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ABSTRACT

Leakage contracts have recently been proposed as a new security
abstraction at the Instruction Set Architecture (ISA) level. Leak-
age contracts aim to capture the information that processors leak
through their microarchitectural implementations. However, so far,
we lack a methodology to verify that a processor actually satisfies
a given leakage contract.

In this paper, we address this challenge by developing LeaVe,
the first tool for verifying register-transfer-level (RTL) processor de-
signs against ISA-level leakage contracts. To this end, we show how
to decouple security and functional correctness concerns. LeaVe
leverages this decoupling to make verification of contract satisfac-
tion practical. To scale to realistic processor designs, LeaVe further
employs inductive reasoning on relational abstractions. Using
LeaVe, we precisely characterize the side-channel security guar-
antees of three open-source RISC-V processors, thereby obtaining
the first proofs of contract satisfaction for RTL processor designs.
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1 INTRODUCTION

Microarchitectural attacks [15, 32, 34, 46, 51] compromise secu-
rity by exploiting software-visible artifacts of microarchitectural
optimizations like caches and speculative execution. To use mod-
ern hardware securely, programmers must be aware of how these
optimizations impact the security of their code. Unfortunately, in-
struction set architectures (ISAs), the traditional abstraction layer
between hardware and software, do not provide an adequate basis
for secure programming: ISAs capture the functional behavior of
processors but abstract away microarchitectural details and thus
fail to capture their security implications.

To build secure software systems on top of modern hardware, we
need a new abstraction at the ISA level that faithfully captures the
information processors may leak through their microarchitectural
implementations. We refer to this new abstraction as leakage con-
tracts. For example, the leakage contract underlying constant-time
programming [9], used for writing cryptographic code, states that
processors can leak a program’s control flow and memory accesses,
which therefore must not depend on secret data.

Recent work has made significant strides towards using leak-
age contracts as a basis for building secure systems, through their
formal specification [27, 37]; through automatic security analysis
of software [18, 21, 25, 26, 47]; and through post-silicon processor
fuzzing [14, 38–40]. However, leakage contracts can only unfold
their full potential once hardware is available that provably satisfies
such contracts. The proliferation of open-source processors around
the RISC-V ecosystem presents an opportunity to fill this gap.

In this paper, we present the first approach for verifying register-
transfer-level (RTL) processor designs against ISA-level leakage
contracts. This requires overcoming the following challenges:
• Bridging the abstraction gap between sequential instruction-

level leakage contracts and cycle-level processor designs that over-
lap the execution of multiple instructions.
• Leakage contracts capture a processor’s information leakage

on top of its functional specification. Verifying contract satisfaction,
thus, requires reasoning about both functional and security aspects,
which goes against the separation of these two concerns.
• Even simple open-source processor designs have large and

complex state spaces, which prohibit explicit enumeration or
bounded model checking.

Our verification approach and its implementation LeaVe over-
come these challenges based on the following contributions:
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(1) We adapt the leakage contract framework from [27] to RTL
processor designs, capturing instruction-level contracts and realistic
cycle-level attacker models in a single uniform framework.

(2) We introduce a decoupling theorem that separates security
and functional correctness aspects for contract satisfaction.

(3) We develop a verification algorithm for checking the security
aspects of contract satisfaction that employs inductive reasoning
on relational abstractions to scale to realistic processor designs.

(4) We implement and experimentally evaluate our approach
on three open-source RISC-V processors.
Next, we discuss these four contributions in more detail.
Leakage contracts for RTL processors: We adapt the leakage
contract framework from [27] for RTL processor designs (§3). This
requires significant changes since the framework in [27] builds on
top of a simple sequential operational model of an out-of-order
processor rather than on cycle-level RTL circuits. In a nutshell,
we model both the instruction-level leakage contract and the mi-
croarchitectural attacker as monitoring circuits. These monitoring
circuits generate contract traces, capturing the processor’s intended
leakage at instruction level, and attacker traces, capturing its actual
leakage at microarchitectural level. In this setting, a microarchitec-
ture satisfies a contract for a given attacker if the following holds:
whenever two architectural states yield different attacker traces,
then the two states also yield different contract traces.
Decoupling security and functional correctness: We introduce
a decoupling theorem (§4.1) that separates security and functional
correctness concerns for contract satisfaction. For this, we intro-
duce the notion ofmicroarchitectural contract satisfaction that refers
only to the microarchitecture and ensures the absence of leaks. The
decoupling theorem states that, for processors correctly imple-
menting the instruction set architecture, contract satisfaction and
microarchitectural contract satisfaction are equivalent. This allows
us to focus only on the security challenges arising from leakage
verification, while relying on existing approaches for functional
correctness [16, 28, 30, 33, 41, 44, 52].
Verifying contract satisfaction: We develop a novel algorithm
for checking microarchitectural contract satisfaction (§4.2), which
we prove sound. That is, whenever our algorithm concludes that a
contract is satisfied, then microarchitectural contract satisfaction
indeed holds. Given a contract monitoring circuit and a microarchi-
tecture, our approach inductively learns invariants associated with
pairs of microarchitectural executions with the same contract traces
using invariant learning techniques [23] and uses these invariants
to establish contract satisfaction.
Implementation and evaluation: We implement our approach in
LeaVe, a tool for verifying microarchitectural contract satisfaction
for processor designs in Verilog (§5). We validate our approach by
precisely characterizing the side-channel security guarantees of
three open-source RISC-V processors in multiple configurations
(§6). For this, we define a family of leakage contracts capturing
leaks through control flow, memory accesses, and variable-time
instructions, and use LeaVe to determine which contracts each
processor satisfies against an attacker observing when instructions
retire. Our evaluation confirms that LeaVe can be used to effectively
verify side-channel security guarantees provided by open-source
processors in less than 25 hours for our most complex targets. Our

1 module ISA(input clk , output register );

2

3 reg [31:0] imem [31:0], pc, register;

4 wire [31:0] instr = imem[pc];

5

6 assign op = instr[7:0];

7 assign imm = instr[31:8];

8

9 always @(posedge clk) begin

10 pc <= pc + 1;

11 end

12

13 always @ (posedge clk) begin

14 case(op)

15 `ADD : register <= register + imm;

16 `MUL : register <= register * imm;

17 `CLR : register <= 0;

18 end

Figure 1: ISA reference model for our running example.

experiments also show that checking microarchitectural contract
satisfaction (as enabled by our decoupling theorem) rather than
on top of an architectural reference model significantly speeds up
verification (less than 2 hours versus 33 hours for a simple 2-stage
processor), allowing us to scale verification to realistic processors.
Bonus material: The LeaVe verification tool is available at [6].
An extended version of this paper containing the full formal model
and proofs of technical results is available at [49].

2 OVERVIEW

Here, we illustrate the key points of our approach with an example.
We start by presenting a simple instruction set and the processor
implementing it (§2.1). Next, we show howmicroarchitectural leaks
can be formalized using leakage contracts (§2.2). Finally, we illus-
trate how the LeaVe verification tool verifies that the contract is
satisfied, thereby ensuring the absence of unwanted leaks (§2.3).

2.1 A simple processor

Next, we present the instruction set and processor implementation.
Instruction set.We consider an instruction set supporting addition
and multiplication of immediates to a single register. Instructions
consist of the instruction type (ADD, MUL, or CLR) and an immediate
value imm. ADD adds the immediate to the register value, whereas
MUL multiplies the register value by the immediate. Finally, CLR
resets the register to zero.

Figure 1 depicts a Verilog reference model ISA for our instruc-
tion set that executes one instruction per cycle. Instructions are
stored in the instruction memory imem. Lines 6 and 7 decode
the instruction into operator (ADD, MUL, or CLR) and operand
(immediate value). Lines 13 to 18 case-split on the type of operation
and update the register with the new value. Finally, Line 10
advances the program counter.
Pipelined implementation. Figure 2 shows an implementation
IMPL of the instruction set that processes instructions in a three-
stage pipeline. If the pipeline is not stalled (flag ready), the proces-
sor starts by fetching a new instruction in line 13. As in Figure 1, the
decode stage (lines 7 to 10) decodes a new instruction into operator
and immediate. Next, the execute stage executes the decoded in-
struction (lines 24 to 34). The write-back stage updates the register
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1 module IMPL(input clk , output ready , register );

2 reg [31:0] imem [31:0], pcF , register;

3

4 // Decode

5 wire [31:0] instr = imem[pcF];

6

7 always @(posedge clk) begin

8 ex_op <= inst[7:0];

9 ex_imm <= inst[31:8];

10 end

11

12 always @(posedge clk) begin

13 if (ready) pcF <= pcF + 1;

14 end

15

16 assign pc = pcF -2; // Architectural pc

17

18 // Execute

19 assign ready = (!mult);

20 assign rd = we ? wb_res : register;// Forwarding

21

22 log_time_mult(mult , m_imm , m_rd , m_res , done);

23

24 always @ (posedge clk) begin

25 if (ready)

26 case(ex_op)

27 `ADD : wb_res <= rd + ex_imm;

28 we <= 1; mult <= 0;

29 `MUL : mult <= 1; we <= 0;

30 m_rd <= rd; m_imm <= ex_imm;

31 `CLR : we <= 1; mult <= 0; wb_res <= 0;

32 if (done)

33 mult <= 0; wb_res <= m_res; we <= 1;

34 end

35

36 // Write back

37 always @ (posedge clk) begin

38 if (we) // write enabled

39 register <= wb_res; retired <= 1;

40 else

41 retired <= 0;

42 end

Figure 2: A simple processor that performs addition and mul-

tiplications. The multiplication module log_time_mul leaks
part of both register value and immediate operand via timing.

ADD 2 MUL 2

ADD 2 ADD 2

(a)

ADD 2 MUL 1

ADD 2 MUL 7

(b)

ADD 10 MUL 2

ADD 2 MUL 2

(c)

Figure 3: Traces that leak via timing.

with the result of the computation (lines 37 to 42). This step is con-
trolled by the write-enabled flag we. Finally, the processor performs
forwarding from the execute to the write-back stage (line 20).

Both ADD (line 27) and CLR (line 31) instructions are executed in
a single cycle and their results are passed to the write-back stage.

In contrast, MUL instructions (line 29 to line 34) may take
multiple cycles. Multiplication starts in line 29 by setting register
mult to 1. This indicates that the processor cannot fetch new
instructions (line 19) and must stall the pipeline (line 13). The
processor then multiplies immediate and register value. This step

(a)

ADD 5 CLR ADD 4

ADD 11 ADD 4 ADD 9

(b)

ADD 1 CLR ADD 1 MUL 3

ADD 5 CLR ADD 1 MUL 3

(c)

ADD 10 ADD 2 MUL 2

ADD 7 ADD 5 MUL 2

Figure 4: Traces that do not leak via timing.

is implemented in module log_time_mult (line 22), which we
omit. The module takes time proportional to the logarithm of
m_rd’s value, i.e., the register value, to perform the multiplication.1
It also has a fast path that completes the multiplication in a single
cycle whenever operand or register are 0 or 1. Once multiplication
terminates, mul_res contains the multiplication result and the
processor stops stalling the pipeline by setting mult to 0 (line 33)
and passes the result to the write-back stage.

