Spectector: Principled detection of speculative information flows

Marco Guarnieri IMDEA Software Institute

Joint work with José F. Morales, Andrés Sánchez @ IMDEA Software Institute Boris Köpf @ Microsoft Research Jan Reineke @ Saarland University

Exploits **speculative** execution

Almost **all** modern **CPUs** are *affected*

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:

execution In this talk.

1. Semantic notion of security against speculative execution attacks

2. Analysis to *detect* vulnerability or prove security

Speculative execution attacks 101

Size of array A if (x < A_size) y = B[A[x]]

Prediction based on **branch** history & program structure

Prediction based on **branch** history & program structure

Size of array A if (x < A size) y = B[A[x]]

Wrong predicton? Rollback changes! Architectural (ISA) state Microarchitectural state

Prediction based on **branch** history & program structure

void f(int x) if (x < A size) y = B[A[x]]</pre>

void f(int x) if (x < A_size) y = B[A[x]]</pre>

void f(int x) if (x < A size) y = B[A[x]]</pre>

Speculative non-interference

Speculative non-interference Program P is speculatively non-interferent if

Information leaked by executing **P** without speculative execution

Information leaked by executing **P** with speculative execution

Non-speculative semantics

Speculative semantics

Attacker model

Non-speculative semantics

Speculative semantics

Attacker model

Model program's behavior

-

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Standard *in-order* semantics

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Prediction Oracle O: branch prediction + length of speculative window

Speculative semantics

Capture attacker's observational power

Attacker model

Prediction Oracle O: branch prediction + length of speculative window

Speculative semantics

Capture attacker's observational power

Starts *speculative transactions* upon branch instructions

- **Committed** upon correct speculation
- Rolled-back upon misprediction

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Attacker can observe: - locations of *memory* accesses Mo- branch/jump targets - *start/end* speculative execution

1. if (x < A size)2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$

- 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$
- 4. end

x > A size

1. if (x < A size)2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$

3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

x > A size

1. if (x < A size)2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$

 $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3. end 4.

x > A size

x < A size predicted as satisfied

start pc 2

1. if (x < A size)2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3.

end 4.

x > A size

if (x < A_size) y = A[x] z = B[y]

4. end

x > A_size

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ z = B[y]3.

end 4.

x > A size

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3.

end 4.

x > A size

x < A size predicted as satisfied

load **B+A**[**x**]

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ z = B[y]3.

end 4.

x > A size

x < A size predicted as satisfied

rollback pc 4

1. if (x < A_size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3. end 4.

x > A size

Formally!

Speculative non-interference Formally!

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s* ':

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s* ': $\mathbf{P_{non-spec}}(\mathbf{s}) = \mathbf{P_{non-spec}}(\mathbf{s'})$

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s*': $\mathbf{P_{non-spec}}(\mathbf{s}) = \mathbf{P_{non-spec}}(\mathbf{s'})$

 $\implies \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s},\boldsymbol{O}) = \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s'},\boldsymbol{O})$

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s*': $\mathbf{P_{non-spec}}(\mathbf{s}) = \mathbf{P_{non-spec}}(\mathbf{s'})$

See paper for: reasoning about arbitrary prediction oracles

 $\Rightarrow \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s},\boldsymbol{O}) = \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s}',\boldsymbol{O})$

1. if (x < A_size)

- 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$
- 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$
- 4. end

x < **A size** predicted as satisfied

x=128 **A size**=16 **A** [128]=**0**

13

1. if (x < A_size)

- 2. $\boldsymbol{y} = \boldsymbol{A}[\boldsymbol{x}]$
- 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$
- 4. end

x < **A size** predicted as satisfied

x=128 **A** *size*=16 **A** [128]=0

1. if (x < A size)

- 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$
- z = B[y]3.
- end 4.

x < **A size** predicted as satisfied

load **A**+128

A size=16 A[128]=0

1. if $(\mathbf{x} < \mathbf{A} \ size)$ 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$

- z = B[y]3.
- end 4.

x < **A size** predicted as satisfied

x=128 **A** size=16 A[128]=0

1. if $(\mathbf{x} < \mathbf{A}_{size})$ 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$

- 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$
- 4. end

1. if $(\mathbf{x} < \mathbf{A} \text{ size})$ 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$

- z = B[y]3.
- end 4.

x < **A size** predicted as satisfied

x=128 **A** size=16 **A**[128]=**0**

load **B+0**

x=128 **A** size=16 **A**[128]=**1**

load B+1

Symbolic trace: path condition + observations along the symbolic path

15

- 1. if $(\mathbf{x} < \mathbf{A} \text{ size})$ 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$
- 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$
- 4. end

if (x < A_size) y = A[x] z = B[y]

4. end

if (x < A_size) y = A[x] z = B[y]

4. end

true

if (x < A_size)
y = A[x]
z = B[y]
end

true

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

$x \geq A$ size x < A size

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

$x \geq A$ size

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

1. if (x < A size) 2. $y = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3. end 4.

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3. end 4.

start pc 2 load A+x load B+A[x] rollback pc 4

Symbolic execution

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ z = B[y]3. end 4.

start pc 2 load A+x load B+A[x] rollback pc 4

Symbolic execution

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ z = B[y]3. end 4.

start pc 2 load A+x load B+A[x] rollback pc 4

Detecting speculative leaks

Detecting speculative leaks

if $MemLeak(\tau)$ then return INSECURE if $CtrlLeak(\tau)$ then return INSECURE return SECURE

rax rcy jmp 102 102 END:

L1:

For each symbolic trace $\tau \in traces(prg)$

Detecting speculative leaks

For each symbolic trace $\tau \in traces(prg)$ if $MemLeak(\tau)$ then

return INSECURE if $CtrlLeak(\tau)$ then

return INSECURE return SECURE

ray rcy jmr *L1*: 102 102 END:

Speculative memory accesses *must be fully* determined by non-speculative observations

Speculative memory accesses *must be fully* determined by non-speculative observations

 \mathcal{T}

Speculative memory accesses *must be fully* determined by non-speculative observations

 \mathcal{T}

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must be fully* determined by non-speculative observations

 \mathcal{T}

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must be fully* determined by non-speculative observations

 \mathcal{T}

S

 S_2

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must be fully determined* by *non-speculative* observations

 \mathcal{T}

 $pathCnd(\tau) \land obsEques$ $s_1 \models \varphi$ $s_2 \models \varphi$

 $pathCnd(\tau) \land obsEqv(\tau|_{non-spec}) \land \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must be fully* determined by non-speculative observations

 \mathcal{T}

 S_1 $S_2 \models$

Speculative memory accesses *must be fully* determined by non-speculative observations

 \mathcal{T}

 S_1 $S_2 \models$

Spectector + Case studies

Spectector

	mov
	mov
	cmp
	jae
L1:	mov
	mov

rax,	A_size
rcx,	X
rcx,	rax
END	
rax,	A [rcx]
rax,	B [rax]

END:

Symbolic execution

Check for speculative leaks

x64 to µASM

Spectector

• **Z3** for symbolic execution and leak detection

rax <- A size rcx <- **x** jmp rcx≥rax, *END* load rax, A + rcx load rax, **B** + rax

> Symbolic execution

Check for speculative leaks

Case study: compiler mitigations

Target:

- 15 variants of Spectre V1 by Paul Kocher*
- Compiled with Microsoft Visual C++, Intel ICC, and Clang with different mitigations and optimization levels
- 240 assembly programs of up to 200 instructions each

How:

