
Testing side-channel security of cryptographic implementations
against future microarchitectures

Gilles Barthe∗
Max Planck Institute

for Security and Privacy (MPI-SP)
Bochum, Germany

gilles.barthe@mpi-sp.org

Marcel Böhme
Max Planck Institute

for Security and Privacy (MPI-SP)
Bochum, Germany

marcel.boehme@mpi-sp.org

Sunjay Cauligi
Max Planck Institute

for Security and Privacy (MPI-SP)
Bochum, Germany

sunjay.cauligi@mpi-sp.org

Chitchanok Chuengsatiansup
The University of Melbourne

Melbourne, Australia
c.chuengsatiansup@unimelb.edu.au

Daniel Genkin
GeorgiaTech

Atlanta, United States
genkin@gatech.edu

Marco Guarnieri
IMDEA Software Institute

Madrid, Spain
marco.guarnieri@imdea.org

David Mateos Romero
IMDEA Software Institute

Madrid, Spain
david.mateos.romero@gmail.com

Peter Schwabe†
Max Planck Institute

for Security and Privacy (MPI-SP)
Bochum, Germany

peter@cryptojedi.org

David Wu
University of Adelaide
Adelaide, Australia

david.wu@adelaide.edu.au

Yuval Yarom
Ruhr University Bochum

Bochum, Germany
yuval.yarom@rub.de

ABSTRACT
How will future microarchitectures impact the security of exist-
ing cryptographic implementations? As we cannot keep reducing
the size of transistors, chip vendors have started developing new
microarchitectural optimizations to speed up computation. A re-
cent study (Sanchez Vicarte et al., ISCA 2021) suggests that these
optimizations might open the Pandora’s box of microarchitectural
attacks. However, there is little guidance on how to evaluate the
security impact of future optimization proposals.

To help chip vendors explore the impact of microarchitectural
optimizations on cryptographic implementations, we develop (i) an
expressive domain-specific language, called LmSpec, that allows
them to specify the leakage model for the given optimization and
(ii) a testing framework, called LmTest, to automatically detect leaks
under the specified leakage model within the given implementation.
Using this framework, we conduct an empirical study of 18 proposed
microarchitectural optimizations on 25 implementations of eight
cryptographic primitives in five popular libraries. We find that every
implementation would contain secret-dependent leaks, sometimes
sufficient to recover a victim’s secret key, if these optimizationswere
realized. Ironically, some leaks are possible only because of coding id-
ioms used to prevent leaks under the standard constant-time model.

∗Also with IMDEA Software Institute.
†Also with Radboud University.

1 INTRODUCTION
As reducing the size of transistors is increasingly more challenging
due to physical limits, chip vendors are looking into microarchitec-
tural optimizations as an alternative to further speed up computa-
tions. These optimizations exploit the spatial and temporal locality
exhibited by programs to predict future behavior and perform some
of the computation in advance. Thus, the processor can cache or
prefetch data in anticipation of a near-future use, or it can predict
future instruction flow and even computation results in an effort to
better exploit the processor’s inherent parallelism.

However, a recent study [60] suggests that this surge of new
microarchitectures opens the Pandora’s box of microarchitectural
attacks [23], which exploit the side effects of microarchitectural
optimizations on a program’s execution time to compromise the
confidentiality of an otherwise secure computation. Although the
impact of existing optimizations, like caching [65, 79] or specu-
lative execution [35], is well understood and captured by secure
programming guidelines [5, 13], there is little guidance on how to
evaluate the security impact of possible future microarchitectures.

As a first step in this direction, Sanchez Vicarte et al. [60] per-
formed a systematic review of recent optimizations proposed by
the computer architecture community and suggested that many
of those would likely leak secret information in unexpected ways.
However, the authors left open how exactly these optimizations
would impact existing cryptographic implementations and whether
existing mitigations, like leakage-resistent coding idioms [9, 10],
would help in preventing leaks.

To substantiate this prognosis, in this paper we develop a frame-
work for assessing the side-channel guarantees of programs against

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

(future) microarchitectural optimizations. Our framework consists
of (1) LmSpec, an expressive domain-specific language that allows
chip vendors and software developers to specify the leakage model
associated with a given optimization in terms of leakage traces, and
(2) LmTest, a testing approach that generates random inputs and au-
tomatically detects secret-dependent leaks for the specified LmSpec
leakage models within a given cryptographic implementation. We
use this framework to (3) perform a large scale study of the impact
of the optimization proposals studied in [60] on the side-channel
guarantees of mainstream cryptographic implementations. Next,
we overview these contributions in more detail.
LmSpec language: We develop the LmSpec language for speci-
fying leakage models at the ISA-level. Following the formalism of
Guarnieri et al. [27], we define an LmSpec leakage model as (a) a
leakage clause (§3), which specifies what observations are leaked
during the execution of a program, and (b) a prediction clause (§4),
which specifies the prediction mechanisms supported by the mi-
croarchitecture and what their effects are. Hence, LmSpec models
map each program execution to a leakage trace capturing the leaked
information. Importantly, models specified in LmSpec are executable
for the x86 ISA (§5.1). That is, given an initial program state, we
can execute an arbitrary x86 binary and derive the leakage trace
generated by the LmSpec model. To achieve this, LmSpec models
are automatically translated into handlers for the Unicorn CPU em-
ulator [1] capturing the relevant information to generate leakage
traces for a program execution.
LmTest testing tool: We develop the LmTest testing framework
for detecting leaks in x86 programs with respect to a given Lm-
Spec leakage model (§5). LmTest takes as input the binary of the
program under test, an entry point in the program together with
labels for each program input (indicating whether the parameter is
public or secret), and the LmSpec model. To detect leaks, LmTest
adopts a relational testing approach [50]: (1) it randomly generates
test cases consisting of pairs of initial program states that are low-
equivalent, i.e., that differ only in the value of secret inputs, (2) it
then executes the program on both inputs in a test case to derive
the leakage traces according to the LmSpec model, and (3) it finally
checks for differences in the two leakage traces in a test case. A
test case demonstrating different leakage traces indicates a leak of
secret information. We remark that differently from other random
relational testing approaches [28, 50], which target fixed leakage
models, LmTest is parametric in the LmSpec leakage model, thereby
allowing one to study the security implications of any optimization
proposal whose leakage profile can be represented in LmSpec.
Case study: To evaluate our framework and to assess the risks
that proposed optimizations pose to current software, we report on
a large-scale empirical study of the impact of microarchitectural op-
timizations on popular cryptographic libraries (§6). We consider 18
optimizations, under six different execution models, and 25 crypto-
graphic implementations selected from five popular cryptographic
libraries, including libsodium and rust-crypto. We find that every
implementation would contain secret-dependent leaks if these op-
timizations were realized. In some cases, an optimization-induced
leak would be sufficient to recover a victim’s secret key directly
from the leakage trace (e.g., for the X25519 implementation in lib-
sodium [40]). Ironically, some leaks are possible only because of

coding idioms, such as constant-time swap or bit-masking, used to
prevent leaks under the standard constant-time model.

Summary of contributions: In summary, the paper makes the
following contributions: (1) the LmSpec language for rapidly pro-
totyping leakage models (§3–4), (2) the LmTest testing tool for
detecting secret-dependent leaks in programs against an arbitrary
LmSpec model (§5), and (3) a large-scale case study analyzing the
side-channel guarantees of mainstream cryptographic implementa-
tions against recent microarchitectural proposals (§6).

Artifacts: The implementation of LmTest and LmSpec, together
with all leakage and prediction clauses from our case study as
well as scripts to reproduce all our results are available at https:
//github.com/hw-sw-contracts/leakage-model-testing.

2 OVERVIEW
Here, we illustrate the key components of our approach. We start
by illustrating how leakage (§2.1) and speculation (§2.2) can be
modeled using the LmSpec language. Next, we show how LmSpec’s
executable semantics can be used to derive leakage traces (§2.3).
We then overview our notion of side-channel security (§2.4), and
we conclude by illustrating how the LmTest testing tool can be
used to detect leaks in programs given an LmSpec model (§2.5).

2.1 Modeling leaks with LmSpec
In LmSpec, leaks are modeled by specifying leakage clauses (de-
scribed in §3), which describe what an attacker might observe
through side-channels during program execution. As an example,
Figure 1 depicts the leakage clause formalizing the constant-time
model in LmSpec. We start by defining and naming the clause with
the defleakage statement (line 1). Next, we model the three usual
requirements on constant-time programs as handlers (lines 2–7).
Each handler consists of a guard, which specifies the operation
being handled and the names of its arguments, and a body that
computes leakage observations.

The first handler deals with memory load operations (lines 2–
3); it assigns the target address to a new variable called addr and
the target size (in bytes) to a new variable called sz. The body of
the handler is the expression #("load" addr); it produces a tuple
consisting of the string “load” and the target address passed to the
handler. The second handler deals with memory store operations
(lines 4–5) and is defined similarly.

The last handler (lines 6–7) targets control-flow instructions
(represented as jumps in LmSpec). The handler assigns the jump
target address to addr, and the result of the jump condition to
variable n. For unconditional jumps, n is simply assigned True. The
body of the handler (line 7) returns a tuple consisting of the string
“jump” and the final jump target, which we calculate by evaluating
the if-then-else expression. If n is true, then the jump will be taken,
so we leak the instruction target addr. Otherwise, we leak the
address of the next instruction calculated using the special context
variables &pc and &insn, where &pc holds the current instruction’s
address and &insn.size contains its size.

We describe other examples of leakage clauses in §3.

https://github.com/hw-sw-contracts/leakage-model-testing
https://github.com/hw-sw-contracts/leakage-model-testing

Testing side-channel security of cryptographic implementations against future microarchitectures

1 (defleakage ConstantTime []
2 (on [(load [addr]_sz)
3 #("load" addr)]
4 [(store [addr]_sz := val)
5 #("store" addr)]
6 [(jump addr : n)
7 #("jump" (if n addr (+ &pc &insn.size)))]))

Figure 1: Modeling constant-time requirements in LmSpec

1 (defpredictor branchSpec []
2 (on [(jump addr : n)
3 (when (&insn.group CS_GRP_JUMP)
4 [("PC" (if n (+ &pc &insn.size) addr))])]))

Figure 2: Modeling branch speculation in LmSpec

2.2 Modeling speculation with LmSpec
By default, LmSpec assumes that programs are executed following
the instruction set architectural semantics. However, processors
achieve significant performance improvements by speculating on
the values of intermediate computations and continuing the ex-
ecution based on these predictions. Speculation does not affect
the correctness of the computation, because the processor always
checks the correctness of its guesses and squashes all speculative
execution steps in case of a misprediction. However, the microarchi-
tectural effects of such instructions are not reversed; the resulting
information leakage can be exploited to recover secrets [35].

To model the effects of new leakage models under speculation,
LmSpec also allows modeling the effects of speculatively executed
instructions. For this, LmSpec relies on prediction clauses (described
in §4) describing (a) which instructions might trigger speculation
and (b) how the predicted values (for control or data flows) are
computed. As an example, Figure 2 depicts a prediction clause
capturing the effects of speculating over branch instructions [35].
Prediction clauses are specified using defpredictor statements
(line 1) and, similarly to leakage clauses, they are defined using
handlers. Here, however, a handler’s body models the set of pre-
dicted values used when speculatively executing instructions. For
instance, the branchSpec clause consists of a single handler (line 2–
4) that deals with control-flow instructions jump with target addr
and condition n. The handler uses a when block to test whether the
current instruction is a conditional branch (line 3).

Importantly, the prediction clause only specifies the predicted
values; it does not specify how speculative instructions are squashed
or under which conditions the processor checks for misspecula-
tion. These aspects are automatically handled by LmSpec, which
will speculatively explore all wrong predictions produced by the
prediction clause following the always mispredict strategy [26]. In
our example, the handler computes the mispredicted target in line 4
(where "PC" indicates a control-flow prediction). LmSpec, then, will
use the target computed by the handler to speculatively explore,
for a fixed number of steps, the mispredicted branch.