2.2 Specifying side-channel leakage

We now illustrate how to use leakage contracts to capture side-
channel security guarantees for our example processor.
Leakage. To use the processor from Figure 2 securely, we need to
know what the processor may leak to an attacker. In the following,
we consider an attacker that observes the value of the output-ready
flag ready at each cycle, i.e., it observes the pipeline’s timing.

Assume that initially the register has value 0. Figure 3 shows
pairs of instruction sequences that an attacker can distinguish. The
sequences in Figure 3a are distinguishable since the upper trace
performs a multiplication while the lower trace does not, resulting
in a timing difference. Similarly, the attacker can distinguish the
traces in Figure 3b, as the upper trace profits from the fast path
in the multiplier, while the lower trace does not. Even though the
immediate operands to MUL are the same in Figure 3c, the attacker
can tell the sequences apart, as the register values are different.

In contrast, Figure 4 shows pairs of instruction sequences that are
indistinguishable for our attacker. Figure 4a does not leak as it does
not perform multiplication. Figure 4b initially performs additions
with different values, but resets the register state via CLR before
MUL. Finally, Figure 4c performs additions with different values that
result in the same register state before MUL.

Next, we show how to capture leakage using monitors, which
we use to formalize leakage contracts and attackers.
Capturing leakage via monitors. To use the processor securely,
we need to distinguish program behaviors that leak from those
that do not. For this, we compose the reference model ISA (Fig-
ure 1), which captures the functional behavior of the ISA, with a
leakage monitor LM shown below. The leakage monitor captures
which information may be leaked upon executing instructions. The
monitor takes as input a module 𝑀 representing the underlying
circuit. We denote by LM[𝑀] the composition of LM and𝑀 such that

1This timing profile is similar to the Slow Multi-Cycle Multiplier from [3].
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the composition hides𝑀 ’s outputs, and LM can refer to (but cannot
modify)𝑀’s internal variables (§3.3).

In our example, the monitor leaks whether the operation that
is performed is a multiplication or not (ismul). Whenever a MUL is
executed, the monitor additionally leaks the register value (r) and
whether the immediate is 0 or 1 (isFP), thereby capturing the leaks
associated with the multiplier’s fast path.
1 monitor LM(module M, output leak)

2 assign inst = M.imem[M.pc];

3 assign r = M.register;

4 assign op = inst[7:0];

5 assign imm = inst[31:8];

6 assign isFP = (imm==0 || imm ==1);

7 assign ismul = (op==`MUL);
8

9 always @( * ) begin

10 if (ismul)

11 leak = {r, isFP , ismul};

12 else

13 leak = {0, 0, ismul};

14 end

Note that {𝑎, 𝑏, 𝑐} is Verilog notation for the concatenation of sig-
nals 𝑎, 𝑏, and 𝑐 . Consider the leakage observations (i.e., the values
for leak) produced by LM[ISA], i.e., the leakage monitor applied
to the reference model. All pairs of sequences in Figure 4 pro-
duce the same observations, whereas all pairs in Figure 3 result
in different observation traces. For example, in Figure 4a, LM[ISA]
produces observations consisting of {0,0,0} for both instruction
sequences. In contrast, for the second instruction of Figure 3a, the
upper sequence produces observation {2,0,1} but the lower one
produces {0,0,0}.
Attacker observations. Next, we define the observations an at-
tacker can make about implementation IMPL. Since we consider an
attacker that can observe the timing of the computation, we define
another monitor ATK that simply exposes the ready bit.
1 monitor ATK(module M, output leak)

2 always @ ( * ) begin

3 leak = M.ready;

4 end

The composition of attacker and implementation ATK[IMPL]
defines the actual information an attacker may learn about the
implementation.
Leakage contracts. The composition LM[ISA] of leakage monitor
and reference model defines a leakage contract at the ISA level. The
contract characterizes leaks at the granularity of the execution of
instructions from the instruction set, and it expresses which parts of
the computation may be leaked by the hardware. For programmers,
the contract provides a guideline for writing side-channel free code:
secrets should never influence leakage observations. In our example,
any two program executions that differ only in their secrets (e.g.,
the initial register value) must produce indistinguishable traces.
Contract satisfaction. The implementation IMPL satisfies the
contract LM[ISA] under the attacker ATK whenever IMPL leaks
no more than specified by the contract under ATK. That is, cir-
cuit ATK[IMPL] should leak no more than circuit LM[ISA], denoted
LM[ISA] ⊒ ATK[IMPL]. That is, for any pair of initial architectural
states for which LM[ISA] produces the same leakage observations,
ATK[IMPL] must produce the same attacker observations. A formal

definition of this relation is provided in §3.3. For example, for all
pairs of instruction sequences shown in Figure 4, ATK[IMPL] must
produce the same sequence of ready bits. In contrast, for the pairs
of sequences in Figure 3, the sequence of ready bits may differ, but
it does not have to. Next, we describe our methodology to check
that an implementation satisfies a contract.

2.3 Verifying contract satisfaction

Formally verifying contract satisfaction amounts to proving that
LM[ISA] ⊒ ATK[IMPL] holds. This requires reasoning about pairs
of infinite traces from LM[ISA] and ATK[IMPL] for all possible
initial memories (including both data and instructions) and all
possible initial microarchitectural states. Beyond reasoning about
security, this also implicitly requires to show that IMPL correctly
implements the ISA. In our example, functional correctness bugs
in IMPL would often also result in contract violations as leakage
observations are a function of the architectural state. For instance,
assume an incorrectly implemented CLR instructions that does not
reset the register to 0. Then the traces in Figure 4b would likely
be distinguishable via timing.

While functional correctness is thus crucial for security, it needs
to be verified independently of security concerns. Indeed, there are
many existing approaches [16, 28, 30, 33, 41, 44, 52] for checking
ISA compliance. One of the contributions of this paper is to show
how leakage and functional verification can be decoupled from
each other, enabling a clean separation of functional and security
concerns.

ISA compliance. So, what does it mean for the implementation to
comply with the ISA? Intuitively, the implementation should go
through the same sequence of architectural states as the reference
model. However, the reference model processes one instruction
in each cycle, while the implementation overlaps the execution
of multiple instructions and may or may not retire an instruction
in any given cycle. To bridge this gap, a retirement predicate cap-
tures when the processor retires instructions and thus commits
changes to the architectural state. A retirement predicate 𝜙 over
implementation circuit IMPL must satisfy the following constraint:
whenever 𝜙 holds, IMPL’s current architectural state corresponds
to a valid architectural state of the reference model, and no changes
to the architectural state may occur when 𝜙 does not hold. For our
example, the architectural variables are pc, imem, and register
and 𝜙 ≜ (𝑟𝑒𝑡𝑖𝑟𝑒𝑑 = 1) is a valid retirement predicate. In fact, 𝜙 acts
as a witness to the fact that IMPL complies with the ISA defined
by the reference model ISA: For any initial architectural state, ISA
transitions through the same sequence of architectural states as
IMPL does upon instruction retirement, i.e., whenever 𝜙 holds. We
denote this notion of ISA compliance by IMPL ⊢𝜙 ISA.

Decoupling leakage and functional correctness. Using the re-
tirement predicate, we are able to decouple leakage from functional
verification. To this end, we first define a filtered semantics (in §3.1)
that only considers states in which 𝜙 holds. Since IMPL ⊢𝜙 ISA
implies that IMPL’s architectural state matches ISA’s whenever 𝜙
holds, the sequence of architectural states produced by the filtered
semantics of IMPLwith respect to𝜙 is equal to the sequence of states
produced by ISA, assuming the processor is implemented correctly.
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ATK[IMPL]LM[IMPL]

LM[ISA]

Microarchitecture
IMPL

Instruction Set Architecture
ISA

Decoupling
(Theorem 1)

⇐
⇒

Microarch. Contract Satisfaction
LM ⪰𝜙IMPL ATK (Definition 3)

ISA Compliance
IMPL ⊢𝜙 ISA (Definition 1)

Contract Satisfaction

LM[ISA] ⊒ ATK[IMPL] (Definition 2)

Figure 5: ISA compliance, contract satisfaction, and microarchitectural contract satisfaction.

Based on the filtered semantics, we can define the notion of
microarchitectural contract satisfaction: To this end, we apply the
leakage monitor LM directly to IMPL and then relate LM[IMPL] to
ATK[IMPL], bypassing the reference model: For all pairs of traces of
LM[IMPL], if contract observations (filtered using 𝜙) are the same,
then ATK[IMPL]’s observations must also be the same. We denote
this relation by LM ⪰𝜙IMPL ATK.

Our main theorem, Theorem 1 (in §4.1), states that if IMPL cor-
rectly implements ISA with respect to the retirement predicate
𝜙 , then LM ⪰𝜙IMPL ATK if and only if LM[ISA] ⊒ ATK[IMPL]. This
means that we can analyze contract satisfaction purely based on
the implementation IMPL. Figure 5 illustrates the main concepts
and their relation.
Verification via inductive invariants. LeaVe, our verification
approach, verifies LM ⪰𝜙IMPL ATK by approximating it via the
following safety property: Any two prefixes of traces that agree
on their leakage observations also agree on attacker observations
and determine each instruction’s retirement time. A challenge
in this formulation is that differences in attacker observations
may surface before the corresponding differences in leakage
observations due to pipelined execution and the fact that leakage
observations corresponding to an instruction can only be evaluated
upon instruction retirement. We address this challenge by applying
a bounded lookahead to the leakage observations.

Checking this safety property requires appropriate inductive
invariants, which would be tedious to come up with manually, in
particular for complex designs. Thus, we synthesize appropriate
invariants from a pool of candidate relational invariants following
the classic Houdini algorithm [23].

3 FORMAL MODEL

In this section, we present the key components of our formal model.
We start by introducing 𝜇Vlog, a simple hardware description
language (§3.1). Next, we show how to formalize instruction set
architectures and microarchitectures in 𝜇Vlog (§3.2). We conclude
by formalizing leakage contracts (§3.3).