Use Spectector to prove security or detect leaks

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

			V	CC				Ic	CC				CLA	ANG		
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U	NP	F	EN	SLH	ł
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	_
01	0	0	•	•	•	•	0	Ο	•	•	0	Ο	•	•	•	
02	0	0	•	•	•	•	0	0			0	0	•	•	lacksquare	
03	0	0	•	0		•	0	0	lacksquare	•	0	Ο		•	ullet	
04	0	0	0	0	•	•	0	0	•	٠	0	0	•	•		
05	0	0	•	0	•	0	0	0	•	•	0	0	•	•		
06	0	0	0	0	0	0	0	0	•	٠	0	0	•	•	lacksquare	
07	0	0	0	0	0	0	0	0	•	•	0	0	•	•	lacksquare	
08	0	٠	0	•	0	٠	0	ullet	•	٠	0	۲	٠	٠	lacksquare	
09	0	0	0	0	0	0	0	0	٠	٠	Ο	0	۲	٠	lacksquare	
10	0	0	0	0	0	0	0	0	•	٠	Ο	0	۲	٠	lacksquare	
11	0	0	0	0	0	0	0	0	●	•	Ο	0	•	•	lacksquare	
12	0	0	0	0		•	0	0	●	•	0	0	•	•	\bullet	
13	0	0	0	0	0	0	0	0	●	•	0	Ο	•	•	lacksquare	
14	0	0	0	0		•	0	0	lacksquare	•	0	0	•	•	lacksquare	
15	0	0	0	0	0	Ο	0	0 22	•	•	0	Ο	•	•	0	

			V	CC				Ic	CC				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	F	EN	U	NP	F	EN	SLE
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00
01	0	0	•	•	•	•	0	0	•		0	Ο	•	•	
02	0	0	•	•	•	•	0	0	•	•	0	0	•	•	ullet
03	0	0	•	0	•	•	0	0	•	•	0	0	•	•	igodot
04	0	0	0	0	٠	٠	0	0	•	٠	0	0	۲	٠	ullet
05	0	0	۲	0	۲	0	0	0	•	۲	0	0	۲	۲	lacksquare
06	0	0	0	0	0	0	0	0	•	۲	0	0	٠	۲	
07	0	0	0	0	0	0	0	0	•		0	0	•	•	
08	0	•	0		0	•	0		•		0	•	•	•	
09	0	0	0	0	0	0	0	0	•		0	0	•	•	
10	0	0	0	0	0	0	0	0	•	•	0	0	•	•	
11	0	0	0	0	0	0	0	0	•	•	0	0	•	•	
12	0	0	0	0	•	•	0	0	•	•	0	0	lacksquare	•	
13	0	0	0	0	0	0	0	0	•		0	0	•	•	
14	0	0	0	0	•	•	0	0	•		0	0	•	•	
15	Ο	0	Ο	0	Ο	Ο	0	0 22	•	•	Ο	Ο	•	•	0

			V	CC				Ι	CC				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	F	EN	U	NP	FI	EN	Slh
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -
01	0	Ο	•	•	•	•	0	0	•	•	0	0	•	•	•
02	0	0	lacksquare		•		0	0	•	•	0	0	●	•	ullet
03	0	0	•	0	•		0	0	•		0	0	●	•	ullet
04	0	0	0	0	•	•	0	0	•	•	0	0	●	lacksquare	ullet
05	0	0	•	0	•	0	0	0	•	•	0	0	●		lacksquare
06	0	0	0	0	0	0	0	0	•		0	0	igodot	•	ullet
07	0	0	0	0	0	0	0	0	•	•	0	0	●	•	lacksquare
08	0		0	•	0	•	0	•	•	•	0	•	•	●	•
09	0	0	0	0	0	0	0	0		•	0	0	●	lacksquare	ullet
10	0	0	0	0	0	0	0	0	•	•	0	0	●		ullet
11	0	0	0	0	0	0	0	0	•	•	0	0	igodot	•	igodot
12	0	0	0	0	•	•	0	0	•		0	0	●	•	igodot
13	0	0	0	0	0	0	0	0	•	•	0	0	•	•	●
14	0	0	0	0	•		0	0	•	•	0	0	●	•	
15	0	0	0	0	0	0	0	0 22	•	•	0	0	●	•	0

			V	СС				Ic	CC				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U	NP	FI	EN	Slh
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -
01	0	0	•	•	•	•	0	0	●	•	0	0	•	●	
02	0	0		•	•	•	0	0	lacksquare	igodot	0	0	●	lacksquare	lacksquare
03	0	0	•	0	•	•	0	0	●	•	0	0	●	lacksquare	lacksquare
04	0	0	0	0	•	•	0	0	•	•	0	Ο	•		lacksquare
05	0	0	•	0	•	0	0	0	•	●	0	Ο	•		
06	0	0	0	0	Ο	0	Ο	0	•	●	0	0	•	lacksquare	lacksquare
07	0	0	0	0	Ο	0	Ο	0	•	۲	0	0	٠	lacksquare	
08	0	٠	0	۲	0	۲	0	•	•	•	0	•	•	•	lacksquare
09	0	0	0	0	0	0	0	0	•	•	0	0	•	\bullet	ullet
10	0	0	0	0	0	0	0	0	•	•	0	0	•	•	lacksquare
11	0	0	0	0	0	0	0	0	•	•	0	0	•	•	lacksquare
12	0	0	0	0	٠	٠	0	0	•	•	0	0	•	\bullet	lacksquare
13	0	0	0	0	Ο	0	0	0	•	۲	0	0	•	lacksquare	
14	0	0	0	0	•	۲	Ο	0	•	•	0	Ο	•		lacksquare
15	0	Ο	Ο	Ο	0	Ο	0	0 22	•	•	0	0	•	•	0

			V	CC				Ι	CC				CLA	ANG		
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U]	NP	FI	EN	S]	LH
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	
01	0	0	•			•	0	0	•	•	0	0	٠	•	٠	
02	0	0	●		●	●	0	0	•	•	0	0	•	۲	۲	
03	0	0		0	●	•	0	0	•	•	0	0	٠	•	۲	
04	0	0	0	0			0	0	•	•	0	0		•	•	
05	0	0		0		0	0	0	•	•	0	0		•	•	
06	0	0	0	0	0	0	0	0	•	•	0	0		•	•	
07	0	0	0	0	0	0	0	0	•	•	0	0		•	•	
08	0	•	0		0	\bullet	0	•		•	0		•	•	•	
09	Ο	0	0	0	0	0	0	0		۲	0	Ο	۲	•	٠	
10	0	0	0	0	Ο	0	0	0	۲	۲	Ο	Ο	٠	۲	٠	
11	Ο	0	Ο	0	0	0	0	0	٠	٠	Ο	Ο	٠	٠	٠	
12	0	0	0	0	•	۲	0	0	٠	٠	0	Ο	٠	٠	٠	
13	0	0	Ο	0	0	0	0	0	٠	٠	0	Ο	٠	٠	٠	
14	0	0	0	0	\bullet	•	0	0	۲	٠	0	0	٠	٠	٠	
15	0	0	0	0	0	0	0	0 22	٠	٠	Ο	Ο	٠	۲	0	