In §4, we describe in detail how prediction clauses work and
model in LmSpec different forms of speculative execution.

2.3 Generating leakage traces
Testing for leakage with respect to a given LmSpec model requires
deriving leakage traces, following the model’s leakage and predic-
tion clauses, directly from program executions. For this, we imple-
mented an executable version of LmSpec on top of the Unicorn CPU
emulator [1], which allows simulating architectural executions.
Given an LmSpec model, we automatically compile leakage and
execution clauses into Unicorn event hooks. These hooks are used
to instrument program execution whenever user-defined architec-
tural events are triggered. For leakage clauses, LmSpec handlers are
translated into hooks monitoring events and generating leakage
observations. For instance, the load and store handlers from Fig-
ure 1 are translated into hooks intercepting memory requests and
recording the address as part of the leakage trace. For prediction
clauses, LmSpec handlers are translated into hooks that instrument
program execution to explore speculative paths in addition to the
architectural execution. As an example, the clause from Figure 2
is translated into a hook that starts the speculative execution of
the mispredicted branch. Thus, the executable version of LmSpec
allows us to directly derive the leakage traces associated with each
program execution for arbitrary x86 binaries. We provide further
details on LmSpec’s executable version in §5.1.

2.4 Specifying side-channel security
As standard, we formalize side-channel security as non-interference
with respect to a leakage model [5]. Informally, a program is secure
if its leakage traces do not leak secrets. In more detail, the notion
of security is parametrized by a labeled interface for the program
under consideration. The interface declares, for each program argu-
ment, its security level (secret or public) and additional constraints
such as size. This interface defines a notion of valid input, and a
notion of low-equivalence between two valid inputs: informally, two
inputs are low-equivalent if they only differ in their secrets. Then,
a program is non-interfering iff executing the program on pairs of
low-equivalent valid inputs yield equal leakage traces.

2.5 Detecting leaks with LmTest
Following our formalization of side-channel security, security viola-
tions are pairs of program executions that (i) yield different leakage
traces; and (ii) start from valid low-equivalent inputs, i.e., program
inputs that only differ in their secrets.

To automatically discover such violations, we developed the Lm-
Test testing tool, whose workflow is depicted in Figure 3. LmTest
takes as input: (a) the binary of the program under test; (b) an en-
try point in a cryptographic library, with a labeled interface; and
(c) an LmSpec leakage model. LmTest starts by generating random
test cases, each one consisting of a pair of valid low-equivalent
inputs. For generating a test case, LmTest first generates a random
input satisfying the constraints of the labeled interface and then
re-randomizes all secret bytes to generate a public-equivalent com-
parison input. Next, LmTest derives the leakage traces associated
with each input in a test case using LmSpec’s executable semantics.
Finally, LmTest compares the traces in a test case and reports all
cases where traces differ, i.e., indicating secret-dependent leaks.

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

Program

Labeled
interface

Input
generator

Unicorn
engine

Engine controllerPrediction clause

Tracer

Leakage clause

Checker Detected
violationsinput

pairs

hooks predictions

hooks leakage
traces

Figure 3: Diagram showing LmTest’s internal workflow. A user provides as input a leakage clause and possibly a prediction
clause, as well as the program to test. The labeled interface specifies the format of inputs and which inputs are secret.

initializer-pair :
:::
name expr

uop-binding :
(read

:::
reg)�� (write
:::
reg :=

::
val)�� (expr (

::
op

::
val *))�� (addr

:::
base +

::::
index *

:::
scale +

::
off)�� (load [

:::
addr]

::
sz)�� (store [

:::
addr]

::
sz :=

::
val)�� (jump

::::
addr :

:
n)

leakage-def :
(defleakage

::::::::::
LeakageModel [initializer-pair *]

(on [uop-binding bodyobs] *))
predictor-def :
(defpredictor

::::::::::
PredictorModel [initializer-pair *]

(on [uop-binding bodypreds] *))

Figure 4: Syntax of LmSpec. Words and symbols in
fixed-width are verbatim keywords, words in italics are syn-
tactic forms either of Hy or defined here, and names with
::::::::
underwave can be replaced by any valid identifier. Syntactic
groups with a square hat are either optional? or repeatable*.

3 MODELING LEAKAGE IN LMSPEC
Here, we first introduce the LmSpec domain specific language with a
focus on leakage clauses (§3.1); prediction clauses are the focus of §4.
Next, we illustrate the core features of LmSpec by modeling three
microarchitectural optimization proposals from [60]: silent store
suppression (§3.2), register file compression (§3.3), and computation
reuse (§3.4).

3.1 The LmSpec language
We developed the LmSpec domain-specific language to specify leak-
age models. LmSpec is implemented in Hy [32], a Lisp-like language
that compiles to Python bytecode. This provides our models with
the full expressiveness of Python as well as access to the data struc-
tures from the Python standard library, allowing users to explore
different leakage models with minimal overhead.

The syntax of leakage models is given in Figure 4. An LmSpec
leakage model consists of a leakage clause (defined by defleakage
statements, explained below) and a prediction clause (defined by
defpredictor statements, explained in §4).

Each leakage clause is defined by a name, a list of state variables
with their initial values, and a list of handlers. The state variables

Var. Description

&insn information about the current instruction
&mem current mapping of addresses to bytes
®s current mapping of registers to values
&pc current value of the program counter

Figure 5: LmSpec’s context variables

are used to capture stateful leakage clauses, as we show in our
model of the computation reuse optimization in §3.4. Their initial
values can be defined using arbitrary Python expressions.

Leakage handlers, instead, are used to generate sequences of
leakage observations based on specific events, which we call micro-
operations, happening during program execution. LmSpec con-
sider seven differentmicro-operations: read,write, expr, addr, load,
store, and jump. The read and write micro-operations refer to
read and write operations on registers, whereas the expr micro-
operation denotes computations. There is also a dedicated addr
micro-operation for the computation of memory addresses. Next,
load and store micro-operations refer to memory reads and writes.
Finally, jump micro-operations refer to (potentially conditional)
control-flow changes, i.e., changes to the program counter.

A leakage handler consists of a guard and a body. The guard of a
leakage handler uop-binding is an operation with bindings for its
arguments. In contrast, the body of a leakage handler (bodyobs) is a
Python expression that evaluates to a tuple of values representing
leakage observations, or to None if no observation is leaked. Note
that bodies can update state variables, and can freely use special
context variables, such as those in Figure 5.

Next, we illustrate how LmSpec captures concisely different kinds
of leaks. In §6, we describe variants of these leakage clauses as well
as further clauses used in our case study.

3.2 Silent store suppression
Silent store suppression [33, 37, 60] is an optimization that suppresses
a write-back to memory when the associated store operation does
not change the value at that memory location. This could result
in timing leaks, e.g., due to lowering the pressure on the CPU’s
pipeline. Note that silent stores are considered, for instance, in
the RISC-V architecture [72] and have been observed (on specific
values) in some Intel CPUs [18].

Testing side-channel security of cryptographic implementations against future microarchitectures

The leakage clause capturing these leaks emits an observation if
the value about to be stored matches the value already in memory
at the target address. This is formalized in LmSpec as follows:
1 (defleakage SilentStore []
2 (on [(store [addr]_sz := val)
3 (when (= val (&mem.read addr sz))
4 #("ss" addr val))]))

The guard of the handler is a store expression (line 2). It binds the
variable addr to the target address, sz to the value size, and val to
the target value to be written. The final part of the handler’s body
(line 4) returns a triple consisting of a logging string (here “ss” for
“Silent Store”), the current address, and the stored value. The first
part of the handler’s body is more interesting. It is a conditional
when block (line 3) that uses the special &mem context variable to
retrieve values from memory. In this case, the method &mem.read
is called with the target address addr and size sz to get the current
value in memory that the store operation would overwrite. The
when block compares this result to the store target value val, and
generates an observation if these values are equal, i.e., a necessary
condition for store suppression.

3.3 Register file compression
Register file compression [8, 64] is an optimization that mapsmultiple
logical (architectural) registers to the same physical (microarchi-
tectural) register file entry when they hold the same value. This
allows processors to perform more computations in parallel. Its
corresponding leakage model emits an observation whenever a
register is updated with a value that is already stored in another
register. This is captured by the following LmSpec leakage clause:
1 (defleakage RegisterFileCompression []
2 (on [(write reg := val)
3 (when (and (in reg X86_64_GPRS)
4 (exists reg_i X86_64_GPRS
5 :where (!= reg_i reg)
6 (= val (®s.read reg_i))))
7 #("rfc" reg val))]))

The guard of the handler (line 2) is a write operation. It binds reg
with the target register name and val with the target value. The
body of the handler (lines 3–7) checks if reg is a general purpose
register—as opposed to segment registers or other special registers—
using the predicate (in reg X86_64_GPRS) (line 3) and scans for
another general purpose register that holds the value val (lines
4–6). For this, it uses the special context variable ®s to query
the logical registers by name, and the built-in exists function
to iterate over all general purpose register names (skipping the
register currently being written). If any other register already holds
the target value, then the handler exposes the target register and
the shared value in the leakage observation (line 7).

3.4 Computation reuse
Computation reuse [62] is an optimization that caches results of
recent arithmetic instructions in a hardware memoization table.
Computation reuse thus avoids re-executing any instruction whose
results are already present in the table. Its corresponding leakage
model emits an observation if a computation is performed twice.
This is captured by the following LmSpec leakage clause:

1 (defleakage ComputationReuse [memo (OrderedDict)]
2 (on [(expr (op #* vals))
3 (when (in op CACHING_OPS)
4 (if (in vals (.get memo &pc #()))
5 #("cr" op #* vs)
6 (update memo &pc vals)))]))

We first explain the initializer. To mimic a memoization table and
to have it persist between calls to our handler, we use a state vari-
able—these are declared within the brackets following the model
name in a defleakage definition as a sequence of names and initial
values. In line 1, we declare a state variable called memo; we initial-
ize memo to an empty OrderedDict, which is a map data structure
from Python’s standard library that allows (re)ordering its keys,
allowing us to simulate a simple (𝑛-way) LRU cache of operand
values, indexed by instruction address.1

Next, we turn to the guard (line 2). The form expr is used to
model general arithmetic instructions. It uses Hy’s list-assignment
syntax to write (expr (op #* vals)), where op is assigned the
instruction mnemonic corresponding to the operation and vals is
assigned the list of operand values.

We now turn to the handler’s body (lines 3–6). It uses a predi-
cate (in op CACHING_OPS) to check if the current instruction is
included in a set of common arithmetic instructions that we are
explicitly caching (line 3). Then, on line 4, it retrieves the cache way
corresponding to the current instruction from memo, indexed by the
current instruction address (&pc). If there is no such mapping yet,
it returns the empty collection literal #(). Then, if the operand list
vals exists as an entry within the retrieved way, the body returns
the tag cr, the operation and its operands as leakage observation.
Otherwise, the body calls a function update to update the memo
cache with the current instruction address and operands.

4 MODELING SPECULATION IN LMSPEC
In this section, we first show how speculation can be modeled in
LmSpec using prediction clauses (§4.1). These clauses allow users to
explore the interactions between speculative execution and leakage
clauses. We then illustrate LmSpec’s flexibility by giving examples
of control-flow (§4.2) and data-flow speculation (§4.3).

4.1 Prediction clauses in LmSpec
LmSpec supports prediction clauses that can be used to model spec-
ulative execution. These clauses allow users to specify the possible
predictions for every operation. For simplicity, we do not require
users to specify when the processor checks for misspeculation or
how misspeculated instructions are squashed; these checks are
built-in into LmSpec’s semantics. In particular, LmSpec adopts the
conservative always mispredict approach for capturing the effects
of speculative execution [26]. Whenever the execution reaches an
instruction that can result in control flow or data prediction (as
indicated by the prediction clauses), LmSpec’s semantics (1) exe-
cutes the prediction clause to retrieve all predictions, (2) explores

1The choice of 𝑛 is left open, as we are not modeling any known processor design. We
expect processor designers and library developers to tailor leakage models to their
own needs.