3.1 𝜇Vlog: A Hardware Description Language

𝜇Vlog is a language for specifying synchronous sequential circuits.
It captures the key features of hardware description languages like
Verilog and VHDL, and we use it as the core language for LeaVe.
Syntax. The syntax of 𝜇Vlog is given in Figure 6. Expressions 𝑒
are built from values Vals = N ∪ {⊥}, which are natural numbers
or the designated value ⊥, registers Regs, which store values, and

variables Vars, which are shorthands for more complex expressions.
Expressions can be combined using unary operators ⊖𝑒 , binary
operators 𝑒1 ⊗ 𝑒2, if-then-else operators if 𝑒1 th 𝑒2 el 𝑒3, and bit-
selection operators 𝑒1 [𝑒2 : 𝑒3]. An assignment 𝑟 ← 𝑒 sets the next
value of register 𝑥 to the value of expression 𝑒 in the current cycle.
A wire 𝑣 = 𝑒 always has the value of expression 𝑒 . Finally, a circuit 𝐶
consists of a set of assignments 𝐴, a set of wires𝑊 , and a set of
outputs 𝑂 ⊆ Regs ∪ Vars.

Given a circuit𝐶 , we refer to its assignments as 𝐶.𝐴, to its wires
as𝐶.𝑊 , and to its outputs as𝐶.𝑂 . The set read (𝐶) of read registers
consists of all registers 𝑥 that occur in at least one right-hand
side of an assignment in 𝐶.𝐴 or a wire in 𝐶.𝑊 . Similarly, the set
write(𝐶) of write registers consists of all registers 𝑥 occurring in
left-hand sides of assignments in 𝐶.𝐴. Finally, the set wires(𝐶) of
wire variables consists of all variables 𝑣 occurring in left-hand sides
of wires in 𝐶.𝑊 . We assume that (1) 𝐶.𝑂 ⊆ vars(𝐶) ∪ wires(𝐶),
where vars(𝐶) = read (𝐶) ∪ write(𝐶), (2) each register and variable
is on the left-hand side of at most one assignment or wire, and (3)
wires in 𝐶.𝑊 do not introduce cyclic dependencies.

Example 1. Consider the circuit sISA given below. The circuit
implements a simple ISA, in which instructions consist solely of
immediate values 𝑚[𝑝𝑐] that are retrieved from memory 𝑚 and
added to the single internal register 𝑟𝑒𝑔.2

sISA = {𝑝𝑐 ← 𝑝𝑐 + 1, 𝑟𝑒𝑔← 𝑟𝑒𝑔 +𝑚[𝑝𝑐]} : {} : {𝑟𝑒𝑔}
We have vars(sISA) = read (sISA) = {𝑝𝑐, 𝑟𝑒𝑔,𝑚} and write(sISA) =
{𝑝𝑐, 𝑟𝑒𝑔}, and the single output 𝑟𝑒𝑔; the circuit satisfies our assump-
tions.

Semantics. We formalize the semantics of 𝜇Vlog circuits by speci-
fying how their state is updated at each cycle. We model the state
of a circuit as a valuation 𝜇 that maps registers in Regs to values in
Vals, i.e., 𝜇 : Regs→ Vals. Given a circuit 𝐶 , states(𝐶) denotes the
set of all possible valuations over vars(𝐶). Given a valuation 𝜇 and
a set of registers 𝑉 , the projection 𝜇↾𝑉 restricts the scope of 𝜇 to
the registers in𝑉 , i.e., 𝜇↾𝑉 (𝑥) = 𝜇 (𝑥) for all 𝑥 ∈ 𝑉 and 𝜇↾𝑉 (𝑥) = ⊥
otherwise. Finally, given two valuations 𝜇, 𝜇′ and a set of registers
𝑉 , 𝜇 ∼𝑉 𝜇′ denotes that 𝜇 and 𝜇′ agree on the values of all registers
in 𝑉 , i.e., 𝜇 ∼𝑉 𝜇′ iff 𝜇↾𝑉 = 𝜇′↾𝑉 .

The semantics J𝐶K of a circuit 𝐶 takes as input a valuation 𝜇

and outputs the valuation 𝜇′ at the next cycle. An execution for
𝐶 starting from valuation 𝜇 is the infinite sequence of valuations
obtained by repeatedly applying J𝐶K. The infinite trace semantics
2For simplicity, in the examples we treat memories as addressable arrays. For instance,
𝑚[𝑝𝑐 ] denotes the value in𝑚 at position 𝑝𝑐 . While this can be desugared in the
syntax from Figure 6, we decided against this to simplify our encodings.
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Basic Types

(Registers) 𝑟 ∈ Regs
(Variables) 𝑣 ∈ Vars
(Identifiers) 𝑖 ∈ Regs ∪ Vars
(Values) 𝑛 ∈ Vals = N ∪ {⊥}
Syntax

(Expressions) 𝑒 := 𝑛 | 𝑖 | ⊖𝑒 | 𝑒1 ⊗ 𝑒2
| if 𝑒1 th 𝑒2 el 𝑒3 | 𝑒1 [𝑒2 : 𝑒3]

(Wires) 𝑤 := 𝑣 = 𝑒

𝑊 := {𝑤1, . . . ,𝑤𝑘 }
(Assignments) 𝑎 := 𝑟 ← 𝑒

𝐴 := {𝑎1, . . . , 𝑎𝑛}
(Outputs) 𝑂 := {𝑖1, . . . , 𝑖𝑚}
(Circuits) 𝐶 := 𝐴 :𝑊 : 𝑂

Figure 6: 𝜇Vlog syntax

J𝐶K∞ of a circuit𝐶 maps each valuation 𝜇 to the infinite sequence of
valuations for 𝐶’s outputs, where the 𝑖-th valuation corresponds to
the circuit’s output after 𝑖 cycles.3 Additionally, the filtered infinite
trace semantics J𝐶K∞ |𝜙 outputs only the valuations in J𝐶K|𝜙 that
satisfy a given predicate 𝜙 (other valuations are dropped). Finally,
J𝐶K(𝜇, 𝑖) denotes the valuation obtained by executing𝐶 for 𝑖 cycles
starting from valuation 𝜇, whereas 𝐶, 𝜇 |= 𝜙 denotes that 𝜙 is
satisfied for circuit 𝐶 and valuation 𝜇. The full formalization of
𝜇Vlog is given in [49].

Example 2. Consider again circuit sISA from Example 1. Let us
pick an initial valuation 𝜇, such that 𝜇 (𝑝𝑐) = 0, 𝜇 (𝑟𝑒𝑔) = 0, and

𝜇 (𝑚) (𝑖) = 𝑖 for 0 ≤ 𝑖 ≤ 10
𝜇 (𝑚) (𝑖) = 0 otherwise .

Executing a single step gives us 𝜇′ = JsISAK(𝜇), with 𝜇′ (𝑝𝑐) = 1,
and 𝜇′ (𝑟𝑒𝑔) = 0. Since only the program counter changed, we get
𝜇 ∼{𝑟𝑒𝑔,𝑚𝑒𝑚} 𝜇

′, but not 𝜇 ∼{𝑝𝑐 } 𝜇′. The trace JsISAK∞ (𝜇) consists
of the following sequence of register values (since the register value
does not change after step 11), where · denotes concatenation:

JsISAK∞ (𝜇) = 0 · 0 · 1 · 3 · 6 · 10 · 15 · 21 · 28 · 36 · 45 · 55 · 55 · 55 . . .

As an example of filtering, consider the predicate 𝜙 := 𝑝𝑐 mod 2 =
0 indicating whether the program counter is even. The filtered
semantics associated with 𝜙 yields the following sequence:

JsISAK∞ |𝜙 (𝜇) = 0 · 1 · 6 · 15 · 28 · 45 · 55 · . . .

3.2 Modeling architectures and

microarchitectures

We now show how instruction set architectures (short: architec-
tures) and microarchitectures can be modeled in 𝜇Vlog. Then, we
formalize what it means for a microarchitecture Impl to correctly
implement an architecture ISA.
Architectures.We view architectures as state machines that define
how the execution progresses through a sequence of architectural
states, where each transition corresponds to the execution of a
single instruction. Given a set of architectural registers Arch, we
model an architecture as a circuit ISA over Arch, i.e., vars(ISA) =

3With a slight abuse of notation, the trace semantics extend valuations to also record
values of wires that are part of a circuit’s outputs.

ISA.𝑂 = Arch. We assume that a subset init (ISA) of ISA’s states
are identified as initial states.

Example 3. Consider again circuit sISA from Example 1. Its vari-
ables vars(sISA) = {𝑝𝑐, 𝑟𝑒𝑔,𝑚} form the architectural state of the
ISA. We identify as initial states all valuations 𝜇 such that 𝜇 (𝑝𝑐) = 0
and 𝜇 (𝑟𝑒𝑔) = 0. In the circuit from Figure 1 the architectural state
is given by vars(𝑅) = {𝑖𝑚𝑒𝑚, 𝑝𝑐, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 } whereas 𝑖𝑛𝑠𝑡𝑟, 𝑜𝑝 , and
𝑖𝑚𝑚 are not listed as they are wires.

Microarchitectures. We model microarchitectures as circuits that
capture the execution at the granularity of clock cycles. Thus, a
microarchitecture is a circuit Impl that refers to both architectural
registers in Arch and to additional microarchitectural registers
𝜇Arch such that vars(Impl) = Impl.𝑂 = Arch∪𝜇Arch and Arch∩
𝜇Arch = ∅. We assume that a subset init (Impl) of Impl’s states is
identified as the initial states and require that 𝜇↾Arch ∈ init (ISA)
for any state 𝜇 ∈ init (Impl), i.e., the architectural part of an initial
microarchitectural state should be an initial architectural state.

Example 4. Let us look at a microarchitectural implementation
sImpl of the ISA in example 1. The implementation, shown below,
can be in one of two states (indicated by the register st): execute
state (st = 0) or write-back state (st = 1). In the execute state,
sImpl computes the result of adding the immediate to the current
register value and assigns it to the variable 𝑟𝑒𝑠 ; it then moves to the
write-back state (line 3). In the write-back state, sImpl writes the
result to the register 𝑟𝑒𝑔, moves the state to the execute stage, and
increments the program counter (line 4). If the immediate value
is zero, the implementation triggers a fast path which keeps the
circuit in the execute state, increments the program counter, and
leaves the register unchanged (line 2). Finally, the circuit updates
the variable 𝑟𝑒𝑡 which indicates whether the circuit retired in the
current step. For readability, we write the example in an extended
syntax that allows branches at the assignment level.4

1 if 𝑠𝑡 = 0 then
2 if 𝑚[𝑝𝑐] = 0 th {𝑠𝑡 ← 0, 𝑝𝑐 ← 𝑝𝑐 + 1, 𝑟𝑒𝑡 ← 1}
3 el {𝑠𝑡 ← 1, 𝑟𝑒𝑠 ←𝑚[𝑝𝑐] + 𝑟𝑒𝑔, 𝑟𝑒𝑡 ← 0}
4 el {𝑠𝑡 ← 0, 𝑟𝑒𝑔← 𝑟𝑒𝑠, 𝑝𝑐 ← 𝑝𝑐 + 1, 𝑟𝑒𝑡 ← 1} : {𝑟𝑒𝑔}

In addition to architectural variables {𝑝𝑐, 𝑟𝑒𝑔,𝑚}, the implementa-
tion contains microarchitectural variables {𝑠𝑡, 𝑟𝑒𝑠, 𝑟𝑒𝑡}. We pick as
our initial valuations all 𝜇 such that 𝜇 (𝑝𝑐) = 0, 𝜇 (𝑟𝑒𝑔) = 0, 𝜇 (𝑠𝑡) = 0,
and 𝜇 (𝑟𝑒𝑡) = 1. As required, the initial state for architectural vari-
ables {𝑝𝑐, 𝑟𝑒𝑔,𝑚} agrees with the state from Example 3.