No countermeasures

	Re	SSI	ult	S							Autom	ated in fence	isertior es	n of		
			V	CC				Ι	CC				CLA	4NG		
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U	NP	FI	EN	SI	ΓH
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	
01	0	0	●	•	•	•	0	0	•	•	0	0	●	•	•	
02	0	0	•	•	•	●	0	0	•	•	0	0	•	●	●	
03	Ο	Ο	•	0	•	•	Ο	Ο	•	•	Ο	0	•	•	•	
04	0	0	0	0	•	•	0	0	•		0	0	•	•	•	
05	0	0	•	0	•	0	0	0	•	•	0	0	•	•	lacksquare	
06	0	0	0	0	0	0	0	0	۲	٠	0	0	•	•	•	
07	0	0	0	0	0	0	0	0		•	0	0	•	•		
08	0	•	0	٠	0	•	0	۲	٠	٠	0		•	•		
09	0	0	0	0	0	0	0	0			0	0				
10	0	0	0	0	0	0	0	0			0	0	•	•		
11	0	0	0	0	0	0	0	0	•		0	0	•	•	•	
12	0	0	0	0	•	•	0	0	•		0	0	•	•	•	
13 17	0	0	0	0			0	0			0	0				
15	0	0	0	0	•	•	0	0 22	•	•	0	0	•	•	0	

												_	_		
			Vo	CC				Ι	CC				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	UI	NP	FI	EN	Un	NP	FI	EN	Slh
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -
01	0	0	●	●		●	0	0	●	●	0	0	۲	٠	●
02	0	0	●	lacksquare			0	0	•	lacksquare	0	0	•	•	
03	0	0	•	0	\bullet	lacksquare	0	0	•	●	0	0		•	lacksquare
04	0	0	Ο	0	igodot	\bullet	0	0	•	•	0	0	۲	۲	lacksquare
05	0	0	•	0	۲	0	0	0	•	•	0	0	۲	۲	
06	0	0	0	0	0	0	0	0	•	lacksquare	0	0	۲	٠	
07	0	0	0	0	0	0	0	0	•	•	0	0	•	•	
08	0		0		0		0	•	•	•	0		•	•	
09	0	0	0	0	0	0	0	0	•	lacksquare	0	0		•	lacksquare
10	0	0	0	0	0	0	0	0	•	•	0	0		•	\bullet
11	0	0	0	0	0	0	0	0	lacksquare	lacksquare	0	0	•	•	lacksquare
12	0	0	0	0	•	\bullet	0	0	•	•	0	0		•	
13	0	0	0	0	0	0	0	0	lacksquare	lacksquare	0	0		•	\bullet
14	0	0	0	0	•	lacksquare	0	0	•	lacksquare	0	0	•	•	
15	0	Ο	Ο	0	0	Ο	0	0 22	•	•	0	Ο	•	•	0

Speculative load hardening

			V	CC				Ic	CC				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FE	EN	U	NP	F	EN	Slh
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -
01	0	0	●	•	●	●	0	0	•	•	0	0	●	•	•
02	0	0	•		•	lacksquare	0	0	•	•	0	0	lacksquare	•	lacksquare
03	0	Ο	•	Ο	•	lacksquare	0	0	٠	٠	0	0	\bullet	٠	•
04	0	0	0	0	•	lacksquare	0	0	٠	۲	0	0	•	٠	•
05	0	0		0	•	0	0	0	۲	•	0	0	•	•	
06	0	0	0	0	0	0	0	0		•	0	0	•	•	•
07	0	0	0	0	0	0	0	0		ullet	0	0	•	•	ullet
08	0		0		0		0				0			•	
09	0	0	0	0	0	0	0	0		•	0	0		•	ullet
10	0	0	0	0	0	0	0	0			0	0		•	
11	0	0	0	0	0	0	0	0			0	0		•	
12	0	0	0	0	•		0	0		•	0	0	•	•	•
13	0	0	0	0	0	0	0	0		lacksquare	0	0	•	•	
14	0	0	0	0	•		0	0	•	•	0	0	•	•	
15	0	Ο	Ο	Ο	Ο	0	0	0 22	•	•	0	Ο	lacksquare	•	Ο

			V	CC				Ic	CC				CLA	ANG		
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U	NP	F	EN	SLH	ł
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	_
01	0	0	•	•	•	•	0	Ο	•	•	0	Ο	•	•	•	
02	0	0	•	•	•	•	0	0			0	0	•	•	lacksquare	
03	0	0	•	0		•	0	0	lacksquare	•	0	Ο		•	ullet	
04	0	0	0	0	•	•	0	0	•	٠	0	0	•	•		
05	0	0	•	0	•	0	0	0	•	•	Ο	0	•	•		
06	0	0	0	0	0	0	0	0	•	٠	0	0	•	•	lacksquare	
07	0	0	0	0	0	0	0	0	•	•	Ο	0	•	•	lacksquare	
08	0	٠	0	•	0	٠	0	ullet	•	•	0	۲	٠	٠	lacksquare	
09	0	0	0	0	0	0	0	0	٠	٠	Ο	0	۲	٠	lacksquare	
10	0	0	0	0	0	0	0	0	•	٠	Ο	0	۲	٠	lacksquare	
11	0	0	0	0	0	0	0	0	•	•	Ο	0	•	•	lacksquare	
12	0	0	0	0		•	0	0	●	•	0	0	•	•	\bullet	
13	0	0	0	0	0	0	0	0	●	•	0	Ο	•	•	\bullet	
14	0	0	0	0		•	0	0	lacksquare	•	0	0	•	•	lacksquare	
15	0	0	0	0	0	Ο	0	0 22	•	•	0	Ο	•	•	0	

			Vcc			ICC			CLANG	
Ex.	U	NP	Fen 19.15	Fen 19.20	Unp	F	EN	Unp	Fen	Slh
	-00	-02			Sum	marv			-02	-00 -
01	Ο	0							•	ullet
02	0	0	• Leaks in	all unprotect	ted proc	grams			•	lacksquare
03	0	0	(except e	example #08	3 with or	otimizatior	15)		•	
04	0	0								\bullet
05	Ο	0	Confirm	all vulnerabili	ities in V	CC pointe	ed out by	Paul Koch	ner •	\bullet
06	0	0				·	,		•	lacksquare
07	0	0	 Programs 	s with fence	s (ICC a	ind Clang) are secu	́е	•	
08	0	•			·					
09	0	0	• Unnec	essary fence	ES					\bullet
10	0	0	_							
11	0	0	 Programs 	s with SLH a	are secu	ire except	\pm #10 and \pm	#15		
12	0	0							•	
13	0	0							•	lacksquare
14	0	0	0 0	• •	0	0	• 0	0	• •	
15	0	0	0 0	0 0	0	O 22 ●	• 0	0	• •	0

Case study: scalability

Target: Xen hypervisors

Main challenges for scalability:

- Policy definition
- ISA coverage
- Path explosion
- How:
 - - functions)

Analyze scalability of checking SNI relative to symbolic execution • 24'000 symbolic paths of < 10'000 instructions (from $\sim 4'000$

Case study: scalability

Target: Xen hypervisors

Main challenges for scalability:

- Policy definition
- ISA coverage
- Path explosion
- How:
 - - functions)

Trade-offs affect analysis soundness and completeness

 Analyze scalability of checking SNI relative to symbolic execution • 24'000 symbolic paths of < 10'000 instructions (from $\sim 4'000$

	1	-
		_
		-
	-	-
		-
		-
		-
		4
		_
		_
		-
	-	
		Ξ
		2
		4
		-
		_
		-
	-	
		-
		1
		7
		7
		-
		-
		_
	_	
		-
		-
		7
		7
		_
		-
		_
	_	
		-
		-
		-
		7
		1
		-
		-
		_
		_
	1	-
		-
		-
		7
		-
		_
		-
		-
	-	-
		-
		-
		7
<u> </u>	1	-
	4	