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

all executions associated with wrong predictions,2 before (3) finally
proceeding along the path of correct execution, i.e, the architectural
path. These design choices allow us to drastically reduce the user
effort for specifying speculative execution in LmSpec.

The syntax of prediction clauses is given in Figure 4. Prediction
clauses consist of a name, a list of state variables with their initial
values, and a list of prediction handlers. Prediction handlers are
very similar to leakage handlers, and support flexible and generic
speculation. This contrasts with prior tools [26, 50], which rely
on hard-coded rules for identifying prediction points and possi-
ble mispredictions. The core difference is that prediction handlers
output a list of predicted values for control-flow or data predic-
tions. A control-flow prediction consists of the "PC" keyword and
the address of the next predicted instruction. In contrast, a data
flow prediction consists of a keyword (either "MEM" indicating that
we are predicting a memory value or "REG" indicating that we
are predicting a register value) and a prediction, which can be a
triple (address size value) for memory predictions or a pair
(registerId value) for register predictions. These predictions
are then used by LmSpec when exploring speculative paths, i.e.,
whenever LmSpec starts a new speculative path, it first selects one
of the outstanding predictions and applies it to the program state
before starting the speculative execution.

In the rest of this section, we show examples of how control-flow
(§4.2) and data speculation (§4.3) can be implemented in LmSpec.
In §6, we describe other variants of the prediction clauses that we
used in our case study.

4.2 Control-flow speculation
We already presented a first example of control-flow speculation,
i.e., misprediction of conditional branch instructions, in §2.2. Here,
we present two other examples: straight-line speculation and spec-
ulation using a return stack buffer.
Straight-line speculation: Some AMD processors can, under cer-
tain circumstances, execute the instructions following any branch
instruction [77], including unconditional branches. This is captured
by the following prediction clause:
1 (defpredictor StraightLineSpec []
2 (on [(jump addr : n)
3 [("PC" (+ &pc &insn.size))]]))

The handler always adds a prediction for the instructions following
the branch (line 3). In certain cases, e.g., when a conditional branch
is not taken, the following instruction is the correct next address. To
prevent treating this as a misprediction, LmSpec always removes the
correct outcome from the list of possible mispredictions returned
by the handler.
Return stack buffer: To speculate over return instructions, pro-
cessors employ an auxiliary data structure called the return stack
buffer (RSB), which stores the return addresses of recent call in-
structions and uses them as prediction for the actual return address.
We model RSB speculation (where the RSB is implemented using a
circular buffer) with the following prediction clause:

2The predictions generated by the prediction clause might contain the correct value.
To avoid treating it as a misprediction, LmSpec always removes the correct value from
the clause’s result.

1 (setv RSB_SIZE 16)
2 (defpredictor RSBCircular [stack (* [0] RSB_SIZE)
3 idx 0]
4 (on [(jump addr : n)
5 (cond
6 (&insn.group CS_GRP_CALL)
7 (do (assoc stack idx
8 (+ &pc &insn.size))
9 (setv idx (% (+ idx 1) RSB_SIZE)))
10 (&insn.group CS_GRP_RET)
11 (do (setv idx (% (- idx 1) RSB_SIZE))
12 [("PC" (get stack idx))]))]))

The code first defines a 16-entry buffer used for the RSB (line 1).
When handling jump operations, the code checks if these are calls
or returns (lines 6 and 10). In the case of calls, the code pushes
the return address into the stack (lines 7–9). For return instruction,
instead, the code pops an entry from the stack using it as a predicted
destination (lines 11–12).

4.3 Data speculation
So far, we have shown how control-flow speculation can be formal-
ized in LmSpec. Here, we show an example of data speculation. In
particular, we model speculation over store bypasses (exploited in
Spectre-STL attacks [30]), in which the processor speculates (possi-
bly incorrectly) that an older store does not conflict with a younger
load thereby accessing stale data. This can be modeled with the
following prediction clause:
1 (defpredictor StoreBypassSpec [buf (deque :maxlen SIZE)]
2 (on [(load [addr]_sz)
3 (lfor [waddr wsz val] buf
4 :if (= [addr sz] [waddr wsz])
5 ("MEM" (addr sz val)))]
6 [(store [addr]_sz := val)
7 (.append buf [addr sz (&mem.read addr sz)])]))

The clause keeps track of recent store instructions and the contents
they overwrite using the buf state variable, which is a buffer of size
SIZE (defined in line 1). In particular, when executing a storemicro-
operation, the old overwritten value (extracted by the (&mem.read
addr sz) expression) is appended to buf (lines 6–7). In contrast,
when executing a load micro-operation, the code compares its
address and size with those in the store buffer, returning the old
value as a potential prediction (lines 2–5).

5 TESTING FOR LEAKS
In this section, we introduce our approach for automatically testing
the side-channel guarantees of programs against leaks captured by
LmSpec models. We first describe our implementation of LmSpec’s
executable semantics (§5.1) on top of the Unicorn CPU emulator [1],
which enables us to derive leakage traces for arbitrary x86 program
executions. We then proceed to describe our testing approach (§5.2),
which we implement in the LmTest testing tool.

5.1 Generating leakage traces for LmSpec
To study the security implications associated with a given LmSpec
model for real-world cryptographic implementations, we need an
automated way of deriving leakage traces directly from program
executions. To address this, we implemented an executable version

Testing side-channel security of cryptographic implementations against future microarchitectures

of LmSpec on top of the Unicorn emulator [1], which allows simu-
lating x86 programs architecturally. As mentioned in §2.3, we do so
by translating leakage and prediction clauses in LmSpec into event
hooks in Unicorn. Event hooks allow injecting arbitrary instrumen-
tation code that is automatically executed by the Unicorn emulator
whenever specific events happen during program execution. Our
implementation is inspired by the Revizor tool [50], which imple-
ments fixed leakage models on top of Unicorn using event hooks.

Leakage clauses: We compile each LmSpec leakage clause with 𝑛
handlers into 𝑛 different event hooks that monitor the execution of
the current instruction and record the associated leakage observa-
tions. In particular, handlers of load and store micro-operations
are compiled into memory hooks, which are executed whenever
the emulator executes a memory request (as a result of an instruc-
tion). Handlers for all other micro-operations, instead, are compiled
into instruction hooks, which are executed whenever the emulator
fetches a new instruction. The body of a leakage handler, which
records the leakage observation, is a Hy expression. We directly
compile it into Python (using the Hy backend [32]) as the body of
the event hook.

Prediction clauses: By default, Unicorn emulates instructions
following the x86 architectural semantics. To capture the effects
of speculatively executed instructions, we extended Unicorn with
an always mispredict speculation model [26, 50]. First, we compile
LmSpec prediction clauses into event hooks. These hooks, however,
compute a list of predictions, rather than observations (as do the
hooks associated with leakage clauses). Following [50], whenever
the emulator executes an instruction that triggers a hook associated
with a prediction clause, it (1) takes a checkpoint of the computation
state, (2) retrieves the predicted values computed by the hook (and,
if present, removes the correct value from the list of predictions)
and (3) continues the (speculative) simulation based on one of the
predictions. When speculative execution terminates,3 the emulator
restores the computation state, using the previously taken check-
point, and either explores another speculative path (if there are
other predictions) or restarts the architectural simulation.

Context variables: At every point during the simulation, the
values of LmSpec context variables (see Figure 5) are derived by
inspecting the emulator’s state. For instance, a call to &mem.read
is translated into a call to the Unicorn’s API for reading memory.
Similarly, the &insn structure is initialized by retrieving the current
instruction from the emulator’s state, disassembling it using the
Capstone library [17], and extracting the necessary information.

Deriving traces: Given a program, an initial program state, and
an LmSpec model, the corresponding leakage trace is obtained
by simulating the program execution using the Unicorn emulator
extended with the event hooks obtained from the LmSpec model.
In particular, the hooks associated with the prediction clause will
trigger speculative execution whereas those associated with the
leakage clause will track the leakage observations during execution.

3Following the always mispredict model [26], this happens in one of the following
cases: (1) the predefined speculation window is exhausted, (2) the execution encounters
a speculation barrier, e.g., an lfence instruction, or (3) the program terminates.

5.2 LmTest testing tool
Here, we describe our testing approach, implemented in the LmTest
tool, for detecting leaks in a program given an LmSpec model.

As anticipated in §2.5, we characterize side-channel security as
a non-interference property [5]. In particular, we say that program
𝑃 is secure under LmSpec model LM if for all pairs of initial program
states 𝑠, 𝑠′, if 𝑠 and 𝑠′ only differ in their secrets, then the leakage
traces (according to the model LM) associated with 𝑃 ’s execution
on states 𝑠 and 𝑠′ must be the same. Hence, a leak in program 𝑃

under model LM consists of a violation of this non-interference
property, that is, a pair of low-equivalent program states that result
in different leakage traces.

Algorithm 1 LmTest testing approach
Require: Program 𝑃 , labeled interface 𝐼 , LmSpec model LM , num-

ber of test cases 𝑁
1: 𝑠1, . . . , 𝑠𝑁 ← genInitConfs(𝐼 , 𝑁) ⊲ generate seed states
2: for 𝑠 ∈ {𝑠1, . . . , 𝑠𝑁 } do
3: 𝑠′ ← mutate(𝑠, 𝐼) ⊲ mutate state
4: 𝑡 ← getTrace(𝑃, 𝑠, LM) ⊲ collect traces
5: 𝑡 ′ ← getTrace(𝑃, 𝑠′, LM)
6: if 𝑡 ≠ 𝑡 ′ then ⊲ Trace comparison
7: return Violation detected ⟨𝑠, 𝑠′⟩
8: return No violation detected

To detect leaks, we use a relational random testing approach
inspired by Revizor [50] and ct-fuzz [28]. LmTest approach for
detecting leaks is summarized in Algorithm 1. We start by generat-
ing 𝑁 randomly selected initial states following the user-provided
labelled interface 𝐼 (line 1). For each state 𝑠 , we then generate a
low-equivalent state 𝑠′ (line 3). Next, we derive the leakage traces
associated with 𝑠 and 𝑠′ by simulating the program under test us-
ing the Unicorn emulator extended with the LmSpec model LM as
described in §5.1 (lines 4–5). Finally, we compare the generated
traces (lines 6–7): any difference in the traces is caused by a secret-
dependent leak (since 𝑠 and 𝑠′ are low-equivalent). If we detect a
difference, we report it (line 7). Otherwise, we continue the testing
and move to the next test case.

Before concluding, we provide further details on the labelled
interface and our test generation strategy.
Labelled interfaces: The labelled interface provides LmTest with
a description of the program inputs. For each input, the interface de-
scribes (1) whether it is stored in a register or in memory, (2) its size
in bytes, (3) whether it is public or secret, and (4) (optionally) its lo-
cation in memory. This interface is provided by the user and allows
LmTest to generate the test cases, which, as already mentioned,
are pairs of low-equivalent initial states.
Generating states: To generate a random initial state, we instanti-
ate each input with a sequence of randomly generated bytes of the
appropriate length, as specified in the labelled interface. This simple
strategy (which might not work for structured data) is sufficient
to generate valid initial states for all cryptographic implementa-
tions we tested in §6, whose inputs consist of, e.g., secret keys or
messages.
Mutating states: To mutate a random state 𝑠 , we replace its se-
cret inputs (as indicated by the interface) with sequences of fresh

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

randomly generated bytes of the appropriate length. This ensures
that the mutated state 𝑠′ is low-equivalent to the original state 𝑠 .

6 EVALUATION AND CASE STUDY
In this section, we study the impact of microarchitectural optimiza-
tions on the side-channel security of widely used cryptographic
algorithms. As part of this case study, we identify three core re-
search questions, which we address in the following sections:
RQ1 Does LmSpec provide an expressive and concise framework

for specifying leakage models? (§6.1)
RQ2 Are real-world cryptographic libraries secure under the dif-

ferent models and can LmTest detect leaks in them? (§6.2)
RQ3 Can the leaks be exploited? (§6.3)

6.1 RQ1: Expressiveness of LmSpec
We use LmSpec to model 18 leakage clauses (§6.1.1) and six predic-
tion clauses (§6.1.2) that we implemented in LmSpec, which com-
bined result in 108 LmSpec leakage models. Full implementations
in LmSpec of all our clauses are given in Appendices A–B.