ISA compliance. To correctly implement an architecture ISA, an
implementation Impl needs to change the architectural state in
a manner consistent with ISA. We capture this with the help of
a retirement predicate 𝜙 , a predicate indicating when Impl retires
instructions. Then, we say that amicroarchitecture Impl implements
an architecture ISA (Definition 1) if one can map changes of the
architectural state in Impl to ISA’s executions using 𝜙 .

Definition 1. A microarchitecture Impl correctly implements an
architecture ISA given a retirement predicate 𝜙 over vars(Impl),
written Impl ⊢𝜙 ISA, if for all valuations 𝜇 ∈ init (Impl):
4This syntax can be easily expanded into the one in Figure 6 by pushing branches
into expressions. For example, we can rewrite if 𝑒 th { 𝑥 ← 𝑎 } el { 𝑥 ← 𝑏 } as
𝑥 ← if 𝑒 th 𝑎 el 𝑏 .
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(1) (Witnessed architectural changes agree with ISA)
JImplK∞ |𝜙 (𝜇) ∼Arch JISAK∞ (𝜇), and

(2) (No architectural changes beyond those witnessed)
JImplK(𝜇, 𝑖) ∼Arch JImplK(𝜇, 𝑖−1) whenever JImplK(𝜇, 𝑖) ̸|= 𝜙 .

The predicate 𝜙 characterizes when instructions are retired, i.e.,
when instructions modify the architectural state. Definition 1 uses𝜙
to map architectural changes made by Impl to single steps in ISA’s
executions. This is sufficient for single-issue processors, which
retire at most one instruction per cycle. Multiple-issue processors,
which may retire multiple instructions in a single cycle, require
more complex ways of mapping architectural changes made by
Impl to ISA’s steps. To simplify our model, we decided against
more complex ISA compliance criteria since LeaVe’s verification
approach (§4) is decoupled from ISA compliance.

Example 5. Let’s again consider implementation circuit sImpl from
Example 4. We choose as retirement predicate 𝜙 ≜ 𝑟𝑒𝑡 = 1. Let’s
consider again valuation 𝜇 from Example 2, which maps 𝑝𝑐 = 0,
and 𝜇 (𝑚) (𝑖) = 𝑖 , for 0 ≤ 𝑖 ≤ 10. Running sImpl on 𝜇 from produces
the following sequence of register values, where we underline a
register value whenever 𝜙 holds on the corresponding state.

JsImplK∞ (𝜇) = 0 · 0 · 0 · 1 · 1 · 3 · 3 · 6 · 6 · 10 · 10 · 15 · 15 · . . .

It’s easy to check that JsImplK∞ |𝜙 (𝜇), i.e., the sequence of under-
lined values, matches JsISAK∞ (𝜇), and that the register value re-
mains unchanged whenever 𝜙 doesn’t hold. Since this is true, not
only for 𝜇 but for all valid initial states, we can conclude that sImpl
correctly implements sISA, i.e., sImpl ⊢𝜙 sISA.

3.3 Leakage contracts

In this section, we first introduce monitoring circuits, which we
use to specify leakage contracts and attackers. Then, we formalize
contract satisfaction [27] within our modeling framework.

Monitoring circuits. Monitoring circuits monitor the behavior of
another circuit, and we will use them to formalize leakage contracts
and attackers. We say that circuit 𝑀 is a monitoring circuit for
circuit 𝐶 if (1) write(𝐶) ∩ write(𝑀) = ∅, i.e., the two circuits write
to separate sets of registers, (2) wires(𝐶) ∩ wires(𝑀) = ∅, i.e., the
two circuits write to separate wire variables, and (3) vars(𝐶) ∩
write(𝑀) = ∅, i.e.,𝑀 does not influence 𝐶’s behavior. Additionally,
𝑀 is combinatorial whenever read (𝑀) ⊆ vars(𝐶), i.e.,𝑀 only reads
from𝐶 variables and thus does not have state of its own. Finally, the
composition of the monitoring circuit𝑀 and the monitored circuit
𝐶 , written𝑀 [𝐶], is the circuit defined as𝐶.𝐴∪𝑀.𝐴 : 𝐶.𝑊 ∪𝑀.𝑊 :
𝑀.𝑂 , which computes over𝐶’s state without changing its behavior.

Leakage contracts. A leakage contract is the composition of a
leakage monitor LM, i.e., a combinatorial monitoring circuit LM
for the architecture ISA, with the architecture ISA itself. That is, a
leakage contract LM[ISA] discloses parts of the architectural state
during ISA’s execution at the granularity of instruction execution.

Hardware attackers. We formalize an attacker as a combinatorial
monitoring circuit Atk for the microarchitecture Impl. That is, an
attacker observes parts of the microarchitecture’s state during the
execution at the granularity of clock cycles.

(a)

1 0 2

5 1 3 (b)

1 0 2

5 0 3

Figure 7: Two pairs of instruction traces.

Example 6. Consider again circuit sISA from Example 1, the ISA
specification of our running example. We define the leakage mon-
itor sLM, which leaks whether the current instruction is zero. As
sLM only reads sISA’s variables, it is combinatorial.

sLM = {} : {𝑣 = (𝑚[𝑝𝑐] = 0)} : {𝑣}

Consider again the valuation 𝜇 from Example 2, which maps
𝜇 (𝑚) (𝑖) = 𝑖 , for 0 ≤ 𝑖 ≤ 10. Since for 𝑖 ≤ 10, only the first in-
struction is zero, executing sLM[𝐼 ] yields the following sequence.

JsLM[sISA]K∞ (𝜇) = 1 · 0 · 0 · 0 · . . . .

Example 7. Next, consider the implementation circuit sImpl from
Example 4. We define the following attacker monitor, which leaks
the program counter and thus the timing of the computation.

sAtk = {} : {} : {𝑝𝑐}

Running sAtk[sImpl] on 𝜇 yields the following sequence.

JsAtk[sImpl]K∞ (𝜇) = 0 · 1 · 1 · 2 · 2 · 3 · 3 · . . . .

Contract satisfaction. Definition 2 formalizes the notion of con-
tract satisfaction [27]. Intuitively, a microarchitecture Impl satis-
fies the contract LM[ISA] for an attacker Atk if Atk cannot learn
more information about the initial architectural state by monitoring
Impl’s executions than what is exposed by LM[ISA]. That is, for
any two initial states that agree on their microarchitectural part5,
whenever LM[ISA] results in identical traces, then Atk[Impl] also
results in identical traces (i.e.,Atk cannot distinguish the two initial
architectural states).

Definition 2. Microarchitecture Impl satisfies contract LM[ISA]
for attacker Atk, written LM[ISA] ⊒ Atk[Impl], if for all valua-
tions 𝜇, 𝜇′ ∈ init (Impl) such that 𝜇 ∼𝜇Arch 𝜇′, if JLM[ISA]K∞ (𝜇) =
JLM[ISA]K∞ (𝜇′), then JAtk[Impl]K∞ (𝜇) = JAtk[Impl]K∞ (𝜇′).

We remark that Definition 2 refers to 4 different traces: two con-
tract traces from LM[ISA] and two attacker traces from Atk[Impl].

Example 8. Let’s consider the two pairs of memories (a) and (b)
shown in Figure 7. We will check contract satisfaction, i.e., that
sLM[sISA] ⊒ sAtk[sImpl] on these particular traces.

Let us start with the instructions from Figure 7a. Consider two
states 𝜇𝑎 and 𝜇′𝑎 , such that 𝜇𝑎 (𝑚) contains the upper instructions
in Figure 7, and 𝜇′𝑎 (𝑚) contains the lower ones. For 𝑖 ≥ 3, we let
𝜇𝑎 (𝑚) = 𝜇′𝑎 (𝑚) = 0. Running 𝜇𝑎 and 𝜇′𝑎 on the contract, we get:

JsLM[sISA]K∞ (𝜇𝑎) = 0 · 1 · 0 · 1 · 1 · 1 · . . .
JsLM[sISA]K∞ (𝜇′𝑎) = 0 · 0 · 0 · 1 · 1 · 1 · . . .

As the contract traces differ in the second position, contract sat-
isfaction holds trivially. Next, consider the traces in Figure 7b. As

5Following [27], we assume that secrets initially reside only in the architectural state
and that attackers can observe the initial values of registers in 𝜇Arch, i.e., 𝜇 ∼𝜇Arch 𝜇′ .
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before, we construct valuations 𝜇𝑏 for the upper trace, and 𝜇′
𝑏
for

the lower trace. We get the traces below.

JsLM[sISA]K∞ (𝜇𝑏 ) = JsLM[sISA]K∞ (𝜇′
𝑏
) = 0 · 1 · 0 · 1 · 1 · 1 · . . . .

As both valuations produce the same trace, we need to check the
attacker observations on the implementation. We get

JsAtk[sImpl]K∞ (𝜇𝑏 ) = JsAtk[sImpl]K∞ (𝜇′
𝑏
) = 0·0·1·2·2·3·4·5·. . . .

We can therefore conclude that contract satisfaction holds for these
traces. To verify contract satisfaction, we need to not only check
this property for 𝜇𝑏 and 𝜇′

𝑏
, but for any pair of traces. We will

discuss our approach for this in the next section.

4 VERIFYING CONTRACT SATISFACTION

Here, we present our verification approach for checking contract
satisfaction. First, we introduce a decoupling theorem that allows
us to separate security and functional correctness proofs (§4.1).
Next, we present (and prove sound) an algorithm for verifying
microarchitectural contract satisfaction (§4.2). All proofs are in [49].

4.1 Decoupling contract satisfaction from ISA

Since a leakage contract LM[ISA] is defined on top of ISA, proving
contract satisfaction according to Definition 2 requires reasoning
about security and functional compliance with respect to ISA (since
one needs to map contract traces from LM[ISA] to implementation
traces). We address this challenge by decoupling reasoning about
security and about ISA compliance.
Leakage ordering. For this, we start by introducing a leakage order-
ing between combinatorial monitoring circuits for an underlying
circuit𝐶 . Intuitively, a monitor𝑀 for𝐶 “leaks less” (i.e., exposes less
information) than another monitor 𝑀′ for 𝐶 if whenever 𝑀′ [𝐶]
produces equivalent traces on two initial states, then 𝑀 [𝐶] also
produces equivalent traces. Definition 3 formalizes this concept
and extends it to support the filtered semantics.