SNI 10x-100x faster
20.2% traces

	1	-
		_
		-
	-	-
		-
		-
		-
		4
		_
		_
		-
	-	
		Ξ
		2
		4
		-
		_
		-
	-	
		-
		1
		7
		7
		-
		-
		_
	_	
		-
		-
		7
		7
		_
		-
		_
	_	
		-
		-
		-
		7
		1
		-
		-
		_
		_
	1	-
		-
		-
		7
		-
		_
		-
		-
	-	-
		-
		-
		7
<u> </u>	1	-
	4	

SNI 10x-100x faster
20.2% traces

SNI ≤10x faster
 41.9% traces

10⁵ Symbolic Execution [ms (logscale)] 10^{4} 10^{3} 10² 10^{1} 10^{0} 10^{-1} 10^{-1}

		-
		-
		-
		-
		-
	-	_
		_
		-
		7
		1
		-
		_
		-
	-	-
		-
		-
		-
		_
		-
	_	
		-
		_
		-
		_
		-
		_
	-	
		-
		7
		-
		-
		-
		-
	-	
		-
		-
/		
/		
/		
/		
/	<u> </u>	
	-	
	-	
	-	

- SNI 10x-100x faster
 20.2% traces
- SNI ≤10x faster
 41.9% traces
- SNI ≤10x slower
 26.9% traces

		-
	1 n ⁵	
	TO	Ē
		-
	Л	-
	10^{4}	E /
Ü		
D S		
ő		-
	1 n ³	
JS	TO	Ē
		-
0	2	
Чţ	10^{2}	
Ũ		
X		
Ш		- /
<u>U</u>	10^{1}	
0	ΤŪ	
q		-
Ľ		
Ś	100	1000
	T0 -	
	-	-
	10^{-1}	-
	-	
		10-1
		TO _

	2
	5
	_
	-
	-
	_
	_
	1
	-
	7
	-
	-
	-
	_
	-
	-
	_
	_
_	
•	-
	7
	-
	-
	-
•	_
	-
	-
	_
	_
	-
	-
	2
	_
	-
	-
	1
	-

- SNI 10x-100x faster • 20.2% traces
- $SNI \leq 10x$ faster • 41.9% traces
- $SNI \leq 10x$ slower • 26.9% traces
- SNI 10x-100x slower • 7.9% traces

	10 ⁵	
gscale)]	10 ⁴	
[ms (log	10 ³	
ecution	10 ²	
ibolic Ex	10 ¹	
Syn	10 ⁰	
	10 ⁻¹	
		10-1

Ĺ

1 1	
	_
	-
	-
	_
	_
	_
	-
	-
	-
	-
	-
	-
	_
	-
	-
	Ę
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	7
	-
	-
	-
	-
	-
	-
	2
	1

	1	-
		_
		-
	-	-
		-
		-
		-
		4
		_
		_
		-
	-	
		Ξ
		2
		4
		-
		_
		-
	-	
		-
		1
		7
		7
		-
		-
		_
	_	
		-
		-
		7
		7
		_
		-
		_
	_	
		-
		-
		-
		7
		1
		-
		-
		_
		_
	1	-
		-
		-
		7
		-
		_
		-
		-
	-	-
		-
		-
		7
<u> </u>	1	-
	4	

Conclusion
Formally!

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states
$$s$$
 and s' :
 $P_{non-spec}(s) = P_{non-spec}(s')$
 $\implies P_{spec}(s, 0) = P_{spec}(s', 0)$

See paper for: reasoning about arbitrary prediction oracles

Ex.	Vcc						ICC				CLANG				
	UNP		Fen 19.15		Fen 19.20		UNP		Fen		UNP		Fen		SI
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00
01	0	0	•	•	•	•	0	0	•	•	0	0	•	•	•
02	0	0	•	•	•	•	0	0	•	•	0	0	•	٠	•
03	0	0	•	0	•	•	0	0	•	•	0	0	•	٠	٠
04	0	0	0	0	•	•	0	0	•	•	0	0	•	•	•
05	0	0	•	0	•	0	0	0	•	•	0	0	•	•	•
06	0	0	0	0	0	0	0	0	•	•	0	0	•	•	٠
07	0	0	0	0	0	0	0	0	•	•	0	0	•	•	٠
08	0	•	0	•	0	•	0	•	•	•	0	•	•	•	٠
09	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
10	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
11	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
12	0	0	0	0	•	•	0	0	•	•	0	0	•	•	•
13	0	0	0	0	0	0	0	0	•	•	0	0	•	•	٠
14	0	0	0	0	•	•	0	0	•	•	0	0	•	•	٠
15	0	0	0	0	0	0	0	0	•	•	0	0	•	•	0

Results

Spectector

Formally!

Program **P** is **speculatively non-interferent** for prediction oracle **C**

Spec	tecto	r
------	-------	---

У	•	
)	if	

rax, **A size** mov rcx, X mov rcx, rax cmp jae END

L1: mov

x64 to µASM

 10^{0}

 10^1

 10^{2}

Speculative non-interference [ms (logscale)]

 10^{3}

 10^{4}

L1:

https://spectector.github.io

rax, A[rcx

marco.guarnieri@imdea.org

Symbolic execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Speculative non-interference **x**=128 **A** size=16

rax <- A size rcx <- X jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

x=128 **A** *size*=16 A[128]=0

Speculative non-interference **x**=128 **A** size=16

rax <- A size rcx < - xjmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

x=128 **A** *size*=16 A[128]=0

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

x=128 **A size**=16 **A** [128]=**0**

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

x=128 **A** size=16 **A**[128]=0

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

x=128 **A size**=16 **A** [128]=**0**

Speculative non-interference **x**=128 **A** size=16 **A**[128]=**1 x**=128 **A** *size*=16 A[128]=0load **A**+128 load **A**+128

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

END:

x=128
A size=16
A[128]=0

Speculative non-interference **x**=128 **A** size=16 **A**[128]=**1 x**=128 **A** *size*=16 **A**[128]=**0** load B+1 load B+0

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax

END:

Speculative non-interference **x**=128 **A** size=16 A[128] = 1**x**=128 **A** *size*=16 **A**[128]=**0** load **B+0** load B+1

rax <- A size rcx <- X jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax

END:

• Program analysis technique

• Program analysis technique

• Execute programs over symbolic values

• Program analysis technique

- Execute programs over symbolic values
 - Explore all paths, each with its own path constraint

• Program analysis technique

- Execute programs over symbolic values
 - Explore all paths, each with its own path constraint
 - Each path represents all concrete executions satisfying the constraint

• Program analysis technique

- Execute programs over symbolic values
 - Explore all paths, each with its own path constraint
 - Each path represents all concrete executions satisfying the constraint
 - Branch and jump instructions: fork paths and update path constraint

- 1. if $(\mathbf{x} < \mathbf{A} \text{ size})$ 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$
- 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$
- 4. end

if (x < A_size) y = A[x] z = B[y]

4. end

if (x < A_size) y = A[x] z = B[y]

4. end

true

if (x < A_size)
 y = A[x]
 z = B[y]
 end

true

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

$x \geq A$ size x < A size

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

$x \geq A$ size

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ 3. $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 4. end

1. if (x < A size) 2. $y = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3. end 4.

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ $\boldsymbol{z} = \boldsymbol{B}[\boldsymbol{y}]$ 3. end 4.

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ z = B[y]3. end 4.

1. if (x < A size) 2. $\mathbf{y} = \mathbf{A}[\mathbf{x}]$ z = B[y]3. end 4.