6.1.1 Leakage clauses. We implemented in LmSpec 18 different
leakage clauses capturing the leaks introduced by eight different
classes of microarchitectural optimizations, from the classic con-
stant time model (capturing cache-related leaks), to complex op-
timizations like cache compression [66] and prefetching [68] as
well as security-critical optimization proposals [60]. Implemented
clauses include:
Constant-time (CT): We implemented the baseline model (de-

noted by CT) shown in Figure 1.
Silent stores (SS): We implemented the baseline model (denoted

by SS) shown in §3.2, and two variants. The SSI0 variant restricts
observations only to silent stores where the value being written
is all-zeroes [18]. The SSI variant produces an observation only
on silent stores involving memory locations that have already
been initialized by the program—the latter uses initialization
handlers, an LmSpec feature not presented in the paper.

Register file compression (RFC): We implemented the baseline
model (denoted by RFC) shown in §3.3, and two variants. The
RFC0 variant only compresses registers that are all-zero [64].
The NRFC variant only compresses narrow values [19]: registers
whose values are less than 16 bits are compressed into the same
physical register. For the latter, our model checks whether the
value being written to a register is under 16 bits and emits an
observation whenever another register also stores a value that is
under 16 bits.

Computation simplification (CS): We implemented three mod-
els. Two models (denoted respectively by CS and CST) capture
simplification strategies proposed by Atoofian and Baniasadi
[6], which simplify arithmetic and logical operations on values
like 0 and 1. The third, CSN, captures the effects of simplifying
multiplication instructions for narrow operands (under 32 bits).

Operand packing (OP): Operand packing [11] compresses multi-
ple in-flight instructions (of the same type) with narrow operands
into a single “compressed” instruction that is forwarded to the
execution units. We model it by tracking the latest 𝑛 expr micro-
operations during program execution, checking whether some
of these micro-operations can be compressed (i.e., they all have

operands that are less than 16 bits), and producing an observation
if this is the case.

Computation reuse (CR): Computation reuse optimizations [62]
cache recent computation results and avoid re-executing compu-
tations whenever their results are cached. We implemented two
models capturing the effects of reuse optimizations from [62].
The first model (denoted CR and presented in §3.4) captures
leaks introduced by computation reuse over arithmetic opera-
tions. The second model (denoted CRA) additionally captures
leaks by computation reuse on address calculations in address
micro-operations.

Cacheline compression (CC): Cache compression optimizations
aims at compressing cache lines, thereby increasing the amount
of data that can be stored in caches. We implemented models
capturing the effects of two compression strategies: Frequence
Pattern Compression (FPC) [2] and Base-Delta-Immidiate com-
pression (BDI) [56]. The former compresses several common data
patterns whereas the latter compresses narrow ranges of values.
In a nutshell, both models monitor the execution of memory oper-
ations and produce an observation whenever the corresponding
memory request might result in compression according to the
given strategy.

Prefetching (PF): Prefetchers aim at loading memory blocks into
the cache hierarchy before these blocks are requested by instruc-
tions. We implemented LmSpec models capturing the effects of
three different prefetching strategies: (1) next-line prefetching
(PFNL) [7], which prefetches the next memory block for any
load operation, (2) stream prefetching [59] (PFS), which detects
whether the program is accessing addresses at a regular stride and
prefetches further memory blocks along the stride, and (3) data-
dependent prefetcher (PFDD) based on behavior observed on the
Apple M1 chip [68]. All these models (1) monitor the execution
of load micro-operations, (2) check whether further memory
blocks need to be prefetched according to the corresponding
strategy, and (3) append the prefetched memory addresses to the
leakage trace.

6.1.2 Prediction clauses. We implemented in LmSpec six different
prediction clauses, the default sequential prediction clause (de-
noted by Seq and represented in LmSpec by the absence of any
defpredictor statement), and five additional clauses, capturing
different speculation mechanisms. In particular, our models cover
all speculation mechanisms that have been formalized in the litera-
ture [20]. The implemented models are:

Conditional branch speculation (Pht): The prediction clause
for this model, presented in Figure 2, captures speculating over
branch instructions following the so-called “always mispredicts”
semantics [26].

Straight-line speculation (Sls): We implemented an LmSpec
model, illustrated in §4.2, that capturess the effects of straight-
line speculation implemented in some AMD cores [77]. The model
always speculates for a fixed number of steps beyond any jump
micro-operation .

Store bypass speculation (Stl): The LmSpec model illustrated
in §4.3 captures the effects of speculation over store bypasses [30].

Testing side-channel security of cryptographic implementations against future microarchitectures

Following [20], our model speculatively ignores issued storemicro-
operations for a fixed number of steps.
Return address speculation (Rsb): We implemented two clauses
modeling speculation over return instructions. Both models employ
a return stack buffer to determine the speculation target, but they
differ in how they handle buffer under- and over-flows. One model,
denoted Rsb◦ and presented in §4.2, uses a circular buffer that
wraps around on over- or underflows. The other, denoted as Rsb⊥,
is inspired by the return speculation in [20]. It simply drops its
oldest entry on overflow and halts (refuses to speculate further) on
underflow.

6.1.3 Assessment. In terms of expressiveness, we observe that our
leakage models span a large class of microarchitectural leaks. In
particular, our leakage clauses cover both standard models like
constant-time as well as advanced optimizations (cache compres-
sion and prefetching) and examples from all optimization proposals
studied in [60]. Similarly, our prediction clauses cover multiple
different speculation mechanisms and all speculation mechanisms
used in state-of-the-art tools [20, 50]. To the best of our knowl-
edge, this is the largest library of leakage models (108 models) to
be implemented in a single language/tool.

Regarding the conciseness of our LmSpec implementations, we
observe that most of the leakage and prediction clauses are imple-
mented in a few lines of LmSpec. For instance, the prediction clauses
are all implemented in less than 10 lines of LmSpec code each. We
remark that LmSpec allows directly leveraging Python’s standard
library and data structures, which greatly simplifies implementing
more complex models (like computation reuse or cache compres-
sion). Overall, all the aforementioned leakage and prediction clauses
can be implemented in about 500 lines of code, including Python
code for handling data structures like the computation reuse cache
and C code for the implementation of cache compression strategies.

6.2 RQ2: Robustness of cryptographic libraries
Here, we report the results of our analysis of the security of sev-
eral real-world cryptographic libraries against the leakage models
from §6.1, which we conducted using LmTest. In the following, we
first present the test subjects (§6.2.1) and the overall experimental
setup (§6.2.2). We conclude by presenting our results (§6.2.3).

6.2.1 Test subjects. We focus on eight commonly used crypto-
graphic algorithms that span a variety of use cases for crypto-
graphic software: AES and SHA512 are widely used primitives for
encryption and hashing, respectively; poly1305 and salsa20 are the
default primitives used for authenticated encryption in the popu-
lar cryptographic library libsodium; and ed25519 and x25519 are
elliptic-curve primitives. We also analyze the HMAC and stream-
XOR constructions to see any leakage effects from higher-level
cryptographic operations.

We test the implementations of these algorithms from five differ-
ent cryptographic libraries: libsodium [40], a popular cryptographic
library written in C and designed for ease-of-use and safe defaults;
cryptlib [14] and libnettle [49] as alternative libraries also written
in C, to compare results between different implementations; Rust
Crypto [55] to examine how the high level safety guarantees pro-
vided by Rust [43] may affect leakage results; and libjade [22], a

library written in the Jasmin secure assembly language [4] and
verified to be constant-time.

We compiled each library with their respective default settings
and compilers.4 Since some libraries only implement a subset of
the studied algorithms, this results in 25 different cryptographic
implementations. For each implementation, we manually created a
wrapper function that (1) runs the algorithm implementation, and
(2) annotates the algorithm inputs as secret or public for LmTest.

6.2.2 Experimental setup. For each of the test subjects, we use Lm-
Test to test their security against all the leakage models from §6.1.
Specifically, for each test subject trg and leakage model𝑀 , we use
LmTest to (a) generate 100 test cases, where each test case consists
of a pair of low-equivalent initial states, (b) run trg for all test cases
and collect the leakage traces generated by the model 𝑀 , and (c)
analyze the leakage traces for leaks (i.e., checking if the traces for
a single test case are different). For each test subject and leakage
model, we impose a total timeout of 240 minutes and a per-test-case
timeout of 30 minutes, and stop the testing whenever one of the
timeouts expires. We ran our testing campaign on an Intel Xeon
Gold 6132 running Ubuntu 22.04.2 LTS.

6.2.3 Assessment. Table 1 summarizes the results of our testing
campaign. The overall finding is that all the analyzed implementa-
tions leak. This confirms that the optimization proposals studied
in [60], if implemented, could potentially introduce security issues
in modern cryptographic implementations. The testing campaign
also highlights several important observations:
• For the majority of leakage clauses and implementations, LmTest
can already detect leaks under the Seq prediction clause.

• There are several cases, however, where LmTest can only detect
leaks under the speculative prediction clauses (e.g., computation
reuse optimizations in libnettle, rust-crypto, and libjade). This in-
dicates that, similarly to what happens in Spectre attacks [35], the
interplay between speculative execution and microarchitectural
optimizations can weaken the security of implementations.

• The use of memory-safe languages like Rust does not seem to
significantly improve the security against the new leakagemodels.
In most cases, the implementations from the rust-crypto library
are as leaky as the corresponding C implementations of other
libraries.

• Constant-time programming does not prevent leaks under these
new leakagemodels. Despite all analyzed implementations except
AES-CBC5 begin constant-time (and libjade being provably so),
LmTest still detects leaks in them. As we show in §6.3, specific
constant-time idioms, such as constant-time swaps, introduce
leaks under several of the studied leakage clauses and result in
leaks that allow recovering secret keys directly from leakage
traces.

6.3 RQ3: Exploitability of leaks
To illustrate the security relevance of the leaks identified by Lm-
Test, we performed an in-depth analysis of our findings against

4We compiled libsodium v1.0.18 with gcc v11.4.0, cryptlib v3.4.6 with clang v14.0.0,
libnettle v3.8 with clang v14.0.0, Rust Crypto using sha2 v1.10, salsa20 v0.10.2, poly1305
v0.8.0, and x25519-delak v2.0.0 all with cargo 1.73.0-nightly, and libjade v2023.05-1
with jasminc v2023.06.0.
5libnettle and cryptlib implement AES using non-constant-time lookup tables.

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

Table 1: Results of our testing campaign. Filled-in diamonds q denote that LmTest detected a secret-dependent leak for a
specific configuration (library, algorithm, leakage clause, prediction clause), while outlined diamonds ♦ denote that LmTest
detected no leaks during testing. Crosses × indicate that LmTest timed out before completing the testing. To aid readability, we
visually combine results for (library, algorithm, leakage clause) triples if they are the same for all prediction clauses.