Definition 3. Monitor 𝑀′ leaks at most as much information as
monitor𝑀 about circuit 𝐶 , given registers 𝑉 ⊆ vars(𝐶), and pred-
icate 𝜙 (over 𝐶), written 𝑀 ⪰𝑉 ,𝜙

𝐶
𝑀′, if for all valuations 𝜇, 𝜇′ ∈

init (𝐶) such that 𝜇 ∼𝑉 𝜇′, if J𝑀 [𝐶]K∞ |𝜙 (𝜇) = J𝑀 [𝐶]K∞ |𝜙 (𝜇′),
then J𝑀′ [𝐶]K∞ (𝜇) = J𝑀′ [𝐶]K∞ (𝜇′).

Differently from Definition 2 (which is defined in terms of four
traces), Definition 3 is defined in terms of only two traces of 𝐶 .

Example 9. We can use our new definition to express contract
satisfaction over the implementation only, using predicate 𝜙 . Con-
sider again the two pairs of traces in Figure 7 from Example 8. If
we assume that the implementation is functionally correct, that is,
it satisfies Definition 1, we can replace the specification sISA by
its implementation sImpl. In particular, since Definition 1 ensures
that sISA’s architectural values match sImpl’s whenever retirement
predicate 𝜙 = (𝑟𝑒𝑡 = 1) holds, we can check contract satisfaction by
checking sLM ⪰{st,res,ret},𝜙sImpl sAtk. We call this condition microar-
chitectural contract satisfaction. Let us now check this property for
the traces in Figure 7b. Running sLM[sImpl], we get the following,
where we underline outputs whenever 𝜙 holds.

JsLM[sImpl]K∞ (𝜇𝑏 ) = JsLM[sImpl]K∞ (𝜇′
𝑏
) = 0 ·0 ·1 ·0 ·0 ·1 ·1 · . . . .

This means the premise of the implication is satisfied, and we need
to check the conclusion. As before, we get

JsAtk[sImpl]K∞ (𝜇𝑏 ) = JsAtk[sImpl]K∞ (𝜇′
𝑏
) = 0·0·1·2·2·3·4·5·. . . .

which establishes sLM ⪰{st,res,ret},𝜙sImpl sAtk for 𝜇𝑏 and 𝜇′
𝑏
. We formal-

ize this idea in Theorem 1.

Decoupling theorem. Theorem 1 states that, for functionally
correct processors, microarchitectural contract satisfaction (i.e.,
LM ⪰𝜇Arch,𝜙Impl Atk, which only refers to the microarchitecture Impl),
is equivalent to contract satisfaction (Definition 2 which refers to
architecture ISA and microarchitecture Impl). This allows us to
cleanly separate reasoning about security and about functional
correctness (without losing precision). In particular, we can split
proving contract satisfaction into proving microarchitectural con-
tract satisfaction (which ensures the absence of leaks with respect
to Impl) and ISA compliance. LeaVe leverages Theorem 1 to only
reason about security, whereas ISA compliance can be verified sep-
arately using techniques focusing on functional correctness [44].

Theorem 1 (Decoupling Theorem). If Impl ⊢𝜙 ISA holds for retire-
ment predicate 𝜙 , then

LM ⪰𝜇Arch,𝜙Impl Atk⇔ LM[ISA] ⊒ Atk[Impl] .

4.2 Verifying microarchitectural contract

satisfaction

In this section, we present an algorithm for checking microarchitec-
tural contract satisfaction, i.e., LM ⪰𝜇Arch,𝜙Impl Atk. We first introduce
notation for formalizing our verification queries in terms of tempo-
ral logic formulas. Next, we present the verification algorithm and
conclude by proving its soundness.
Notation. To formalize our verification queries, we use a linear
temporal logic over 𝜇Vlog circuits. Formulas Φ in this logic are
constructed by combining 𝜇Vlog predicates 𝜙 with temporal oper-
ators ◦ (denoting “in the next cycle”), □𝐵 (denoting “for the next
𝐵 cycles”), and □ (denoting “always in the future”), and the usual
boolean operators. Given a temporal formula Φ over a circuit𝐶 , we
write 𝐶, 𝜇, 𝑖 |= Φ to denote that the formula is satisfied for initial
state 𝜇 at cycle 𝑖 . We write𝐶, 𝜇 |= Φ to mean𝐶, 𝜇, 0 |= Φ, and𝐶 |= Φ
to mean that𝐶, 𝜇 |= Φ holds for all 𝜇. Our temporal logic is standard;
we provide its formalization in [49].

Example 10. Consider again circuit sISA from Example 1. Using
initial valuation 𝜇, where 𝜇 (𝑝𝑐) = 0, the following holds.

sISA, 𝜇 |= 𝑝𝑐 = 0 sISA, 𝜇 |= ◦(𝑝𝑐 = 1)
sISA, 𝜇 |= □3 (𝑝𝑐 ≤ 3) sISA |= 𝑝𝑐 ≥ 0→ □(𝑝𝑐 ≥ 0)

Product circuit. Verifying microarchitectural contract satisfac-
tion requires us to reason about pairs of executions of Impl, i.e.,
it is a 2-hyperproperty [19]. We transform hyperproperties into
properties over a single execution using a construction called self-
composition [12]. For this, we construct a product circuit that exe-
cutes two copies of a circuit𝐶 (𝐶1 and𝐶2) in parallel. Given circuit
𝐶 = {𝑥1 ← 𝑒1, . . . , 𝑥𝑛 ← 𝑒𝑛} : {𝑣1 = 𝑒′1, . . . , 𝑣𝑘 = 𝑒′

𝑘
} : 𝑜1, . . . , 𝑜𝑚 ,

we define its product circuit 𝐶 × 𝐶 as {𝑥11 ← 𝑒11, . . . , 𝑥𝑛1 ←
𝑒𝑛

1, 𝑥12 ← 𝑒12, . . . , 𝑥𝑛2 ← 𝑒𝑛
2} : {𝑣11 = 𝑒′1

1, 𝑣12 = 𝑒′1
2, . . . 𝑣𝑘

1 =
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𝑒′
𝑘
1, 𝑣𝑘

2 = 𝑒′
𝑘
2, } : {𝑜11, . . . , 𝑜𝑚1, 𝑜12, . . . , 𝑜𝑚2} where 𝑒𝑖 , for 𝑖 ∈

{1, 2}, is obtained by replacing all registers 𝑥 with 𝑥𝑖 and all vari-
ables 𝑣 with 𝑣𝑖 in expression 𝑒 .
Stuttering product circuit. While the product circuit allows us
to reason about pairs of executions, we need another ingredient to
check microarchitectural contract satisfaction, as it refers to the
filtered semantics over a predicate 𝜙 . We cannot directly check
the filtered semantics on the product circuit, as 𝜙 may be sat-
isfied at different times. Instead, we modify the product circuit
to synchronize the two executions based on 𝜙 . Given a circuit
𝐶 = {𝑥1 ← 𝑒1, . . . , 𝑥𝑛 ← 𝑒𝑛} : {𝑣1 = 𝑒′1, . . . , 𝑣𝑘 = 𝑒′

𝑘
} : 𝑜1, . . . , 𝑜𝑚 ,

we define its stuttering product circuit over predicate 𝜙 , denoted
by 𝐶 ×𝜙 𝐶 , by replacing each assignment 𝑥1 ← 𝑒1 in the prod-
uct circuit 𝐶 × 𝐶 with 𝑥1 ← if 𝜙1 ∧ ¬𝜙2 th 𝑥1 el 𝑒1 and, simi-
larly, by replacing each 𝑥2 ← 𝑒2 in the product circuit 𝐶 ×𝐶 with
𝑥2 ← if 𝜙2 ∧ ¬𝜙1 th 𝑥2 el 𝑒2. This transformation ensures that
whenever 𝜙 holds in one execution but not the other, the execution
where 𝜙 holds “waits” for the other one to catch up.

Example 11. Consider the circuit 𝑁 = {𝑖 ← 𝑖 + 1} : {} : {𝑖}.
Forming the product yields 𝑁 × 𝑁 = {𝑖1 ← 𝑖1 + 1, 𝑖2 ← 𝑖2 + 1} :
{} : {𝑖1, 𝑖2}. Let us define filter predicate 𝜙 = (𝑖 mod 2 = 0). We get
𝜙1 = (𝑖1 mod 2 = 0), and 𝜙2 = (𝑖2 mod 2 = 0), and

𝑁 ×𝜙 𝑁 =

{
𝑖1 ← if 𝜙1 ∧ ¬𝜙2 th 𝑖1 el 𝑖1 + 1,
𝑖2 ← if 𝜙2 ∧ ¬𝜙1 th 𝑖2 el 𝑖2 + 1

}
: {} : {𝑖1, 𝑖2} .

Let us fix 𝜇𝐼 (𝑖1) = 0 and 𝜇𝐼 (𝑖2) = 1. We only want to compare
states where both 𝜙1 and 𝜙2 hold, i.e., we want to compare the
filtered semantics J𝑁 K∞ |𝜙 (𝜇1) and J𝑁 K∞ |𝜙 (𝜇2), where 𝜇1 (𝑖) = 0
and 𝜇2 (𝑖) = 1. In 𝑁 × 𝑁 the two executions are not synchronized
and 𝑁 × 𝑁, 𝜇𝐼 |= □(𝜙1 ↔ ¬𝜙2). In contrast, 𝑁 ×𝜙 𝑁 synchronizes
the two executions. As initially 𝜙1 holds but 𝜙2 does not, only 𝑖2
gets incremented and, afterwards, the two copies run in lockstep.
We can now check properties of the filtered semantics, e.g., that
𝑁 ×𝜙 𝑁, 𝜇𝐼 |= □(𝜙1 ∧ 𝜙2 → 𝑖2 = 𝑖1 + 2) holds.

Algorithm idea. We now use the stuttering product circuit to ver-
ify that LM ⪰𝜇Arch,𝜙Impl Atk holds. This requires us to show that all
executions whose filtered semantics produce the same contract
observations always produce the same attacker observations (see
Definition 3). We start by adding an assumption to only consider
executions of Impl ×𝜙 Impl that are contract equivalent. We en-
code this via the formula Φctr−equiv := (𝜙1 ∧ 𝜙2 → 𝜓LM

equiv), where
𝜓M
equiv :=

∧
𝑜∈𝑀.𝑂 𝑜1 = 𝑜2 for a monitor𝑀 . We then only consider

executions that satisfy □Φctr−equiv . Next, our algorithm learns an
inductive invariant LI over the stuttering product circuit under our
assumption. This invariant holds on all reachable states of the cir-
cuit. Finally, our algorithm uses the invariant to prove that indeed
all executions of the circuit are attacker equivalent. For this we
show that LI → 𝜓Atk

equiv holds. Note that we prove this property over
Impl×𝜙 Impl, however the consequent of LI → 𝜓Atk

equiv is stated over
the unfiltered semantics. To ensure that the stuttering semantics is
equivalent to the regular one, we also prove LI → (𝜙1 ↔ 𝜙2), i.e.,
no stuttering occurs on contract equivalent traces.
Algorithm description. We implement this approach in Algo-
rithm 1. It relies on the procedure LearnInv, which we use to

learn invariants over the stuttering product circuit. We first present
Verify and later discuss LearnInv.