Memory leaks

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

Nemory leaks

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Nemory leaks

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 S_1

 S_{γ}

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Memory leaks

rax <- A size

rcx <- x

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 S_1

 S_{γ}

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A} \quad \mathbf{size}_1 = \mathbf{A} \quad \mathbf{size}_2 \wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Memory leaks

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, \mathbf{A} + rcx load rax, **B** + rax

END:

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

 $\mathbf{x}_1 \geq \mathbf{A} \ \mathbf{size}_1$

 S_{γ} $= x_2^{\geq} A size_2$

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A}$ size₁ = \mathbf{A} size₂ $\wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, \mathbf{A} + rcx load rax, **B** + rax

END:

 $x_1 \ge A size_1$

57 $\mathbf{x}_2 \geq \mathbf{A} \ \mathbf{size}_2$

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A} \quad \mathbf{size}_1 = \mathbf{A} \quad \mathbf{size}_2 \wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

 $x_1 \ge A size_1$

57 $\mathbf{x}_2 \geq \mathbf{A} \ \mathbf{size}_2$

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A} \quad \mathbf{size}_1 = \mathbf{A} \quad \mathbf{size}_2 \wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 $x_1 \ge A$ size₁

57 $x_2 \ge A size_2$

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A} \quad \mathbf{size}_1 = \mathbf{A} \quad \mathbf{size}_2 \wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 $x_1 \ge A$ size₁

57 $\mathbf{x}_2 \geq \mathbf{A} \ \mathbf{size}_2$

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A}$ size₁ = \mathbf{A} size₂ $\wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 $x_1 \ge A$ size₁

57 $\mathbf{x}_2 \geq \mathbf{A} \ \mathbf{size}_2$

 $x_1 = x_2 \land A$ size₁ = A size₂ $\land A_1 = A_2 \land B_1 = B_2$

rax <- A size

rcx <- **x**

jmp rcx≥rax, *END*

L1: load rax, A + rcx load rax, **B** + rax

END:

 $x_1 \ge A$ size₁

57 $x_2 \ge A size_2$

 $\mathbf{x}_1 = \mathbf{x}_2 \wedge \mathbf{A} \quad \mathbf{size}_1 = \mathbf{A} \quad \mathbf{size}_2 \wedge \mathbf{A}_1 = \mathbf{A}_2 \wedge \mathbf{B}_1 = \mathbf{B}_2$

Always-mispredict speculative semantics

Mispredict **all** branch instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict speculative semantics

Mispredict **all** branch instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is *worst-case*

 $\begin{aligned} \mathbf{P}_{am}(\boldsymbol{s}) &= \mathbf{P}_{am}(\boldsymbol{s'}) & \longleftrightarrow \\ & \bigvee \mathbf{O}. \ \mathbf{P}_{spec}(\boldsymbol{s}, \boldsymbol{O}) &= \mathbf{P}_{spec}(\boldsymbol{s'}, \boldsymbol{O}) \end{aligned}$

Always-mispredict speculative semantics

Mispredict **all** branch instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is *worst-case*

 $\mathbf{P}_{am}(\boldsymbol{s}) = \mathbf{P}_{am}(\boldsymbol{s'}) \boldsymbol{\longleftrightarrow}$ $\forall \mathbf{O}. \mathbf{P}_{\mathtt{spec}}(\mathbf{s}, \mathbf{O}) = \mathbf{P}_{\mathtt{spec}}(\mathbf{s}', \mathbf{O})$

If program **P** satisfies $\forall s, s'. P_{non-spec}(s) = P_{non-spec}(s')$ $\implies \mathbf{P}_{am}(\mathbf{s}) = \mathbf{P}_{am}(\mathbf{s'})$ then **P** satisfies **SN** w.r.t. all **O**

Example #01 - SLH if (x < A size) y = B[A[x] * 512]

Example #01 - SLH if (x < A size) y = B[A[x] * 512]

Or

rax, **A** size MOV rcx, X MOV rdx, 0 MOV rcx, rax CMD jae ENDcmovae -1, rdx rax, **A**[rcx] MOV rax, 9 shl rax, rdx rax, **B**[rax] MOV

Example #01 - SLH if (x < A size) y = B[A[x] * 512]

rax is -1 whenever x ≥ A size We can prove security

33

MOV

MOV

jae

shl

Or

MOV

rax, **A size** rcx, X rdx, 0 MOV rcx, rax CMD ENDcmovae -1, rdx rax, **A**[rcx] MOV rax, 9 rax, rdx rax, **B**[rax]

Example #10 - SLH if (x < A_size) $if (\mathbf{A}[\mathbf{x}] == k)$ y = B[0]

Example #10 - SLH if (x < A size) if $(\mathbf{A}[\mathbf{x}] == k)$ $y = \mathbf{B}[0]$

rax, **A size** MOV rcx, X MOV rdx, 0 MOV CMD rcx, rax jae ENDcmovae -1, rdx rax, **A**[rcx] MOV rax, END jne cmovne -1, rdxmov rax, [B]

Example #10 - SLH if (x < A size) if $(\mathbf{A}[\mathbf{x}] == k)$ $y = \mathbf{B}[0]$

Leaks $\mathbf{A}[\mathbf{x}] == 0$ via control-flow We detect the leak!

rax, **A** size MOV rcx, X MOV rdx, 0 MOV CMD rcx, rax jae ENDcmovae -1, rdx rax, **A**[rcx] mov rax, END jne cmovne -1, rdxmov rax, [B]

Example #08 - FEN

y = B[A[x<A_size?(x+1):0]*512]

35

Example #08 - FEN

y = B[A[x<A size?(x+1):0]*512]

rax, **A** size MOV rcx, X MOV rcx, [rcx+1] lea rdx, rdx XOY CMP rcx, rax cmovae rdx, rcx rax, A[rdx] MOV rax, 9 shl lfence rax, **B**[rax] MOV

Example #08 - FEN

y = B[A[x<A size?(x+1):0]*512]

lfence is unnecessary

rax, **A** size MOV rcx, X MOV rcx, [rcx+1] lea rdx, rdx XOY CMP rcx, rax cmovae rdx, rcx rax, A[rdx] MOV 9 shl rax, lfence rax, **B**[rax] MOV

Long Term: Co-design of software and hardware countermeasures

Long Term: Co-design of software and hardware countermeasures

Short and Mid Term: Software countermeasures

Compiler-level countermeasures Example: insert LEENCE to select

• Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

• Example: insert LFENCE to selectively stop speculative execution

Long Term: Co-design of software and hardware countermeasures

Short and Mid Term: Software countermeasures

Compiler-level countermeasures • Example: insert LFENCE to selectively stop speculative execution

Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

"compiler [...] produces *unsafe code* when the static analyzer is unable to determine whether a code pattern will be exploitable"

Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

"compiler [...] produces *unsafe code* when the static analyzer is unable to determine whether a code pattern will be exploitable"

> "there is *no guarantee* that all possible instances of [Spectre] will be instrumented"

Spectre Mitigations in Microsoft's C/C++ Compiler

Paul Kocher February 13, 2018

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

"compiler [...] produces *unsafe code* when the static analyzer is unable to determine whether a code pattern will be exploitable"

> "there is *no guarantee* that all possible instances of [Spectre] will be instrumented"

Bottom line: No guarantees!

