
programming to security,” Cutter IT Journal, vol. 14, pp. 31–
39, 2001.

[20] H. Masuhara and K. Kawauchi, “Dataflow pointcut in aspect-
oriented programming,” in APLAS, ser. Lecture Notes in
Computer Science, A. Ohori, Ed., vol. 2895. Springer, 2003,
pp. 105–121.

[21] P. Deeprasertkul, P. Bhattarakosol, and F. O’Brien, “Auto-
matic detection and correction of programming faults for
software applications,” Journal of Systems and Software,
vol. 78, no. 2, pp. 101–110, 2005.

[22] F. Yang, T. Aotani, H. Masuhara, F. Nielson, and H. R.
Nielson, “Combining static analysis and runtime checking in
security aspects for distributed tuple spaces,” in COORDINA-
TION, ser. Lecture Notes in Computer Science, W. D. Meuter
and G.-C. Roman, Eds., vol. 6721. Springer, 2011, pp. 202–
218.

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://cwe.mitre.org/top25
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://code.google.com/javadevtools/codepro/
http://code.google.com/javadevtools/codepro/

	Introduction
	An agile approach
	Architecture
	Static analysis
	Static Analysis Process
	Multiple vulnerability analysis

	Assisted Remediation
	Methdoology
	Constraints from Aspect-Oriented Programming

	Related work
	Conclusion
	References