CT SS RFC CS OP CR CC PF
libsodium · · ·i ·i0 · ·0 ·n · ·t ·n · · ·a fpc bdi ·nl ·s ·dd
salsa20 ♦♦q

q♦♦ q q ♦qq
q♦♦ q q q q ♦qq

♦♦♦ ♦ q q q q q ♦♦q
q♦♦

♦♦q
q♦♦

♦♦q
♦♦♦

poly1305 ♦♦q
q♦♦ q q q q q q q q ♦ q q q q q ♦♦q

q♦♦
♦♦q
q♦♦ ♦

sha512 ♦qq
q♦♦ q q q q q q q q ♦× q q q q q ♦♦×

q♦♦ ♦× ♦

hmac ♦q×
♦♦♦ q× q× q× q× q× q× q× ♦× ♦× q× q× q× q× q× ♦× ♦× ♦×

ed25519 ♦q×
q♦♦ q× q× q× q× q× q× q× q× ♦♦×

q♦♦ q× q× q× q× q× ♦q×
q♦♦

♦q×
q♦♦

♦♦×
q♦♦

x25519 ♦qq
q♦♦ q q q q q q q q ♦ q q q q q ♦qq

q♦♦
♦q♦
q♦♦ q

stream-xor ♦qq
q♦♦ q q ♦qq

q♦♦ q q q q ♦qq
♦♦♦ ♦ q q q q q ♦qq

q♦♦
♦♦q
q♦♦ ♦

cryptlib
aes-cbc q q q q q q q q q ♦ q q q q q q q q
sha512 ♦qq

q♦♦ q q q q q q q q ♦ q q q q q ♦qq
q♦♦

♦qq
q♦♦

q♦q
qqq

libnettle
aes-cbc q q q q q q q q q ♦ q q q q q q q qq♦

qqq

salsa20 ♦♦q
♦♦♦ q ♦qq

q♦♦
♦qq
q♦♦ q q q q ♦♦q

♦♦♦ ♦ q ♦qq
q♦♦

♦qq
q♦♦ q q ♦ ♦ ♦

sha512 ♦qq
q♦♦ q q q q q q q q ♦× q q q q q ♦♦×

q♦♦
♦♦×
q♦♦

q♦×
qqq

hmac ♦♦q
♦♦♦ q q q q q q q ♦♦q

♦♦♦ ♦ q ♦qq
q♦♦

♦qq
q♦♦ q q ♦ ♦ ♦

ed25519 ♦× q× q× q× q× q× q× q× q× ♦× q× q× q× q× q× ♦× ♦× q×
x25519 ♦×××q♦ q× q× q× q× q× q× q× q× ♦× q× q× q× q× ♦×××q♦ ♦×××q♦ ♦× ♦×

rust-crypto
salsa20 ♦ q q ♦qq

q♦♦ q q q q ♦× ♦ q ♦qq
q♦♦

♦qq
q♦♦ q q ♦ ♦× ♦

poly1305 ♦♦×
q♦♦ q× q× q× q× q× q× q× q× ♦♦×

q♦♦ q× q× q× q× q× ♦♦×
q♦♦

♦♦×
q♦♦ ♦×

sha512 ♦♦q
q♦♦ q q q q q q q q ♦ q q q q q ♦♦♦

q♦♦
♦♦♦
q♦♦ ♦

x25519 ♦× q× q× q× q× q× q× q× q× ♦× q× q× q× q× q× ♦× ♦× ♦×
stream-xor ♦♦♦

q♦♦ q q ♦q♦
q♦♦ q q q q ♦ ♦ q ♦qq

q♦q
♦qq
q♦♦ q q ♦♦♦

q♦♦ ♦ ♦

libjade
salsa20 ♦♦q

q♦♦ q ♦qq
q♦♦

♦qq
q♦♦ q q q q ♦♦q

♦♦♦ ♦ q ♦qq
q♦♦

♦qq
q♦♦ q q ♦♦q

q♦♦
♦♦q
♦♦♦

♦♦q
♦♦♦

poly1305 ♦♦q
♦♦♦ q ♦qq

♦♦♦
♦qq
♦♦♦ q q q q q q q q q q q ♦ ♦ q

sha512 ♦♦q
q♦♦ q q q q q q q q ♦ q ♦qq

q♦♦
♦qq
q♦♦ q q ♦♦q

q♦♦
♦♦q
q♦♦

♦♦q
♦♦♦

x25519 ♦× q× q× ♦× q× q× q× q× q× ♦× q× q× q× q× ♦× ♦× ♦× ♦×
stream-xor ♦♦q

q♦♦ q ♦qq
q♦♦

♦qq
q♦♦ q q q q ♦ ♦ q ♦qq

q♦♦
♦qq
q♦♦ q q ♦♦q

q♦♦
♦♦q
♦♦♦ ♦

qqq
qqq results for prediction clauses: 〈Seq〉 〈Pht〉 〈Sls〉

〈Stl〉 〈Rsb⊥〉 〈Rsb◦〉

q / ♦ / × leak found / not found / time out
q / ♦ leak found / not found for all prediction clauses

q× / ♦×
leaks found / not found for all prediction clauses;
one or more speculative clauses timed out

the libsodium implementation of the X25519 key exchange algo-
rithm. Our analysis highlights that in several cases we can recover
a victim’s secret key directly from the leakage traces resulting from
different leakage models. We present three examples focusing on
leakage models associated with register file compression, compu-
tation simplification, and silent store optimizations. All examples
exploit leaks caused by the constant-time swap implementation
introduced as part of the X25519 constant-time protections.

6.3.1 X25519 compare-and-swap. Figure 6 depicts the function
showing a simplified version of the compare-and-swap algorithm
used in X25519. The two curve points to be swapped, f and g, are
encoded as 5-element uint64_t arrays. The secret bit b controls
whether the elements should be swapped. Since the function is
called for each bit of the secret key, learning b at each iteration
allows an attacker to recover the secret key.

The conditional swap is implemented without using conditional
branches. First, the condition bit b is expanded into 64-bit mask

Testing side-channel security of cryptographic implementations against future microarchitectures

1 fe25519_cswap(fe25519_limb f[5], fe25519_limb g[5],
2 /*secret*/ bool b) {
3 mask = (-(int64_t) b);
4
5 x[0..5] = f[0..5] ^ g[0..5];
6
7 x[0..5] &= mask;
8
9 f[0..5] = f[0..5] ^ x[0..5];
10 g[0..5] = g[0..5] ^ x[0..5];
11 }

Figure 6: X25519 constant-time swap from libsodium, con-
densed for brevity. The variables f, g, and x are each 5-
element uint64_t arrays.

(line 3). The two curve points f and g are then loaded from memory
and xor’ed together into x (line 5), which is then masked (line 7).
The result is xor’ed again with each structure (lines 9–10); if b
was 0, then the mask will also be 0 and thus x too will become 0;
performing the xors will leave each structure unchanged. On the
other hand, if b was 1, then the mask will be 0xfff...ff and x
will remain unchanged. Since x is already the xor of each structure,
xor’ing it back into each structure will serve to swap the values.
Finally, the curve points f and g are written back to memory.

Under the constant-time leakage model, this implementation has
no secret-dependent leaks, as it contains no branches nor secret-
dependent memory accesses. Unfortunately, it still leaks under
several of the leakage models from §6.1, as we show next.

6.3.2 Register compression (RFC0, RFCN). The value of mask is
derived from the secret bit b and is then used to mask x (line 7).
Whenever themask is 0, the resulting operationswill also produce 0;
in the RFCmodels, we will observe this as a cluster of compressions
to the zero register, which are recorded in the leakage traces. This
allows us to determine whether the original condition bit was 0
or 1 in each loop iteration.

6.3.3 Computation simplification (CST). After the temporary value
x has been masked (line 7), it is xor’ed back against f and g respec-
tively to perform the swap (lines 9–10). Whenever the mask is 0,
the x will also be 0. However, the xor’ing 0 with any value leaves
it unchanged; thus in the CST model, we will observe any such
xor operations as being simplified, which is recorded as part of the
leakage trace. Again, this allows us to recover the condition bit b.

6.3.4 Silent stores (SS). After the values of f and g are possibly-
swapped, the two points are written back to memory. Whenever
the values are not swapped, the memory writes on lines 9–10 do
not modify the memory. In the SS model, these stores will be sup-
pressed and produce observations in the leakage traces, which let
us recover b.

6.3.5 Assessment. Our analysis highlights that, for several leak-
age models, the leaks detected by LmTest can be exploited to re-
cover a secret key from the leakage traces. In particular, the leaks
are directly caused by the constant-time implementation of the
compare-and-swap algorithm introduced to prevent side-channel
leaks under the standard constant-time model. We also remark that
the exploited leaks are already present under the 𝑆eq prediction
clause, i.e., they do not result from speculative instructions.

7 DISCUSSION
Scope of the models: The goal of the leakage models presented
in this paper is to capture the core aspects associated with the
studied microarchitectural optimizations while (a) enabling testing
of real-world cryptographic implementations and (b) illustrating
the expressiveness of the LmSpec language. As a result, our models
simplify many aspects of modern CPUs, which might influence
their faithfulness to any specific hardware. Note also that some of
our models are associated with optimization proposals rather than
concrete implementations; different microarchitectural implemen-
tations of the same proposal, therefore, might result in different
leakage profiles.

Scope of the results in §6: Our investigation highlighted that
optimization proposals can potentially compromise the security of
current cryptographic implementations, despite the use of constant-
time programming. Lifting the results of our testing campaign to
real-world CPUs, however, is only possible to the extent that our
leakage models precisely capture the microarchitectural informa-
tion flows in these CPUs. Even for the optimizations currently im-
plemented by modern processors (e.g., prefetching), LmTest results
might incorrectly classify programs either as secure or insecure
due to mismatches between actual and modeled leaks.

Regarding the exploitability analysis in §6.3, an important caveat
is that our analysis only refers to leakage models, given that the
studied optimizations are (to the best of our knowledge) not yet im-
plemented in modern CPUs. Even considering a CPU implementing
the target optimizations, lifting our analysis to a full-blown attack
might be challenging for two reasons. First, our models abstract
away from many detailed aspects of modern CPU microarchitec-
tures and, thus, might not faithfully capture all leaks happening
on a specific CPU. Second, our analysis assumes that every leak-
age observation is immediately visible to an attacker. However, in
a practical setting, the attacker will not have access to such pre-
cise observations. Instead, they will only be able to observe (noisy)
measurements, e.g., variations in program execution time.

Scope of LmSpec and LmTest: We see LmSpec and LmTest as
a way for both hardware vendors and cryptographic developers
alike to easily study the security implications of microarchitectural
optimization proposals. This will enable identifying potential leaks
during the development of new microarchitectural optimizations
before their implementation in silicon, thereby enabling program-
mers to develop program-level countermeasures early on.

8 RELATEDWORK
Comparison with the Pandora works: Here, we review [60],
which is a direct inspiration for our work, and a recent follow-up
paper [21].

Sanchez Vicarte et al. [60] conduct a systematic review of the
security implications of microarchitectural optimizations and per-
form an in-depth analysis of seven classes of microarchitectural
optimizations. Their work provides semi-formal descriptions of the
leakage models associated to several optimizations (e.g., operand
packing and computation reuse). Their descriptions are based on the
notion of microarchitectural leakage descriptors (MLDs). However,
these descriptors are informal and often incomplete. For instance,

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

the MLD for computation reuse does not describe how the reuse
buffer is updated throughout execution. Our models, instead, cap-
ture the salient aspects of specific optimization proposals and have
executable implementations. For instance, CR and CRA capture the
key aspects of computation reuse from Sodani and Sohi [62].

A main novelty of our work is a framework for evaluating the se-
curity implications of arbitrarymicroarchitectural proposals against
real-world cryptographic implentations by (a) modeling them as Lm-
Spec leakage models, and (b) using LmTest to automatically detect
leaks through random testing. Additionally, we consider the interac-
tions between the leakage models and speculative execution, which
are not explored systematically in [60]. Our evaluation in §6 consid-
ers all optimization classes from [60] and our results confirm that,
if implemented, such microarchitectural optimizations might com-
promise the security of existing cryptographic implementations.

Sanchez Vicarte et al. also explore the relevance of security leaks
for two classes of optimizations: silent stores and data-dependent
prefetching. Concretely, they present two proof-of-concept attacks
exploiting silent stores (against Bitslice AES128) and data-dependent
prefetching (against Ebpf). Their attack for silent-stores is imple-
mented on top of Gem5 [42] and allows to recover the secret key
used by the Bitslice AES128 encryption algorithm. The attack relies
on (1) secret-dependent information being copied to the stack, and
(2) the attacker being able to call the encryption algorithm repeat-
edly with attacker-controlled data (to trigger silent stores). The
leak exploited in this attack is similar to several SS leaks found by
LmTest, e.g., those detected in libsodium’s Salsa20 implementation.
Our analysis of x25519 corroborates their findings that these leaks
could be exploited in idealized scenarios where the attacker is able
to observe fully the leakage described by the LmSpec model.