Outline

- 2. Speculative non-interference
- 3. Detecting speculative leaks
- 4. Spectector + Case studies

1. Speculative execution attacks 101

Speculative execution attacks 101

Size of array A if (x < A_size) y = B[A[x]]

Prediction based on **branch** history & program structure

Prediction based on **branch** history & program structure

Size of array A if (x < A size) y = B[A[x]]

Wrong predicton? Rollback changes! Architectural (ISA) state Microarchitectural state

Prediction based on **branch** history & program structure

Program **P** is **speculatively non-interferent** if

Program **P** is **speculatively non-interferent** if

Informally:

Leakage of P in non-speculative execution

Leakage of P in speculative execution

How to capture leakage?

Non-speculative semantics

Speculative semantics

Attacker model

How to capture leakage?

Non-speculative semantics

Speculative semantics

Attacker model

Model program's behavior

-

How to capture leakage?

Non-speculative semantics

Speculative semantics

Capture attacker's observational power

Attacker model

Model program's behavior

rcx <- x END:

if (x < A_size) y = B[A[x]]

rcx <- **x** END:

rcx <- x END:

if (x < A_size) y = B[A[x]]

rcx <- x END:

rcx <- **x** END:

rcx <- **x** END:

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

Prediction Oracle O: branch prediction + length of speculative window

Starts *speculative transactions* upon branch instructions

rax <- A size rcx <- x jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts *speculative transactions* upon branch instructions

Committed upon correct speculation

rax <- A size rcx <- x jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- x jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

Starts speculative transactions upon branch instructions

Committed upon correct speculation

Rolled back upon misspeculation

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

Attacker can observe:
locations of *memory accesses branch/jump* targets

- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

Attacker can observe:
locations of *memory* accesses *branch/jump* targets

- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax
END:</pre>

Attacker can observe:
locations of *memory accesses branch/jump* targets *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Attacker can observe: - locations of *memory* accesses

- **branch/jump** targets
- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- **start/end** speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

load **B+A**[**x**]

Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rollback pc *END* Attacker can observe:

- locations of *memory* accesses
- **branch/jump** targets
- *start/end* speculative execution

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

Attacker can observe:
locations of *memory* accesses *branch/jump* targets

- *start/end* speculative execution

Formally!

Speculative non-interference Formally!

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s* ':

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s* ': $\mathbf{P_{non-spec}}(\mathbf{s}) = \mathbf{P_{non-spec}}(\mathbf{s'})$

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s*': $\mathbf{P_{non-spec}}(\mathbf{s}) = \mathbf{P_{non-spec}}(\mathbf{s'})$

 $\implies \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s},\boldsymbol{O}) = \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s'},\boldsymbol{O})$

Always-mispredict speculative semantics

Mispredict **all** branch instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict speculative semantics

Mispredict **all** branch instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is *worst-case*

 $\begin{aligned} \mathbf{P}_{am}(\boldsymbol{s}) &= \mathbf{P}_{am}(\boldsymbol{s'}) & \longleftrightarrow \\ & \bigvee \mathbf{O}_{\bullet} \mathbf{P}_{spec}(\boldsymbol{s}, \boldsymbol{O}) &= \mathbf{P}_{spec}(\boldsymbol{s'}, \boldsymbol{O}) \end{aligned}$

Always-mispredict speculative semantics

Mispredict **all** branch instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is *worst-case*

 $\mathbf{P}_{am}(\boldsymbol{s}) = \mathbf{P}_{am}(\boldsymbol{s'}) \boldsymbol{\longleftrightarrow}$ $\forall \mathbf{O}. \mathbf{P}_{\mathtt{spec}}(\mathbf{s}, \mathbf{O}) = \mathbf{P}_{\mathtt{spec}}(\mathbf{s}', \mathbf{O})$

If program **P** satisfies $\forall s, s'. P_{non-spec}(s) = P_{non-spec}(s')$ $\implies \mathbf{P}_{am}(\mathbf{s}) = \mathbf{P}_{am}(\mathbf{s'})$ then **P** satisfies **SN** w.r.t. all **O**

Detecting speculative leaks

Detecting speculative leaks

Symbolic trace: path condition + observations along the symbolic path

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A_size
rcx <- x
jmp rcx≥rax, END
L1: load rax, A + rcx
load rax, B + rax</pre>

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

start pc L1 load A+x load B+A[x] rollback pc END

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

start pc L1 load A+x load B+A[x] rollback pc END

rax <- A size rcx <- **x** jmp rcx≥rax, *END* L1: load rax, A + rcx load rax, **B** + rax END:

start pc L1 load A+x load B+A[x] rollback pc END

Symbolic trace: path condition + observations along the symbolic path

if $MemLeak(\tau)$ then return INSECURE if $CtrlLeak(\tau)$ then return INSECURE return SECURE

rax rcy jmr 102 102 END:

L1:

For each symbolic trace $\tau \in traces(prg)$

For each symbolic trace $\tau \in traces(prg)$ if $MemLeak(\tau)$ then

return INSECURE if $CtrlLeak(\tau)$ then

return INSECURE return SECURE

rax rcy jmr *L1*: 102 102 END:

Speculative memory accesses *must* depend only on

- Non-sensitive information
- Non-speculative observations

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 \mathcal{T}

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 \mathcal{T}

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 \mathcal{T}

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must* depend only on

Non-sensitive information

 \mathcal{T}

 S_1

 S_{γ}

Non-speculative observations

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 \mathcal{T}

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

 $pathCnd(\tau) \wedge obsEqv(\tau|_{non-spec}) \wedge \neg obsEqv(\tau|_{spec})$

Speculative memory accesses *must* depend only on

Non-sensitive information

Non-speculative observations

Speculative memory accesses *must* depend only on

Non-sensitive information

 \mathcal{T}

Non-speculative observations

Spectector + Case studies

Spectector

	mov
	mov
	cmp
	jae
L1:	mov
	mov

rax,	A_size
rcx,	X
rcx,	rax
END	
rax,	A [rcx]
rax,	B [rax]

END:

Symbolic execution

Check for speculative leaks

x64 to µASM

Spectector

• **Z3** for symbolic execution and leak detection

rax <- A size rcx <- **x** jmp rcx≥rax, *END* load rax, A + rcx load rax, **B** + rax

> Symbolic execution

Check for speculative leaks

Case study: compiler mitigations

Target:

- 15 variants of Spectre V1 by Paul Kocher*
- Compiled with Microsoft Visual C++, Intel ICC, and Clang with different mitigations and optimization levels
- 240 assembly programs of up to 200 instructions each

How:

Use Spectector to prove security or detect leaks

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

			V	CC				Ι	CC		CLANG						
Ex.	U	NP	Fen 19.15		Fen 19.20		UNP		Fen		UNP		Fen		Slh		
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00		
01	0	0			•	•	Ο	0	•		0	Ο		•			
02	0	0			•	•	0	0	•	•	0	0	•	•	ullet		
03	0	0	•	0	•	ullet	0	0	•		0	0		•	ullet		
04	0	0	0	0	•	•	0	0	•		0	0		•			
05	0	0	•	0	•	0	0	0	•		0	0	•	•			
06	0	0	0	0	0	0	0	0	•		0	0		•			
07	0	0	0	0	0	0	0	0	•		0	0	•	•			
08	0	•	0	•	0	•	0	lacksquare	●	•	0		•	•	lacksquare		
09	0	0	0	0	0	0	0	0	●	•	0	0	•	•	\bullet		
10	0	0	0	0	0	0	0	0	●	•	0	0	•	•	ullet		
11	0	0	0	0	0	0	0	0	•	•	0	0	•	•	ullet		
12	0	0	0	0	•	•	0	0	●	•	0	0	•	•	\bullet		
13	0	0	0	0	0	0	0	0	●	•	0	0	•	•	ullet		
14	0	0	0	0	•	•	0	0	•	•	0	0	•	•	lacksquare		
15	0	0	0	0	Ο	0	Ο	0 59	•		0	0	•	•	0		