FunctionVerify is the entry point of our verification approach. It
takes as input a 𝜇Vlogmicroarchitecture Impl (the processor under
verification), a leakage monitor LM (capturing the allowed leaks),
an attacker monitor Atk (capturing what the attacker can observe),
and a retirement predicate 𝜙 . To verify unbounded properties like
LM ⪰𝜇Arch,𝜙Impl Atk, the algorithm relies on inductive reasoning. For
this reason, Verify additionally take as input (1) a set of candidate
invariants CI over the stuttering circuit (which will be verified
using LearnInv) as well as (2) a lookahead 𝑏 ∈ N+. Concretely,
LeaVe constructs the set of candidate invariants CI directly from
Impl, Atk, and 𝜙 ; see §5 for more details.

In line 2, we construct Φinitial (over the stuttering circuit Impl×𝜙
Impl) capturing the initial conditions for pairs of executions rele-
vant to our check. In Φinitial ,𝜓 Impl

init
1 and𝜓 Impl

init
2 capture that the two

executions start from valid initial states, whereas𝜓 𝜇Arch
equiv ensures

that the two executions initially agree on all registers in 𝜇Arch, i.e.,
𝜓
𝜇Arch
equiv :=

∧
𝑥∈𝜇Arch 𝑥

1 = 𝑥2. In line 3, we construct Φctr−equiv :=
(𝜙1 ∧ 𝜙2 → 𝜓LM

equiv) ensuring that contract observations are equiv-
alent. In line 4, we call the LearnInv procedure to verify which of
the candidate invariants in CI are, indeed, invariants. Hence, the
learned invariants LI hold for any two contract-indistinguishable
executions, i.e.,𝐶 |= (Φinitial ∧ □Φctr−equiv) → □

∧
𝐿𝐼 holds where∧

𝐿𝐼 stands for
∧

𝜙∈𝐿𝐼 𝜙 . Finally, in line 5 we check whether the
learned invariants are sufficient to ensure that (1) the attacker obser-
vations are the same and (2) the predicate 𝜙 is always synchronized
between the two executions. If this is the case, Verify has success-
fully verified that LM ⪰𝜇Arch,𝜙Impl Atk holds; see Theorem 2.

The LearnInv procedure learns, using inductive verification,
which of the candidate invariants are true invariants using an ap-
proach similar to the Houdini tool [23]. LearnInv takes as input
a circuit 𝐶 , a formula capturing initial conditions Φinitial , a for-
mula Φassumption that executions always need to satisfy, a bound 𝑏,
and a set of candidate invariants 𝐶𝐼 . The procedure outputs the
formulas in 𝐶𝐼 that can be proved to be invariants, i.e., for which
𝐶 |= (Φinitial ∧ □Φ𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) → □

∧
𝐿𝐼 holds. Concretely, Learn-

Inv consists of a base case (lines 7–13) and an induction step (lines
14–20). Both parts follow a similar structure—they iteratively rule
out invalid invariants based on counterexamples—and they differ
only in the checked property: Ψbase checks that for any state for
which the initial conditions hold and for which the assumptions are
satisfied for the next 𝑏 cycles, the invariants must also hold. In con-
trast, Ψinduction checks that for any state for which the invariants
hold and for which the assumptions are satisfied for the next 𝑏 cy-
cles, the invariants hold in the next cycle as well. Bound 𝑏 controls
for how many cycles to unroll the assumption □Φ𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 . Un-
rolling the assumption is important for circuits where a difference
in attacker observation occurs before a corresponding difference
in contract observations. This may happen, e.g., if a leak occurs
early in the pipeline and is later justified by a difference in contract
observations at retirement. It therefore often suffices to bound 𝑏 by
the processor’s pipeline depth.

Soundness: Theorem 2 states that whenever Algorithm 1 returns
⊤, then microarchitectural contract satisfaction holds.
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Algorithm 1 LeaVe verification approach
Input: Microarchitecture Impl, leakage monitor LM, attacker Atk,

retirement predicate 𝜙 , lookahead 𝑏, candidate invariants 𝐶𝐼
1: procedure Verify(Impl, LM,Atk, 𝜙, 𝑏,𝐶𝐼 )
2: Φinitial := 𝜓 Impl

init
1 ∧𝜓 Impl

init
2 ∧𝜓 𝜇Arch

equiv
3: Φctr−equiv := (𝜙1 ∧ 𝜙2 → 𝜓LM

equiv)
4: 𝐿𝐼 := LearnInv(Impl ×𝜙 Impl,Φinitial,Φctr−equiv, 𝑏,𝐶𝐼 )
5: return Impl ×𝜙 Impl |= ∧

𝐿𝐼 → 𝜓Atk
equiv ∧ (𝜙

1 ↔ 𝜙2)

6: procedure LearnInv(𝐶,Φinitial,Φassumption, 𝑏,𝐶𝐼 )
7: while ⊤ do ⊲ base case
8: Ψbase := (Φinitial ∧ □𝑏Φassumption) →

∧
𝐶𝐼

9: if 𝐶 |= Ψbase then
10: break

11: else

12: Let 𝜇 be the counterexample
13: 𝐶𝐼 := {𝜙 ∈ 𝐶𝐼 | 𝐶, 𝜇 |= 𝜙}
14: while ⊤ do ⊲ ind. step
15: Ψinductive := (

∧
𝐶𝐼 ∧ □𝑏Φassumption) → ◦

∧
𝐶𝐼

16: if 𝐶 |= Ψinductive then
17: return 𝐶𝐼

18: else

19: Let 𝜇 be the counterexample
20: 𝐶𝐼 := {𝜙 ∈ 𝐶𝐼 | 𝐶, 𝜇 |= 𝜙}

Theorem 2. Verify(Impl, LM,Atk, 𝜙, 𝑏, RI )⇒LM⪰𝜇Arch,𝜙Impl Atk.

Example 12. Consider again the implementation sImpl from Ex-
ample 4. We want to verify that sLM ⪰{st,res,ret},𝜙sImpl sAtk holds. We
start by building the stuttering product circuit sImpl ×𝜙 sImpl with
respect to retirement predicate 𝜙 = (𝑟𝑒𝑡 = 1). We can assume that
the two executions produce the same contract observations, when-
ever both executions retire. We capture this assumption in formula
Φctr−equiv := (𝑟𝑒𝑡1 = 1 ∧ 𝑟𝑒𝑡2 = 1 → 𝑚1 [𝑝𝑐1] = 𝑚2 [𝑝𝑐2]), which
we assume to hold throughout the execution. Next, we want to
learn an inductive invariant over sImpl ×𝜙 sImpl under assumption
□ Φctr−equiv . We pick the following set of candidate invariants.

CI =

{
𝑝𝑐1 = 𝑝𝑐2, 𝑠𝑡1 = 𝑠𝑡2, 𝑟𝑒𝑠1 = 𝑟𝑒𝑠2, 𝑟𝑒𝑡1 = 𝑟𝑒𝑡2

𝑠𝑡1 = 0→ 𝑟𝑒𝑡1 = 1, 𝑠𝑡1 = 1→ 𝑟𝑒𝑡1 = 1

}
Procedure LearnInv starts by checking the invariant candidates on
the initial state. We set bound 𝑏 to 1. Since in all valid initial states 𝜇,
we have 𝜇 (𝑝𝑐) = 1, 𝜇 (𝑠𝑡) = 0, and all microarchitectural variables
are assumed to be equal via Φinitial we retain all candidate invari-
ants. Next, LearnInv checks whether the candidate invariants are
preserved under transitions. That is, if we assume the invariant
holds and take a transition step, the invariant must still hold. Since
our invariant does not require memory𝑚 to be equal in both ex-
ecutions, taking the else branch in line 3 of sImpl (see Example 4)
produces a counterexample where 𝑟𝑒𝑠1 ≠ 𝑟𝑒𝑠2 and we remove the
corresponding invariant. Similarly, taking the else branch in line 3
produces a state where 𝑠𝑡1 = 1 and 𝑟𝑒𝑡1 = 0 and LearnInv removes
the invariant as well. The remaining candidate invariants are pre-
served under transitions and the procedure returns. This leaves us

with the following set of learned invariants.

𝐿𝐼 =

{
𝑝𝑐1 = 𝑝𝑐2, 𝑠𝑡1 = 𝑠𝑡2, 𝑟𝑒𝑡1 = 𝑟𝑒𝑡2

𝑠𝑡1 = 0→ 𝑟𝑒𝑡1 = 1

}
Finally, procedure Verify checks whether the conjunction of the
learned invariants implies that attacker observations and retire-
ment are the same in both executions. For our example, this means
checking that the following implication holds.(

𝑝𝑐1 = 𝑝𝑐2 ∧ 𝑠𝑡1 = 𝑠𝑡2∧
𝑟𝑒𝑡1 = 𝑟𝑒𝑡2 ∧ 𝑠𝑡1 = 0→ 𝑟𝑒𝑡1 = 1

)
→

(
𝑝𝑐1 = 𝑝𝑐2∧
(𝑟𝑒𝑡1 = 1) ↔ (𝑟𝑒𝑡2 = 1)

)
As the implication is valid, we have proved microarchitectural
contract satisfaction.

5 IMPLEMENTATION

In this section, we present the LeaVe verification tool, which imple-
ments the verification approach from §4.2 for Verilog. LeaVe uses
the Yosys Open Synthesis Suite [8] for processing Verilog circuits,
the Icarus Verilog simulator [4] for simulating counterexamples,
and the Yices SMT solver [7] for verification. LeaVe is open source
and available at [6] together with the benchmarks and scripts for
reproducing the experiments from §6.
Inputs: LeaVe takes as input (1) the processor under verification
(PUV) Impl implemented in Verilog, (2) a leakage monitor formal-
ized as Verilog expressions over Impl’s architectural state, (3) an
attacker expressed as Verilog expressions over Impl, (4) a retire-
ment predicate 𝜙 expressed as a Boolean condition over Impl, and
(5) a lookahead 𝑏 ∈ N+.6 Users can provide candidate relational
invariants as expressions 𝑒 over Impl and LeaVe will construct
the candidate invariant 𝑒1 = 𝑒2. Users can also provide additional
invariants over individual executions of Impl to help ruling out
spurious counterexamples.7

Workflow: LeaVe works in two steps that follows Algorithm 1.
First, LeaVe determines the greatest subset of the provided can-

didate relational invariants that is inductive. For this, LeaVe imple-
ments the LearnInv function from Algorithm 1 (described below).
In addition to the user provided candidate invariants, the set of
candidate invariants for LearnInv contains: (1) all relational for-
mulas of the form 𝑥1 = 𝑥2 where 𝑥 is a register or wire in Impl,
(2) formulas of the form 𝑒Atk

1 = 𝑒Atk
2 for all expressions 𝑒Atk in

the provided attacker, and (3) the invariant 𝜙1 ↔ 𝜙2 indicating
that the retirement predicate is always synchronized between the
two executions.