In a follow up work [21], Flanders et al. develop a program
rewriting approach for hardening cryptographic implementations
against two of Pandora’s leakages: silent stores and computation
simplification. Their approach shows that it is possible to protect
implementations against some of the Pandora leakages. However,
it incurs a significant performance overhead due to its generality.
Our work does not consider mitigations. However, it would be
interesting to explore in the future how our approach could be
leveraged for validating algorithm-specific mitigations.

Attacks related to the studied leakagemodels: Here, we review
existing attacks targeting leaks related with the leakage models
studied in this paper.

Ciphertext attacks [38, 39] exploit the memory encryption in
AMD SEV-SNP which employs a tweakable encryption mode where
a ciphertext depends on a plaintext and a physical address. When-
ever a store operation at location 𝑛 happens, an attacker can infer
whether the new value is different from the old value at that location
by observing changes in the ciphertext at𝑛 (ciphertexts are different
iff plaintexts are different). This is exactly the same leakage model
as for silent stores (§3.2). Hence, mitigations against ciphertext
attacks [16, 75] should be effective also against silent store leaks.

Finally, the Augury attack [68] exploits the 1-level pointer chas-
ing prefetcher implemented in M1 processors, whereas the Safe-
cracker attack [66] exploits data compression schemes in caches to
infer the content of cache lines. The leakage clauses for prefetching

(PFDD) and cache compression (CC) used in our case study are
inspired by the leaks exploited in [66, 68].
Attacks outside our leakage models: Several recent works have
exploited leakage through power consumption of the CPU, either
directly [41] or indirectly through the impact of the power con-
sumption on the CPU heat and frequency [63, 70, 71]. As these
attacks do not observe the microarchitecture directly, it is not clear
whether they can be modeled in LmSpec.

RAMBleed [36] exploits the Rowhammer effect [34] to leak data
from memory. The attack leaks data at rest, and it is not affected by
execution models. Thus it is less compatible with our framework.
Similarly, attacks that exploit data compression [3, 61, 69] rely on
vulnerabilities in software, which are out of scope for LmSpec.
Formal models and analysis: Many formal models capturing
timing leaks at microarchitectural level have been proposed. Ini-
tially, researchers proposed models capturing leaks associated with
“constant-time” [5, 46], e.g., by instrumenting a program’s semantics
to produce leakage traces exposing memory accesses and control-
flow. More recently, researchers have proposed models capturing
leaks associated with speculatively executed instructions. Some
models [20, 26, 27, 47, 54] extend program-level semantics with
dedicated observations to capture microarchitectural side effects
(like cache accesses) and capture the effects of speculatively exe-
cuted instructions at high level by allowing the program semantics
to explore mispredicted paths for a fixed number of steps [26]. Other
models [13, 25, 27, 44, 67] rely on more complex models that explic-
itly capture components like pipeline stages, caches, and branch
predictors.

The LmSpec language provides a way of rapidly prototyping and
formalizing these leakage models. As a proof of LmSpec’s expres-
siveness, we used it to capture a large class of leakage models. In
particular, beyond the constant-time model (Figure 1), we success-
fully implemented in LmSpec (a) leakage clauses capturing the leaks
induced by all optimization classes studied by Sanchez Vicarte et al.
[60], and (b) speculative models capturing speculation over branch,
store, and return instructions as well as straight-line speculation.
We remark that LmSpec’s design took inspiration from prior work:
(1) the notions of leakage and prediction clauses is inspired by the
models from [27], (2) the modeling of speculation is inspired by the
always mispredict speculative semantics from [26], and (3) its exe-
cutable implementation on top of the Unicorn emulator is inspired
by the Revizor testing tool [50].
Testing for leaks: Here, we review relevant prior work on detect-
ing leaks using testing-based approaches.

There are several approaches for detecting leaks in programs
against specific leakage models. For instance, CtFuzz [28] and
CtGrind [15] detect leaks against the constant-time model (see
Figure 1 for its LmSpec encoding). In particular, CtFuzz constructs
a self-composition of the program under test with itself, which is
then fuzzed for violations (i.e., by inspecting the traces produced by
self-composed program) using the Afl fuzzer. This is different from
LmTest, which executes the program under test on individual in-
puts and compares pairs of traces. In contrast, CtGrind [15] allows
checking violations of constant-time on top of ValGrind [48] using
taint-tracking. Finally, SpecFuzz [52] detects speculative bound
check bypasses (BCB) against an always-mispredict speculation

Testing side-channel security of cryptographic implementations against future microarchitectures

model capturing speculation over branch instruction (i.e., the model
in Figure 2). Differently from LmTest, however, all these approaches
are tied to specific leakage models.

Rather than relying on a leakage model, dudect [58] detects
side-channel leaks in programs by directly performing hardware
measurements. Therefore, dudect can detect actual leaks against
commercial processors. Finally, Microwalk [74, 76] employs binary
instrumentation to collect leakage log from functions, detecting
leakage when logs are affected by change in secret variables.

Testing has also been used to automatically discover leaks in
processors rather than specific programs. For instance, tools like
Scam-V [12, 47] and Revizor [29, 50, 51] can be used to detect leaks
in commercial processors against a leakage model used as a spec-
ification. Other approaches [24, 45, 73], instead, detect leaks by
analyzing hardware measurements without the help of a formal
leakage model. Finally, tools like SpecDoctor [31], SIGFuzz [57],
and AutoCC [53] can test processor designs for leaks and they are
applicable in the pre-silicon phase. We remark, however, that all
these tools differ in scope from LmTest: LmTest detect leaks in
programs, whereas these tools detect leaks in the CPU under test.

Finally, Pensieve [78] is a framework for evaluating the security
of early-stage microarchitectural defenses against Spectre attacks.
It allows hardware developers to (a) specify a given countermeasure
on top of an out-of-order processor model, and (b) find counterex-
amples to speculative non-interference [26] using model check-
ing. Thus, Pensieve aims at finding problems in hardware coun-
termeasures. In contrast, our approach aims that evaluating the
implications of microarchitectural proposals on the side-channel
guarantees of programs (even beyond speculative execution).

9 CONCLUSION
In the future, chip vendors are expected to implement new andmore
aggressive microarchitectural optimizations to speed up computa-
tion. Given the extended development time of hardware mitigations,
and the performance cost and often slow adoption rate of software
countermeasures, it is critical that the security analysis of these new
optimizations happens early on during their development, ideally
before their availability in commercial processors.

To enable this early-stage security analysis, we proposed a frame-
work (consisting of the LmSpec language and the LmTest testing
tool) for evaluating the side-channel guarantees of programs against
(future) microarchitectural optimizations. With our framework, we
performed a large-scale study of the implications of a large class of
optimizations, recently identified as security-critical, on the secu-
rity of mainstream cryptographic libraries. Our results confirmed
that these optimizations, if implemented, would compromise the
security of all analyzed libraries.

ACKNOWLEDGMENTS
We would like to thank Boris Köpf for his feedback on earlier
versions of this paper.

This work was partially supported by the Spanish Ministry of
Science and Innovation under the project TED2021-132464B-I00
PRODIGY; the Spanish Ministry of Science and Innovation under
the Ramón y Cajal grant RYC2021-032614-I; the Spanish Ministry

of Science and Innovation under the project PID2022-142290OB-
I00 ESPADA; the Australian Research Council Discovery Project
DP210102670; the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972; the Air Force Office of Scientific
Research (AFOSR) under award number FA9550-20-1-0425 the De-
fense Advanced Research Projects Agency (DARPA) under contract
number W912CG-23-C-0022 the National Science Foundation (NSF)
under grant number CNS-1954712 and gifts from Intel, Qualcomm,
and Cisco.

REFERENCES
[1] [n. d.]. Unicorn. https://www.unicorn-engine.org.
[2] Alaa Alameldeen and David Wood. 2004. Frequent Pattern Compression:

A Significance-Based Compression Scheme for L2 Caches. Technical Report
TR 1500. University of Wisconsin-Madison Department of Computer Sci-
ences. https://research.cs.wisc.edu/multifacet/papers/tr1500_frequent_pattern_
compression.pdf

[3] Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In IEEE SP. 526–540. https://doi.org/10.
1109/SP.2013.42

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In CCS. 1807–1823. https://doi.org/10.1145/3133956.3134078

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying Constant-Time Implementations. In USENIX
Security. 53–70.

[6] Ehsan Atoofian and Amirali Baniasadi. 2005. Improving Energy-Efficiency by
Bypassing Trivial Computations. In IPDPS. https://doi.org/10.1109/IPDPS.2005.
253

[7] Jean-Loup Baer and Tien-Fu Chen. 1991. An effective on-chip preloading scheme
to reduce data access penalty. In ACM/IEEE conference on Supercomputing. 176–
186.

[8] Saisanthosh Balakrishnan and Gurindar S. Sohi. 2003. Exploiting Value Locality
in Physical Register Files. In MICRO. 265–276. https://doi.org/10.1109/MICRO.
2003.1253201

[9] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David
Pichardie. 2014. System-level Non-interference for Constant-time Cryptography.
In CCS, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). 1267–1279.

[10] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. 2012. The Security Impact
of a New Cryptographic Library. In LATINCRYPT. 159–176. https://doi.org/10.
1007/978-3-642-33481-8_9

[11] David Brooks and Margaret Martonosi. 1999. Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance. In HPCA. 13–22.

[12] Pablo Buiras, Hamed Nemati, Andreas Lindner, and Roberto Guanciale. 2021.
Validation of side-channel models via observation refinement. In MICRO. 578–
591.

[13] Sunjay Cauligi, Craig Disselkoen, Klaus V. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for
the New Spectre Era. In PLDI. 913–926. https://doi.org/10.1145/3385412.3385970

[14] cryptlib. [n. d.]. Cryptlib Security Toolkit Version 3.4.5. https://cryptlib.com/
downloads/manual.pdf.

[15] CtGrind. [n. d.]. Checking that functions are constant time with Valgrind. https:
//github.com/agl/ctgrind.

[16] Sen Deng, Mengyuan Li, Yining Tang, Shuai Wang, Shoumeng Yan, and Yin-
qian Zhang. 2023. CipherH: Automated Detection of Ciphertext Side-channel
Vulnerabilities in Cryptographic Implementations. In USENIX Security.

[17] Capstone The Ultimate Disassembler. [n. d.]. http://www.capstone-engine.org.
[18] Travis Downs. 2020. Hardware Store Elimination. https://travisdowns.github.io/

blog/2020/05/13/intel-zero-opt.html.
[19] Oguz Ergin, Deniz Balkan, Kanad Ghose, and Dmitry V. Ponomarev. 2004. Reg-

ister Packing: Exploiting Narrow-Width Operands for Reducing Register File
Pressure. In MICRO. 304–315. https://doi.org/10.1109/MICRO.2004.29

[20] Xaver Fabian, Marco Patrignani, andMarco Guarnieri. 2022. Automatic Detection
of Speculative Execution Combinations. In CCS. 965–978. https://doi.org/10.
1145/3548606.3560555

[21] Michael Flanders, Reshabh K. Sharma, Alexandra E. Michael, Dan Grossman,
and David Kohlbrenner. 2024. Avoiding Instruction-Centric Microarchitectural
Timing Channels Via Binary-Code Transformations. In ASPLOS. To appear.

[22] Formosa Crypto. [n. d.]. https://formosa-crypto.gitlab.io/.
[23] Qian Ge, Yuval Yarom, David A. Cock, and Gernot Heiser. 2018. A survey

of microarchitectural timing attacks and countermeasures on contemporary

https://www.unicorn-engine.org
https://research.cs.wisc.edu/multifacet/papers/tr1500_frequent_pattern_compression.pdf
https://research.cs.wisc.edu/multifacet/papers/tr1500_frequent_pattern_compression.pdf
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/IPDPS.2005.253
https://doi.org/10.1109/IPDPS.2005.253
https://doi.org/10.1109/MICRO.2003.1253201
https://doi.org/10.1109/MICRO.2003.1253201
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1145/3385412.3385970
https://cryptlib.com/downloads/manual.pdf
https://cryptlib.com/downloads/manual.pdf
https://github.com/agl/ctgrind
https://github.com/agl/ctgrind
http://www.capstone-engine.org
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://doi.org/10.1109/MICRO.2004.29
https://doi.org/10.1145/3548606.3560555
https://doi.org/10.1145/3548606.3560555
https://formosa-crypto.gitlab.io/

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

hardware. J. Cryptogr. Eng. 8, 1 (2018), 1–27. https://doi.org/10.1007/s13389-016-
0141-6

[24] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures.. In NDSS.