			V	CC				Ic	CC		CLANG						
Ex.	UNP		Fen 19.15		Fen 19.20		U	NP	F	EN	UNP		Fen		SLH		
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 .		
01	0	Ο			•	•	0	0	•	•	0	Ο		•			
02	0	0	•	•	•	•	0	0	•	•	0	0	•	•			
03	Ο	0	•	0	•	•	0	0	•	•	0	Ο	•	•	•		
04	0	0	0	0	۲	۲	0	0	•	۲	0	Ο	۲	۲	۲		
05	0	0	•	0	•	0	0	0	•	•	0	0	•	•			
06	0	0	0	0	0	0	0	0	•	•	0	0	•	•			
07	0	0	0	0	0	0	0	0	•		0	0	•	•			
08	0	•	0	•	Ο		0	\bullet	•	lacksquare	0	•		•	lacksquare		
09	0	0	0	0	0	0	0	0	•	٠	0	Ο		•	lacksquare		
10	Ο	0	0	0	Ο	0	Ο	0	•	•	Ο	Ο		•	lacksquare		
11	Ο	0	0	0	0	0	Ο	0	٠	٠	Ο	0	٠	٠	•		
12	Ο	0	0	0	٠	٠	Ο	0	٠	٠	Ο	0	۲	٠	٠		
13	Ο	0	0	0	0	Ο	Ο	0	٠	٠	Ο	0	۲	۲	٠		
14	Ο	0	0	0	•	•	0	0	•	•	Ο	Ο	•	•	lacksquare		
15	0	0	0	0	0	0	0	0 59	•	•	0	0	•	•	0		

			V	СС				Ι	CC			CLANG					
Ex.	U	NP	Fen 19.15		Fen 19.20		Unp		Fen		Unp		Fen		Slh		
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -		
01	0	0	•	•	•	•	0	0	•	•	0	0	•	•	•		
02	0	0	•	•	•	•	0	0	•	•	0	0	•	•	ullet		
03	0	0	•	0	•	•	0	0	•	•	0	0	•	•	ullet		
04	0	0	0	0	•	•	0	0	•	•	0	0		lacksquare			
05	0	0	•	0	•	0	0	0	•		0	0		lacksquare			
06	0	0	0	0	0	0	0	0	•		0	0		lacksquare			
07	0	0	0	0	0	0	0	0	•		0	0					
08	0	•	0	•	0	•	0	•	•	•	Ο		•				
09	0	0	0	0	0	0	0	0		•	0	0		lacksquare			
10	0	0	0	0	0	0	0	0		•	0	0					
11	0	0	0	0	0	0	0	0	•	•	0	0		igodot			
12	0	0	0	0	•	•	0	0	•		0	0					
13	0	0	0	0	0	0	0	0	•	•	0	0	•	•			
14	0	0	0	0	•	•	0	0	•	•	0	0	•	•			
15	0	0	0	0	0	0	0	0 59	•	•	0	0	•	•	0		

			V	СС				Ic	C			CLANG					
Ex.	U	NP	Fen 19.15		Fen 19.20		U	Unp		EN	Unp		Fen		Slh		
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -		
01	0	0	۲	•	•	•	0	0	•	•	0	0	•	•			
02	0	0	•		●	●	0	0	\bullet	•	0	0	\bullet	•	ullet		
03	0	Ο	•	0	•	●	0	0	\bullet	•	0	0	●	\bullet	•		
04	0	0	0	0	•	•	0	0	•	•	0	0	•	•	ullet		
05	0	0	۲	0	•	0	0	0	\bullet	•	0	0	•	•	ullet		
06	0	0	0	0	0	0	0	0	•	•	0	0	•	•	ullet		
07	0	0	0	0	0	0	0	0	\bullet	•	0	0	•	•	ullet		
08	0	•	0	•	0	•	0		•	•	0	•	•	•			
09	0	0	0	0	0	0	0	0	•	•	0	0	•	•	●		
10	0	0	0	0	0	0	0	0	•		0	0					
11	0	0	0	0	0	0	0	0	•	•	0	0	•				
12	0	0	0	0	•	•	0	0	•	●	0	0	•		ullet		
13	0	0	0	0	0	0	0	0	•	•	0	0	•	•	●		
14	0	0	0	0	•	•	0	0	•	•	0	0	•	•	ullet		
15	0	Ο	Ο	0	Ο	Ο	Ο	0 59	•	•	0	0	•	•	Ο		

			Vo	CC				ICC						CLANG		
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U]	NP	FI	EN	S]	LH
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	
01	0	0	•	•		•	0	0	•	•	0	0	٠	•	٠	
02	0	0	●	●	●	●	0	0	۲	•	0	0	٠	۲	۲	
03	0	0		0	●	•	0	0	•	•	0	0	٠	•	۲	
04	0	0	0	0			0	0	•	•	0	0		•	•	
05	0	0		0		0	0	0	•	•	0	0	lacksquare	•	•	
06	0	0	0	0	0	0	0	0	•	•	0	0		•	•	
07	0	0	0	0	0	0	0	0	•	•	0	0		•	•	
08	0	\bullet	0	\bullet	0	\bullet	0	•			0	lacksquare	•		•	
09	0	0	Ο	0	0	0	0	0		۲	Ο	Ο	۲	۲	٠	
10	0	0	0	0	0	0	0	0	۲	۲	Ο	Ο	٠	۲	٠	
11	0	0	0	0	0	0	0	0	٠	٠	Ο	Ο	٠	٠	٠	
12	0	0	0	0	•	٠	0	0	٠	٠	0	Ο	٠	٠	٠	
13	0	0	Ο	0	Ο	0	0	0	۲	۲	Ο	Ο	٠	۲	٠	
14	0	0	0	0	\bullet	•	0	0	۲	۲	Ο	Ο	٠	۲	٠	
15	0	0	0	0	0	Ο	0	0 59	٠	٠	Ο	Ο	٠	٠	0	

No countermeasures

	Re	3	ult	S		Autom	n of										
			V	CC				Ι	CC		CLANG						
Ex.	U	NP	Fen 19.15		Fen 19.20		Unp		Fen		Unp		Fen		Slh		
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00		
01	0	0	•	•	•	•	0	0	•	•	0	0	•	•	•		
02	0	0	●	•	●	lacksquare	Ο	0	•	•	Ο	0	•	•	\bullet		
03	0	0	•	0	lacksquare	lacksquare	0	0	•	lacksquare	0	0	•	•	\bullet		
04	0	Ο	Ο	Ο	•	\bullet	0	0	•	٠	Ο	0	•	•	•		
05	0	0	•	0	•	0	0	0	•		0	0	•	•	•		
06	0	0	Ο	Ο	0	0	Ο	0	•	•	0	0	•	•	\bullet		
07	0	0	Ο	Ο	0	0	Ο	0	٠	•	Ο	0	•	•	•		
08	0	•	0	•	0		0	٠	•	٠	0	•	•	•	•		
09	0	0	0	0	0	0	0	0	•	٠	0	0		•	•		
10	0	0	0	0	0	0	0	0	•		0	0	•		•		
11	0	0	0	0	0	0	0	0	•	٠	0	0	•	٠	۲		
12	0	0	0	0	•		0	0	•	٠	0	0		٠	•		
13	0	0	0	0	0	0	0	0	•	•	0	0	•		•		
14	0	0	0	0	•		0	0	•	٠	0	0	•	•	●		
15	0	0	0	0	0	0	0	0 59			0	0	•		0		