Next, LeaVe analyzes the learned invariants to determine if they
are sufficient to prove security with respect to the given attacker.
For this, LeaVe checks if the invariants associated with the attacker
and with the retirement predicate are part of the set of learned
invariants, which is sufficient to ensure the satisfaction of the check
at line 5 in Algorithm 1.
Implementation of LearnInv: LeaVe’s implementation of
LearnInv follows Algorithm 1: (1) It constructs the stuttering prod-
uct circuit by combining two copies of the PUV and using the
6As a rule of thumb, a sufficient choice for 𝑏 is the maximum number of cycles needed
for an instruction to traverse the pipeline (from fetch to retire).
7LeaVe only verifies the relational invariants, which concern security. Invariants over
Impl, which concern functional correctness, are assumed and not checked by the tool.
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provided retired predicate 𝜙 to synchronize the two executions (as
described in §4.2). (2) Then, it inlines the property to be verified
(i.e., Ψbase and Ψinductive from Algorithm 1) as assume and assert
Verilog statements in the product circuit. (3) Next, it checks whether
the property holds. (4) Whenever a property is not satisfied, LeaVe
analyzes the counterexample to determine which candidate rela-
tional invariants are violated (lines 12-13 and 19-20 in Algorithm 1)

For (1) and (2), we implemented dedicated Yosys passes that con-
struct the stuttering product circuit and inline candidate relational
invariants. For (3), LeaVe uses Yosys to encode the product cir-
cuit and the verification queries into SMT logical formulas and the
Yosys-BMC [8] backend to verify the property with the Yices SMT
solver (using the lookahead 𝑏 as verification bound). For (4), when
verification fails, Yosys-BMC translates the SMT counterexample
into a Verilog testbench. LeaVe instruments the testbench to mon-
itor the value of all candidate invariants, simulates the testbench
using Icarus Verilog, and discards the violated invariants.

6 EVALUATION

This section reports on our use of LeaVe to verify the security
of three open-source RISC-V processors. We start by introducing
our methodology (§6.1): the processors we analyze, the leakage
contracts and attacker we consider, and the experimental setup.
In our experimental evaluation (§6.2), we address the following
three research questions: Q1: Can LeaVe be used to reason about
the security of open-source RISC-V processors? Q2: What is the
impact of varying the lookahead 𝑏 on verification time? Q3: What
is the impact of decoupling security and functional correctness
on verification?

6.1 Methodology

Benchmarks: We consider the following benchmarks.
• RE: The simple processor from §2. The log_time_mulmodule

is implemented using shift operations (logarithmic in the number of
set bits of the multiplier), inspired by one of Ibex’s multipliers [3].
• DarkRISCV: A RISC-V processor implementing most of the

RISC-V RV32E and RV32I instruction set [1]. The processor is in-
order and single-issue, and we analyzed its 2-stage (DarkRISCV-2)
and 3-stage (DarkRISCV-3) versions.
• Sodor: An educational RISC-V processor [5]. We analyzed the

2-stage version of Sodor implementing the RV32I instruction set.
• Ibex: An open-source, production-quality 32-bit RISC-V

CPU core [2].8 We target Ibex in its default configuration (called
“small” [2]), which underwent functional correctness verification.
The processor has two stages and supports the RV32IMC instruc-
tion set. In our experiments, we consider three variants of Ibex: (1)
Ibex-small is the default “small” configuration with constant-time
multiplication (three cycles) and without caches, (2) Ibex-cache is
the Ibex-small version extended with a simple (single-line) cache,
and (3) Ibex-mult-div employs a non-constant-time multiplication
unit whose execution time depends on the operands [3].

For the RISC-V processors in our experiments (i.e., all variants
of DarkRISCV, Sodor, Ibex), we make the following assumptions
during verification: (1) debug mode is disabled, (2) all fetched
8Ibex is written in SystemVerilog. To analyze it with LeaVe, we first translate it into
plain Verilog using scripts from Ibex’s developers.

instructions are legal and not compressed, (3) no exceptions or
interrupts are raised during execution, and (4) only unprivileged
instructions are executed. Additionally, for Ibex-cache, we assume
that memory operations are aligned at word boundaries due to
limitations of our simple cache implementation. Finally, for all
processors we manually specify a retirement predicate indicating
when instructions retire.
Leakage contracts: We consider leakage contracts constructed
by composing the following building blocks:
• I: This contract exposes the architectural program counter

and the corresponding instruction retrieved from memory.
• B: This contract exposes the architectural outcome of (direct

and indirect) branch instructions. That is, for conditional branches,
the contract exposes the architectural value of the condition.
• M: This contract exposes the addresses accessed by load and

store memory instructions.
• A: This contract exposes whether load and store memory

instructions are aligned.
• Om: This contract exposes the operands of mul and imul mul-

tiplication instructions.
• O

d
: This contract exposes whether the divisor in div (division)

and rem (remainder) instructions is 0.
In the following, we write A+B to denote the composition of con-
tracts A and B. For instance, I+B+M is the contract that exposes
everything exposed by I, B, andM. This contract corresponds to
the standard constant-time model [9]. We order contracts by the
amount of information they leak, where stronger contracts leak
less. For example, I is stronger than I+B as it exposes less informa-
tion. For each processor from §6.1, we implemented all the above
mentioned contracts and their combinations as leakage monitors
over the processor’s architectural state.
Attacker: For all processors from §6.1, we implemented an attacker
monitor that observes when instructions retire by exposing the
value of the retirement predicate at each cycle.
Additional candidate invariants: For DarkRISCV, Sodor, and
Ibex, we manually specified candidate relational invariants captur-
ing that “if instructions enter a pipeline stage in both executions,
then the instructions are the same in both executions”. Moreover,
for Ibex-cache, we also added a candidate invariant capturing that
“if both executions are executing a load instruction, then the signals
detecting a cache hit are the same.” All these invariants can be
formalized as formulas of the form 𝑒1 = 𝑒2 → 𝑒′1 = 𝑒′2. These are
not part of the invariants automatically generated by LeaVe, which
are of the simpler form 𝑒1 = 𝑒2.
Experimental setup: All our experiments are run on a Ubuntu
20.04 virtual machine with 8 CPU cores and 32 GB of RAM running
on Linux KVM on a server with 4 Xeon Gold 6154 CPUs and 512 GB
of DDR4 RAM. We configured LeaVe to run with Yosys version
0.24 + 10, Icarus Verilog version 12.0, and Yices version 2.6.4.

6.2 Experimental results

Q1: Reasoning about open-source processors: To evaluate
whether LeaVe can verify the security guarantees of open-source
processors, we use it to prove microarchitectural contract satisfac-
tion against an attacker Atk that observes when instructions are
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retired. For each processor and leakage monitor from §6.1, we use
LeaVe to check whether the attacker monitor leaks less than the
leakage monitor with respect to the processor and its retirement
predicate (indicating whenever instructions retire).

Table 1 reports (1) the strongest contract that could be verified
against Atk, (2) the time needed for the verification of the satis-
faction of the strongest contract, (3) the total number of iterations
taken by LearnInv for the base and induction steps (i.e., the num-
ber of issued SMT queries), and (4) the minimum lookahead 𝑏 for
which verification succeeded. We highlight the following findings:
• For the RE processor from §2, LeaVe successfully verified

contract satisfaction against the contract Om exposing the multi-
plication’s operand in 1.5 minutes with a lookahead of 33. Such
a lookahead is needed to ensure that in-flight multiplications are
retired and the corresponding contract observation is produced.
• For DarkRISCV, LeaVe proves contract satisfaction against

the I contract, which exposes the current program counter and the
loaded instruction, in 7 minutes for the two-stage version Dark-

RISCV-2 and in around 11 minutes for the (more complex) three-
stage version DarkRISCV-3.
• Differently from DarkRISCV, Sodor-2 only satisfies the

weaker I+B contract, which additionally exposes the outcome of
branch instructions. This arises from the processor employing a
simple form of branch prediction, which predicts that the branch
is always not taken. This results in a timing leak because mispre-
dictions trigger a pipeline flush. Consider the following instruction
(returned by LeaVe as a counterexample when trying to prove
satisfaction against I) 𝑖 ≜ beq 𝑡1 𝑡2 pc + 4 at address pc, which
conditionally jumps to pc + 4 if registers 𝑡1 and 𝑡2 have the same
value. The next instruction will always be the one at address pc+4
(so, executions will be equivalent under contract I). However, exe-
cuting 𝑖 on Sodor-2 takes a different number of cycles depending
on whether 𝑡1 and 𝑡2 are equal.
• For Ibex-small, LeaVe can only prove security against the

I+B+O
d
+A contract, which additionally exposes (a) whether the

divisor in division and remainder instructions is 0 and (b) whether
memory accesses are aligned. The O

d
is needed to capture that

division and remainder operations take 1 cycle when the divisor
is 0 or 37 cycles otherwise. Moreover, the A contract is needed to
capture that Ibex handles memory accesses that are not aligned on
word boundaries by performing two separate word-alignedmemory
accesses. Note that the difference in complexity between Sodor-2

(a simple educational processor) and Ibex-small (a production-
quality processor) is reflected in the difference in the time taken by
a single LearnInv iteration (1.1 versus 16 minutes on average) and
by the larger lookahead (1 vs 38).
• For Ibex-cache, LeaVe can only prove security against the

I+B+O
d
+M contract. Differently from Ibex-small, which is secure

against the I+B+O
d
+A contract, Ibex-cache needs the M contract

that exposes the accessed memory addresses (rather than the align-
ment bit). This reflects the effects of our single-line cache which
requires 3 cycles for hits and 4 cycles for misses.
• For Ibex-mult-div, LeaVe can only prove security against

the I+B+O
d
+Om+A contract, which also exposes the operands

of multiplication instructions (Om). This captures the effects of
the non-constant-time multiplier used in Ibex-mult-div, whose

Table 1: Verification results for our benchmarks. For each pro-

cessor, the table indicates the strongest satisfied contract (i.e.,

the one exposing the least amount of information) against

an attacker observing when instructions retire.

Processor
Strongest Verification time LearnInv

𝑏
contract (in minutes) iterations

RE Om 1.5 10 33
DarkRISCV-2 I 7.2 52 2
DarkRISCV-3 I 11.1 83 2
Sodor-2 I+B 97.8 85 1
Ibex-small I+B+O

d
+A 1479.4 90 38

Ibex-cache I+B+O
d
+M 1396.7 67 38

Ibex-mult-div I+B+O
d
+Om+A 1291.9 75 38

execution time is proportional to the logarithm of the multiplication
operands.