[25] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking and
FixingMicroarchitectural Vulnerabilities by Formal Analysis. In CCS. 1853–1869.

[26] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.
2020. Spectector: Principled Detection of Speculative Information Flows. In IEEE
SP. 1–19. https://doi.org/10.1109/SP40000.2020.00011

[27] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-
software Contracts for Secure Speculation. In IEEE SP. 1868–1883. https://doi.
org/10.1109/SP40001.2021.00036

[28] Shaobo He, Michael Emmi, and Gabriela Ciocarlie. 2020. ct-fuzz: Fuzzing for
Timing Leaks. In ICST. 466–471.

[29] Jana Hofmann, Emanuele Vannacci, Cédric Fournet, Boris Köpf, and Oleksii
Oleksenko. 2023. Speculation at Fault: Modeling and Testing Microarchitectural
Leakage of CPU Exceptions. In USENIX Security. 7143–7160.

[30] Jann Horn. 2018. Speculative execution, variant 4: Speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.

[31] Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. 2022. Spec-
Doctor: Differential Fuzz Testing to Find Transient Execution Vulnerabilities. In
CCS. 1473–1487. https://doi.org/10.1145/3548606.3560578

[32] Hylang. [n. d.]. http://hylang.org.
[33] Ilhyun Kim and Mikko H. Lipasti. 2002. Implementing Optimizations at Decode

Time. In ISCA. 221–232. https://doi.org/10.1109/ISCA.2002.1003580
[34] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In
ISCA. 361–372. https://doi.org/10.1109/ISCA.2014.6853210

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,
MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
IEEE SP. 1–19. https://doi.org/10.1109/SP.2019.00002

[36] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:
Reading Bits in Memory Without Accessing Them. In SP. 695–711. https:
//doi.org/10.1109/SP40000.2020.00020

[37] Kevin M. Lepak and Mikko H. Lipasti. 2000. Silent Stores for Free. In MICRO.
22–31. https://doi.org/10.1109/MICRO.2000.898055

[38] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP. In IEEE SP. 337–351. https://doi.org/10.1109/SP46214.2022.
9833768

[39] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CipherLeaks: Breaking Constant-time Cryptography on AMD SEV via the Ci-
phertext Side Channel. In USENIX Security. 717–732. https://www.usenix.org/
system/files/sec21-li-mengyuan.pdf

[40] libsodium. [n. d.]. https://doc.libsodium.org/.
[41] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz, Catherine

Easdon, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based
Power Side-Channel Attacks on x86. In SP. 355–371. https://doi.org/10.1109/
SP40001.2021.00063

[42] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A.Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:
Version 20.0+. arXiv:2007.03152 [cs.AR]

[43] Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust Language. In HILT.
103–104. https://doi.org/10.1145/2692956.2663188

[44] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.
2019. Spectre is Here to Stay: An Analysis of Side-Channels and Speculative
Execution. CoRR abs/1902.05178 (2019).

[45] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. 2020. Medusa:
Microarchitectural data leakage via automated attack synthesis. In USENIX Secu-
rity. 1427–1444.

[46] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The
Program Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks. In ICISC. 156–168.

[47] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and Swen
Jacobs. 2020. Validation of Abstract Side-Channel Models for Computer Archi-
tectures. In CAV.

[48] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89–
100.

[49] nettle. [n. d.]. Nettle: a low-level cryptographic library. https://www.lysator.liu.
se/~nisse/nettle/nettle.html.

[50] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. 2022. Revi-
zor: Testing Black-Box CPUs Against Speculation Contracts. In ASPLOS. 226–239.
https://doi.org/10.1145/3503222.3507729

[51] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein. 2023.
Hide and Seek with Spectres: Efficient discovery of speculative information leaks
with random testing. In IEEE SP. https://doi.org/10.1109/SP46215.2023.10179391

[52] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
SpecFuzz: Bringing Spectre-type Vulnerabilities to the Surface. In USENIX Secu-
rity. 1481–1498.

[53] Marcelo Orenes-Vera, Hyunsung Yun, Nils Wistoff, Gernot Heiser, Luca Benini,
David Wentzlaff, and Margaret Martonosi. 2023. AutoCC: Automatic Discovery
of Covert Channels in Time-Shared Hardware. In MICRO. 871–885.

[54] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with Secure
Compilers. In CCS. 445–461. https://doi.org/10.1145/3460120.3484534

[55] Artyom Pavlov and Tony Arcieri. [n. d.]. Rust Crypto Cryptographic algorithms
written in pure Rust. https://github.com/RustCrypto.

[56] Gennady Pekhimenko, Vivek Seshadri, OnurMutlu, Phillip B. Gibbons,Michael A.
Kozuch, and Todd C. Mowry. 2012. Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches. In PACT. 377–388. https://doi.org/10.
1145/2370816.2370870

[57] Chathura Rajapaksha, Leila Delshadtehrani, Manuel Egele, and Ajay Joshi. 2023.
SIGFuzz: A Framework for DiscoveringMicroarchitectural Timing Side Channels.
In DATE. 1–6.

[58] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. 2017. Dude, is my code
constant time?. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE, 1697–1702.

[59] Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. 2020. Reverse engi-
neering the stream prefetcher for profit. In Euro S&P. 682–687.

[60] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline
Trippel, Adam Morrison, David Kohlbrenner, and Christopher W. Fletcher. 2021.
Opening Pandora’s Box: A Systematic Study of New Ways Microarchitecture
Can Leak Private Data. In ISCA. 347–360. https://doi.org/10.1109/ISCA52012.
2021.00035

[61] Martin Schwarzl, Pietro Borrello, Gururaj Saileshwar, Hanna Müller, Michael
Schwarz, and Daniel Gruss. 2023. Practical Timing Side-Channel Attacks on
Memory Compression. In IEEE SP. 1186–1203. https://doi.org/10.1109/SP46215.
2023.10179297

[62] Avinash Sodani and Gurindar S Sohi. 1997. Dynamic Instruction Reuse. ACM
SIGARCH Computer Architecture News 25, 2 (1997), 194–205.

[63] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel Genkin, and
Yuval Yarom. 2023. Hot Pixels: Frequency, Power, and Temperature Attacks on
GPUs and Arm SoCs. In USENIX Security Symposium. 6275–6292.

[64] Liem Tran, Nicholas Nelson, Fung Ngai, Steve Dropsho, and Michael C. Huang.
2004. Dynamically Reducing Pressure on the Physical Register File Through
Simple Register Sharing. In ISPASS. 78–87. https://doi.org/10.1109/ISPASS.2004.
1291358

[65] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. J. Cryptology 23, 1 (2010), 37–71. https://doi.org/10.
1007/s00145-009-9049-y

[66] Po-An Tsai, Andres Sanchez, Christopher W. Fletcher, and Daniel Sanchez. 2020.
Safecracker: Leaking Secrets through Compressed Caches. InASPLOS. 1125–1140.
https://doi.org/10.1145/3373376.3378453

[67] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kici, Ranjit Jhala, Dean M. Tullsen, and Deian Stefan. 2021. Auto-
matically Eliminating Speculative Leaks from Cryptographic Code with Blade.
In POPL. https://doi.org/10.1145/3434330

[68] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant
Garrett-Grossman, Adam Morrison, Christopher W. Fletcher, and David
Kohlbrenner. 2022. Augury: Using Data Memory-Dependent Prefetchers to
Leak Data at Rest. In IEEE SP. 1491–1505. https://doi.org/10.1109/SP46214.2022.
9833570

[69] Yingchen Wang, Riccardo Paccagnella, Zhao Gang, Willy R. Vasquez, David
Kohlbrenner, Hovav Shacham, and Christopher W. Fletcher. 2024. GPU.zip: On
the Side-Channel Implications of Hardware-Based Graphical Data Compression.

https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://doi.org/10.1145/3548606.3560578
http://hylang.org
https://doi.org/10.1109/ISCA.2002.1003580
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/MICRO.2000.898055
https://doi.org/10.1109/SP46214.2022.9833768
https://doi.org/10.1109/SP46214.2022.9833768
https://www.usenix.org/system/files/sec21-li-mengyuan.pdf
https://www.usenix.org/system/files/sec21-li-mengyuan.pdf
https://doc.libsodium.org/
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/2692956.2663188
https://www.lysator.liu.se/~nisse/nettle/nettle.html
https://www.lysator.liu.se/~nisse/nettle/nettle.html
https://doi.org/10.1145/3503222.3507729
https://doi.org/10.1109/SP46215.2023.10179391
https://doi.org/10.1145/3460120.3484534
https://github.com/RustCrypto
https://doi.org/10.1145/2370816.2370870
https://doi.org/10.1145/2370816.2370870
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/SP46215.2023.10179297
https://doi.org/10.1109/SP46215.2023.10179297
https://doi.org/10.1109/ISPASS.2004.1291358
https://doi.org/10.1109/ISPASS.2004.1291358
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1145/3373376.3378453
https://doi.org/10.1145/3434330
https://doi.org/10.1109/SP46214.2022.9833570
https://doi.org/10.1109/SP46214.2022.9833570

Testing side-channel security of cryptographic implementations against future microarchitectures

In IEEE SP.
[70] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,

Christopher W Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
Power Side-Channel Attacks Into Remote Timing Attacks on x86. In USENIX
Security. 679–697. https://doi.org/10.46586/tches.v2023.i1.557-589

[71] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-
Grossman, Christopher W. Fletcher, David Kohlbrenner, and Hovav Shacham.
2023. DVFS Frequently Leaks Secrets: Hertzbleed Attacks Beyond SIKE, Cryptog-
raphy, and CPU-Only Data. In SP. 2306–2320. https://doi.org/10.1109/SP46215.
2023.10179326

[72] AndrewWaterman and Krste Asanovic. 2019. The RISC-V instruction set manual.
Volume I: unprivileged ISA. (2019). https://github.com/riscv/riscv-isa-manual/
releases/tag/Ratified-IMAFDQC

[73] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. 2021. Osiris: Automated discovery of microarchitectural side channels.
In USENIX Security. 1415–1432.

[74] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018.
MicroWalk: A Framework for Finding Side Channels in Binaries. In ACSAC.
161–173. https://doi.org/10.1145/3274694.3274741

[75] Jan Wichelmann, Anna Pätschke, Luca Wilke, and Thomas Eisenbarth. 2023.
Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software. In USENIX
Security. https://www.usenix.org/system/files/usenixsecurity23-wichelmann.
pdf

[76] Jan Wichelmann, Florian Sieck, Anna Pätschke, and Thomas Eisenbarth. 2022.
Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications. In
CCS. 2915–2929. https://doi.org/10.1145/3548606.3560654

[77] Pawel Wieczorkiewicz. 2022. The AMD Branch (Mis)predictor Part 2: Where No
CPU has Gone Before (CVE-2021-26341). https://grsecurity.net/amd_branch_
mispredictor_part_2_where_no_cpu_has_gone_before.

[78] Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan. 2023. Pensieve:
Microarchitectural Modeling for Security Evaluation. In Proceedings of the 50th
Annual International Symposium on Computer Architecture. 1–15.

[79] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security. 719–732.

A ADDITIONAL LEAKAGE CLAUSES
Here, we provide the LmSpec modelling of the missing leakage
clauses from §6.1.1.

A.1 SSI
1 (defleakage SilentStoreInitializedOnly [initialized

(set)]↩→

2 (on-start [model input]
3 (.update initialized (sfor addr input.mem-initialized

(- model.STACK addr))))↩→

4 (on [(store [addr]_sz := val)
5 (let [addrs (range addr (+ addr sz))
6 was-init (.issuperset initialized addrs)]
7 (.update initialized addrs)
8 (when (and was-init
9 (= val (&mem.read addr sz)))
10 #("ss" addr val)))]))

A.2 SSI0
1 (defleakage SilentStore0InitializedOnly [initialized

(set)]↩→

2 (on-start [model input]
3 (.update initialized (sfor addr input.mem-initialized

(- model.STACK addr))))↩→

4 (on [(store [addr]_sz := val)
5 (let [addrs (range addr (+ addr sz))
6 was-init (.issuperset initialized addrs)]
7 (.update initialized addrs)
8 (when (and was-init
9 (= 0 val (&mem.read addr sz)))
10 #("ss" addr val)))]))

A.3 RFC0
1 (defleakage RegisterFileCompression0 []
2 (on [(write reg := val)
3 (when (and (in reg X86_64_GPRS)
4 (= val 0)
5 (exists reg_i X86_64_GPRS
6 :where (!= reg_i reg)
7 (= val (®s.read reg_i))))
8 #("rfc" reg val))]))

A.4 RFCN
1 (setv NARROW_RFC_LIMIT (<< 1 16))
2 (defleakage NarrowRegisterFileCompression []
3 (on [(write reg := val)
4 (when (and (in reg X86_64_GPRS)
5 (< val NARROW_RFC_LIMIT)
6 (exists reg_i X86_64_GPRS
7 :where (!= reg_i reg)
8 (< (®s.read reg_i) NARROW_RFC_LIMIT)))
9 #("rfc" reg))]))

A.5 CS
1 (setv ST-ADD #{"add" "shl" "sal" "shr" "sar"}
2 ST-SUB #{"sub"}
3 ST-MUL #{"mul" "imul"}
4 ST-DIV #{"div" "idiv"}
5 ST-AND #{"and" "or"}
6 ST-XOR #{"xor"}
7)
8 (defleakage SemiTrivialComputationSimplification []
9 (on [(expr (op v1 v2))
10 (when (is-any-of op
11 ST-ADD :if (or (= v1 0) (= v2 0))
12 ST_SUB :if (or (= v2 0) (= v1 v2))
13 ST-MUL :if (or (= v1 0) (= v2 0)
14 (= v1 1) (= v2 1))
15 ST-DIV :if (or (= v1 0) (= v2 1) (= v1 v2))
16 ST-AND :if (or (= v1 0) (= v2 0)
17 (= v1 ALL1) (= v2 ALL1)
18 (= v1 v2))
19 ST-XOR :if (or (= v1 0) (= v2 0)) ; XXX should

this also have (= v1 v2)?↩→

20)
21 ;; XXX rotations?
22 #("cs" op v1 v2))]))

A.6 CST
1 (setv ALL1 (- (<< 1 64) 1))
2 (setv T-MUL #{"mul" "imul" "and"}
3 T-OR #{"or"}
4 T-DIV #{"div" "idiv" "shl" "sal" "shr" "sar"})
5 (defleakage TrivialComputationSimplification []
6 (on [(expr (op v1 v2))
7 (when (is-any-of op T-MUL :if (or (= v1 0) (= v2

0))↩→

8 T-OR :if (or (= v1 ALL1) (= v2

ALL1))↩→

9 T-DIV :if (= v1 0))
10 #("cs" op v1 v2))]))

https://doi.org/10.46586/tches.v2023.i1.557-589
https://doi.org/10.1109/SP46215.2023.10179326
https://doi.org/10.1109/SP46215.2023.10179326
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://github.com/riscv/riscv-isa-manual/releases/tag/Ratified-IMAFDQC
https://doi.org/10.1145/3274694.3274741
https://www.usenix.org/system/files/usenixsecurity23-wichelmann.pdf
https://www.usenix.org/system/files/usenixsecurity23-wichelmann.pdf
https://doi.org/10.1145/3548606.3560654
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before

Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Mateos Romero, Peter Schwabe, David Wu, and Yuval Yarom

A.7 CSN
1 (setv NARROW_CS_LIMIT (<< 1 32))
2 (defleakage NarrowComputationSimplification []
3 (on [(expr (op v1 v2))
4 (when (and (in op ST-MUL)
5 (< v1 NARROW_CS_LIMIT)
6 (< v2 NARROW_CS_LIMIT))
7 #("cs" op))]))

A.8 OP
1 (setv OP_CTX_SIZE 200)
2 (defleakage OperandPacking [ctx (deque)]
3 (on [(expr (op v1 v2))
4 (when (and (< v1 16) (< v2 16))
5 (while (and ctx (>= (- &tick (. ctx [0][0]))

OP_CTX_SIZE))↩→

6 (.popleft ctx))
7 (for [[i [tick_i op_i]] (enumerate ctx)]
8 (when (= op_i op)
9 (del (. ctx [i]))
10 (return #("op" op_i op)))
11 (else
12 (.append ctx #(&tick op)))))]))

A.9 CRA
1 (defleakage ComputationReuseWithAddresses [ctx

(OrderedDict)↩→

2 ctx-addrs (OrderedDict)
3 ctx-loads (OrderedDict)]
4 (on [(expr (op #* vs))
5 (when (in op CACHEING_OPS)
6 (if (in vs (.get ctx &pc #()))
7 (update ctx &pc vs)))]
8 [(addr base + index * scale + off)
9 (if (in #(base index scale off) (.get ctx-addrs &pc

#()))↩→

10 (update ctx-addrs &pc [base index scale off]))]
11 (if (in addr (.get ctx-loads &pc #()))
12 (update ctx-loads &pc addr))]))

A.10 CC − FPC
1 (defleakage FPCCacheCompression []
2 (on [(load [addr]_sz)
3 (let [block-addr (<< (>> addr CACHELINE_BITS)

CACHELINE_BITS)↩→

4 block-data (&mem.read-bytes block-addr

CACHELINE_SIZE)]↩→

5 #("cc" (fpc-size block-data)))]
6 [(store [addr]_sz := val)
7 (let [block-addr (<< (>> addr CACHELINE_BITS)

CACHELINE_BITS)↩→

8 block-data (&mem.read-bytes block-addr

CACHELINE_SIZE)↩→

9 offset (% addr CACHELINE_SIZE)]
10 (write-into block-data offset sz val)
11 #("cc" (fpc-size block-data)))]))

A.11 CC − BDI
1 (defleakage BDICacheCompression []
2 (on [(load [addr]_sz)

3 (let [block-addr (<< (>> addr CACHELINE_BITS)

CACHELINE_BITS)↩→

4 block-data (&mem.read-bytes block-addr

CACHELINE_SIZE)]↩→

5 #("cc" (bdi-size block-data)))]
6 [(store [addr]_sz := val)
7 (let [block-addr (<< (>> addr CACHELINE_BITS)

CACHELINE_BITS)↩→

8 block-data (&mem.read-bytes block-addr

CACHELINE_SIZE)↩→

9 offset (% addr CACHELINE_SIZE)]
10 (write-into block-data offset sz val)
11 #("cc" (bdi-size block-data)))]))

A.12 PFNL
1 (setv POINTER_SIZE 8)
2 (setv CACHELINE_BITS 6)
3 (setv PAGE_BITS 12)
4 (defleakage NextLinePrefetch []
5 (on [(load [addr]_sz)
6 (let [cache-index (>> addr CACHELINE_BITS)]
7 #("pf" (+ cache-index 1)))]))

A.13 PFS
1 (setv PF_HITS 3)
2 (defn diff [ns]
3 (setv [ns1 ns2] (tee ns))
4 (next ns2)
5 (lfor [n m] (zip ns1 ns2) (- m n)))
6 (defn direction-of? [page-hits]
7 (when (< (len page-hits) page-hits.maxlen)
8 (return 0))
9 (setv diffs (diff page-hits))
10 (cond (forall n diffs (> n 0)) 1
11 (forall n diffs (< n 0)) -1
12 True 0))
13 (defleakage StreamPrefetch [all-page-hits (ddict

#%(deque :maxlen (+ PF_HITS 1)))]↩→

14 (on [(load [addr]_sz)
15 (let [cache-index (>> addr CACHELINE_BITS)
16 page-index (>> addr PAGE_BITS)
17 page-hits (get all-page-hits page-index)
18 _ (when (not-in cache-index page-hits)

(.append page-hits cache-index))↩→

19 stream-dir (direction-of? page-hits)
20 next-cache-index (+ stream-dir cache-index)]
21 (when (and stream-dir
22 (= (>> next-cache-index (- PAGE_BITS

CACHELINE_BITS)) page-index))↩→

23 #("pf" next-cache-index)))]))

A.14 PFDD
1 (setv M1PF_SIZE 20)
2 (setv M1PF_PREFETCH 5) ; we prefetch 5 elements
3 (defleakage M1Prefetch [initialized (set)
4 accesses (deque :maxlen M1PF_SIZE)
5 marks (deque :maxlen PF_HITS)]
6 (on-start [model input]
7 (.update initialized (sfor addr

input.mem-initialized (- model.STACK addr))))↩→

Testing side-channel security of cryptographic implementations against future microarchitectures

8 (on [(store [addr]_sz := val)
9 (.update initialized (range addr (+ addr sz)))]
10 [(load [addr]_sz)
11 (let [val (&mem.read addr sz)]
12

13 (setv stride 0)
14 (for [[addr_i val_i] (reversed accesses)]
15 (when (= val_i addr)
16 (.append marks addr_i)
17 (let [diffs (set (diff marks))]
18 (when (= (len diffs) 1)
19 (setv [stride] diffs)))
20 (break)))
21

22 (.append accesses #(addr val))
23

24 (when stride
25 (setv last-aop (. marks [-1])
26 fetches [])
27 (for [i (range M1PF_PREFETCH)]
28 (let [aop-el (+ last-aop (* i stride))]
29 (when (in aop-el initialized)
30 (.extend fetches [aop-el (&mem.read

aop-el POINTER_SIZE)]))))↩→

31 #("pf" #* fetches)))]))

B ADDITIONAL PREDICTION CLAUSES
Here, we provide the LmSpec modelling of the missing prediction
clauses from §6.1.2.

B.1 Rsb⊥
1 (setv RSB_SIZE 16)
2 (defpredictor RSBCircular [stack (* [0] RSB_SIZE)
3 idx 0]
4 ;; RSB that drops oldest entry on overflow
5 ;; and halts on underflow
6 (on [(jump addr : n)
7 (cond
8 (&insn.group CS_GRP_CALL)
9 (.append stack (+ &pc &insn.size))
10 (&insn.group CS_GRP_RET)
11 (if stack [(.pop stack)] [HALT]))]))

	Abstract
	1 Introduction
	2 Overview
	2.1 Modeling leaks with LmSpec
	2.2 Modeling speculation with LmSpec
	2.3 Generating leakage traces
	2.4 Specifying side-channel security
	2.5 Detecting leaks with LmTest

	3 Modeling leakage in LmSpec
	3.1 The LmSpec language
	3.2 Silent store suppression
	3.3 Register file compression
	3.4 Computation reuse

	4 Modeling speculation in LmSpec
	4.1 Prediction clauses in LmSpec
	4.2 Control-flow speculation
	4.3 Data speculation

	5 Testing for leaks
	5.1 Generating leakage traces for LmSpec
	5.2 LmTest testing tool

	6 Evaluation and case study
	6.1 RQ1: Expressiveness of LmSpec
	6.2 RQ2: Robustness of cryptographic libraries
	6.3 RQ3: Exploitability of leaks

	7 Discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References
	A Additional leakage clauses
	A.1 SSI
	A.2 SSI0
	A.3 RFC0
	A.4 RFCN
	A.5 CS
	A.6 CST
	A.7 CSN
	A.8 OP
	A.9 CRA
	A.10 CC-FPC
	A.11 CC-BDI
	A.12 PFNL
	A.13 PFS
	A.14 PFDD

	B Additional prediction clauses
	B.1 Rsb