Q2: Impact of lookahead: LeaVe’s verification queries are para-
metric in the lookahead 𝑏. A larger lookahead corresponds to
stronger assumptions and may thus enable learning stronger invari-
ants. This, however, comes at the cost of more complex queries to
the SMT solver, which increases solving time. To understand the im-
pact of increasing 𝑏, we use LeaVe to analyze the Sodor processor
against the I+B contract for different values of 𝑏 ∈ {1, 2, 3, 5, 10, 20}.

Table 2 reports the total verification time, the total number of
iterations taken by the LearnInv sub-procedure for the base and
induction steps (i.e., the number of issued SMT queries), the time
per iteration, and the number of invariants learned. Our results
indicate that increasing the lookahead 𝑏 results in slower iterations
of LearnInv and in more invariants. For instance, increasing the
bound from 1 to 20 results in increasing the iteration time from 1.15
to 8.29 minutes. The total number of LearnInv iterations (and, thus,
the total verification time), however, varies depending on which
counterexamples the SMT solver returns.

Q3: Impact of decoupling: To understand the impact of check-
ing microarchitectural contract satisfaction using our decoupling
theorem versus checking contract satisfaction directly using an
architectural model ISA (c.f. Definition 2), we modified LeaVe to di-
rectly prove contract satisfaction according to Definition 2. For this,
we (1) replace the construction of the stuttering circuit Impl×𝜙 Impl
with the product circuit ISA × ISA × Impl × Impl and (2) modify the
construction of the Ψinitial and Ψcontract formulae, whereas the rest
(e.g., the LearnInv procedure) is the same. We refer to this modified
version of LeaVe as 4way-LeaVe (see [49, Appendix D]). Note that
4way-LeaVe and LeaVe prove different properties which, as stated
in Theorem 2, are equivalent only for ISA-compliant designs.

We analyzed the Sodor processor against the I+B contract using
both LeaVe and 4way-LeaVe. We focused our analysis on Sodor

because it comes with a Verilog ISA model (i.e., 1-stage Sodor).
In our experiments, when using a lookahead of 𝑏 = 2, LeaVe

successfully proved that the I+B contract is satisfied in 97.8minutes.
In contrast, 4way-LeaVe tool proved contract satisfaction in 33.5
hours. This illustrates that, even for the simple 2-stage Sodor pro-
cessor, directly proving Definition 2 is impractical. It also confirms
that our decoupling theorem is instrumental in enabling practical
automated proofs of contract satisfaction for realistic hardware.



Specification and Verification of Side-channel Security for Open-source Processors via Leakage Contracts CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 2: Verification time for Sodor against the I+B contract

for different lookaheads 𝑏.

𝑏
Verification time LearnInv Time per iteration Number of
(in minutes) iterations (in minutes) invariants

1 97.8 85 1.15 1732
2 81.9 63 1.30 1770
3 123.5 81 1.52 1776
5 102.9 59 1.74 1776
10 174.4 63 2.77 1776
20 497.6 60 8.29 1776

7 DISCUSSION

Limitations: Our formalization of leakage contracts and our
notion of ISA compliance impact both the decoupling theorem
(Theorem 1) as well as the microarchitectures and contracts sup-
ported by LeaVe. In terms of microarchitectures, our notion of ISA
compliance (Definition 1) only applies to single-issue processors.
Supporting multi-issue processors requires an ISA compliance
notion that accounts for retiring multiple instructions per cycle.
In terms of leakage contracts, LeaVe targets sequential leakage
contracts that only refer to “architectural” instructions. We leave
the support for leakage contracts that refer to transient instructions,
like the speculative contracts from [27], as future work.

We also remark that (1) LeaVe currently lacks support for inputs,
and (2) our formalization of attackers as combinatorial monitoring
circuits limits LeaVe to reason about passive attackers that can only
observe (part of) a processor’s microarchitecture during execution.
We leave corresponding extensions to future work.

Lookahead: LeaVe’s verification approach is parametric in a
lookahead 𝑏 ∈ N+ which determines for how many cycles the
contract-equivalence assumption needs to be unrolled in the veri-
fication queries issued by the LearnInv function in Algorithm 1.
The lookahead 𝑏 is used to expose contract observations (produced
at retirement) for instructions that are in-flight. In particular, it
allows accounting for microarchitectural differences at cycle 𝑖 that
are later declassified by a contract observation produced at cycle
(at most) 𝑖 + 𝑏. We remark that the choice of 𝑏 does not affect the
soundness of LeaVe (cf. Theorem 2), but it may affect the success of
verification. For instance, verifying the satisfaction of the contract
LM from §2 for the processor from Figure 2 requires 𝑏 = 33 (see Ta-
ble 1), i.e., verification fails for smaller bounds. In our experiments,
setting 𝑏 to the maximum number of cycles needed for instructions
to traverse the pipeline (from fetch to retire) was always sufficient
whenever contract satisfaction holds.

Leakage contracts and secure programming: Leakage contracts
may serve as a foundation for secure programming. As shown by
Guarnieri et al. [27], ensuring at program level that secret data
do not influence leakage contract traces is sufficient to ensure the
absence of leaks at microarchitectural level for processors that
satisfy the contract. Thus, LeaVe’s verification results have direct
implications for programmers. As an example, for each processor
in our evaluation (§6), the strongest contract verified by LeaVe,
reported in Table 1, indicates which parts of a computation should
not involve secrets to ensure leakage freedom. For instance, secure

programming for the contract I+B+O
d
+Om+A, satisfied by Ibex-

mult-div, requires ensuring that secrets do not influence (i) the
program’s control-flow (I+B), (ii) whether the divisor in div and rem
instructions is 0 (O

d
), (iii) the operands of mul and imul instructions

(Om), and (iv) the alignment of memory accesses (A).

8 RELATEDWORK

Hardware verification for security: UPEC [22] is an ap-
proach for detecting confidentiality violations in RTL circuits.
Similarly to Definition 3, the UPEC property is defined as a
non-interference-style property over pairs of microarchitectural
executions. However, the security property verified in [22] is
fixed; it specifically focuses on microarchitectural leaks due to
transitive execution; and it is not directly based on an ISA-level
specification, i.e., it does not correspond to a leakage contract
in a straightforward manner. In contrast, our approach directly
supports leakage contracts defined at ISA-level.

Bloem et al. [13] propose an approach for verifying power leak-
age models (formalized on top of the Sail domain specific lan-
guage [10]) for RTL circuits, which differs from LeaVe in two key
ways: (1) They target power side channels, whereas LeaVe focuses
on software-visible microarchitectural leaks. This is reflected in
different notions of contract satisfaction: the one from [13] is prob-
abilistic and related to threshold non-interference, whereas ours is
related to standard non-interference. (2) Their verification approach
needs a user-provided simulation mapping that “specifies for all
registers in the hardware [..] a location in the contract modeling
the hardware location” [13, §3.4] where a location is a register or
an input. Defining such a mapping can be challenging for complex
processors, e.g., registers of stateful microarchitectural components
(like caches or predictors) may depend on multiple instructions.
LeaVe does not need such a mapping for checking contract satisfac-
tion; it only needs (automatically synthesized or manually provided)
candidate relational invariants over the microarchitecture.

Iodine [48] and Xenon [45] check if the execution time of an
RTL circuit is input independent given a partitioning of the circuit’s
inputs into secret and public. This partitioning is too coarse to sup-
port leakage contracts, where the notion of what is “secret” depends
on the executed instructions. Finally, secure Hardware Description
Languages [20, 53] aim at building secure processors by construc-
tion. They require partitioning RTL registers and inputs into secret
and public, which is too coarse-grained for leakage contracts.

Knox [11] is a verification approach for hardware security
modules (HSMs) that targets an HSM’s hardware and software
components. While leakage contracts capture a processor’s
security guarantees at ISA level, Knox focuses on ensuring that all
components of an HSM are both functionally correct and leakage
free. Differently from LeaVe, Knox relies on a combination of
annotations and interactive proofs.
Hardware verification for functional correctness: Amultitude
of approaches for verifying functional correctness of processors
have been proposed [16, 28, 30, 33, 41, 44, 52]. Some of these ap-
proaches adopt a notion of ISA compliance similar to Definition 1.
For instance, Reid et al. [44] illustrate a verification approach (used
internally at ARM) for checking compliance between a microar-
chitecture and a reference architectural model, where the notion
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of ISA compliance requires that all changes to the architectural
state are reflected by a “step” of the reference model (similarly to
Definition 1).

The Instruction-Level Abstraction (ILA) project [28, 52, 54] aims
to specify and verify instruction-level models of processors and
accelerators. They present techniques for (1) checking whether
an RTL implementation correctly implements an ILA model, (2)
determining which parts of a processor’s state are architectural [52],
and (3) deriving processor invariants [54]. Some of these techniques
can help in LeaVe’s verification. For instance, [52] can help in
identifying theArch and 𝜇Arch sets, whereas [54] can complement
LeaVe’s invariant learning approach.

Finally, fuzzing approaches [17, 31] can detect violations of ISA
compliance, but they cannot prove functional correctness.
Detecting leaks through testing: Revizor [39, 40] and Scam-
V [14, 38] search for contract violations (i.e., they find counterex-
amples to Definition 2) for black-box CPUs. However, they require
physical access to a CPU and can be applied only post-silicon. Other
approaches [24, 35, 50] instead detect leaks by analyzing hardware
measurements without the help of a formal leakage model but,
again, apply only post-silicon. Finally, SpecDoctor [29] and Sig-
Fuzz [43] can test for leaks on RTL designs and they are appli-
cable in the pre-silicon phase. Differently from LeaVe, all these
approaches cannot prove the absence of leaks.
Formal leakage models: Researchers have proposed many for-
mal models for studying microarchitectural security at program
level, ranging from simple models associated with “constant-time
programming” [9, 36] to more complex ones capturing leaks associ-
ated with speculatively executed instructions [18, 21, 25, 26, 42, 47].
Most of these models focus at the software level and have no formal
connection with leaks in hardware implementations. In contrast,
[27, 37] propose frameworks for formalizing security contracts be-
tween hardware and software. Our notion of contract satisfaction
(Definition 2) is inspired by the framework from [27], which we
instantiate and adapt for reasoning about RTL processors.

9 CONCLUSION

We presented an approach for verifying RTL processor designs
against ISA-level leakage contracts. We implemented our approach
in the LeaVe verification tool, which we use to characterize the
side-channel security guarantees of three open-source RISC-V pro-
cessors. This demonstrates that leakage contracts can be success-
fully applied to RTL processor designs. It also paves the way for
linking recent advances on specification [27, 37] and software anal-
ysis [18, 21, 25, 26, 47] for leakage contracts to RTL processor de-
signs.
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