			V					Ic						NG	
Ex.	TT-				$\Gamma \rightarrow \tau$	10 00	TT-		~~ 		TT-				n
	U	NP	FEN	19.15	FEN	19.20	U	NP	Fł	EN	U	NP	Fł	ΞN	SLH
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -
01	0	0					0	0			0	0		•	
02	0	0	•	ullet	•	•	0	0	•	ullet	0	0	ullet	•	igodot
03	0	0	lacksquare	0	•	•	0	0	lacksquare	igodot	0	0	lacksquare	•	igodot
04	0	0	0	0	•	•	0	0	lacksquare	lacksquare	0	0	lacksquare	•	
05	0	0	lacksquare	0	•	0	0	0	lacksquare	lacksquare	0	0	lacksquare	•	lacksquare
06	0	0	0	0	0	0	0	0	lacksquare	igodot	0	0	igodot	•	igodot
07	0	0	0	0	0	0	0	0	●	lacksquare	0	0	lacksquare	•	lacksquare
08	0	ullet	0	lacksquare	0	•	0	\bullet	●	lacksquare	0	ullet	ullet	•	lacksquare
09	0	0	0	0	0	0	0	0	●	lacksquare	0	0	●	•	lacksquare
10	0	0	0	0	0	0	0	0	•	lacksquare	0	0	●	۲	lacksquare
11	0	0	0	0	0	0	0	0	●	●	0	0	●	•	\bullet
12	0	0	0	0	•	•	0	0	●	\bullet	0	0	lacksquare	•	ullet
13	0	0	0	0	0	0	0	0	lacksquare	lacksquare	0	0	lacksquare	•	lacksquare
14	0	0	0	0	•	•	0	0	•	lacksquare	0	0	•	•	lacksquare
15	0	0	0	0	0	0	0	0 59	•	•	0	0	•	•	0

Speculative load hardening

			Vo	CC				IC	C				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FE	EN	U	NP	FE	EN	Slh
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00 -
01	0	0	●	●	●	•	0	0	●	•	0	0	•	•	•
02	0	0		lacksquare		•	0	0	lacksquare		0	0	•		
03	0	0	lacksquare	0	\bullet	•	0	0	lacksquare	lacksquare	0	0	•		lacksquare
04	0	0	0	0	\bullet	lacksquare	0	0	lacksquare	lacksquare	0	0	lacksquare	•	lacksquare
05	0	0	\bullet	0	\bullet	0	0	0	\bullet	•	0	0	•	•	
06	0	0	0	0	0	0	0	0	\bullet	•	0	0	•	•	
07	0	0	0	0	0	0	0	0	\bullet	٠	0	0	•	•	•
08	0	•	0	•	0	۲	0	•	\bullet	•	0	۲	۲	•	lacksquare
09	0	0	0	0	0	0	0	0	\bullet	•	0	0	٠	•	
10	0	0	0	0	0	0	0	0	\bullet	•	0	0	٠	•	lacksquare
11	0	0	0	0	0	0	0	0	\bullet	•	0	0	۲	•	lacksquare
12	0	0	0	0	\bullet	٠	0	0	\bullet	•	0	0	٠	•	
13	0	0	0	0	0	0	0	0	\bullet	•	0	0	•	•	•
14	0	0	0	0	\bullet	•	0	0	\bullet		0	0	•	●	
15	Ο	0	0	0	0	0	0	0 59	\bullet	•	0	0	•	•	0

			V	CC				Ι	CC				CLA	ANG	
Ex.	U	NP	Fen	19.15	Fen	19.20	U	NP	FI	EN	U	NP	FI	EN	SLH
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00
01	0	0			•	•	Ο	0	•		0	Ο		•	
02	0	0			•	•	0	0	●	•	0	0	•	•	ullet
03	0	0	•	0	•	ullet	0	0	•		0	0		•	ullet
04	0	0	0	0	•	•	0	0	•		0	0		•	
05	0	0	•	0	•	0	0	0	•		0	0	•	•	
06	0	0	0	0	0	0	0	0	•		0	0		•	
07	0	0	0	0	0	0	0	0	•		0	0	•	•	
08	0	•	0	•	0	•	0	lacksquare	•	•	0	•	•	•	lacksquare
09	0	0	0	0	0	0	0	0	●	•	0	0	•	•	\bullet
10	0	0	0	0	0	0	0	0	●	•	0	0	•	•	ullet
11	0	0	0	0	0	0	0	0	•	•	0	0	•	•	ullet
12	0	0	0	0	•		0	0	●	•	0	0	•	•	\bullet
13	0	0	0	0	0	0	0	0	●	•	0	0	•	•	lacksquare
14	0	0	0	0	•	•	0	0	•	•	0	0	•	•	lacksquare
15	0	0	0	0	Ο	0	Ο	0 59	•	•	Ο	0	•	•	0

			Vcc			ICC			CLANG	
Ex.	U	NP	Fen 19.15	Fen 19.20	Unp	F	'EN	UNP	Fen	Slh
	-00	-02			Sum	nmarv			-02	-00 -
01	0	0							•	igodot
02	0	0	 Leaks in 	all unprotect	ted prog	grams			•	igodot
03	0	0	(except e	example #08	3 with oi	otimizatio	ns)		•	
04	0	0							•	ullet
05	0	0	Confirm	all vulnerabili	ities in \setminus	/CC point	ted out by	/ Paul Koc	her •	\bullet
06	0	0				·	, ,			\bullet
07	0	0	 Programs 	s with fence	s (ICC a	and Clanc	g) are sec	ure		
08	0	•			·					
09	0	0	• Unnec	essary fence	J S					\bullet
10	0	0	_							
11	0	0	 Programs 	s with SLH a	are secl	lire excep	t #10 and	d #15		
12	0	0								lacksquare
13	0	0							•	\bullet
14	0	0	0 0	•	0	0	• (O C	• •	lacksquare
15	Ο	Ο	0 0	0 0	Ο	O 59 ●	• (0 C	• •	0

Case study: scalability

Target: Xen hypervisors

Main challenges for scalability:

- Policy definition
- ISA coverage
- Path explosion
- How:
 - - functions)

Analyze scalability of checking SNI relative to symbolic execution • 24'000 symbolic paths of < 10'000 instructions (from $\sim 4'000$

Case study: scalability

Target: Xen hypervisors

Main challenges for scalability:

- Policy definition
- ISA coverage
- Path explosion
- How:
 - - functions)

Trade-offs affect analysis soundness and completeness

 Analyze scalability of checking SNI relative to symbolic execution • 24'000 symbolic paths of < 10'000 instructions (from $\sim 4'000$

	1	-
		_
		-
	-	
		2
		_
		_
		4
		_
		-
	-	
		Ξ
		2
		_
		4
		-
		-
		-
	-	
		-
		-
		7
		7
		-
		-
		_
	_	
		-
		-
		7
		7
		-
		-
		_
	_	
		-
		-
		-
		7
		1
		-
		-
		_
		_
	1	-
		-
		-
		7
		-
		_
		-
		-
	-	-
		-
		-
		7
<u> </u>	1	-
	4	

SNI 10x-100x faster
20.2% traces

	-	
	1	-
		_
		-
	-	
		2
		_
		_
		4
		_
		-
	-	
		Ξ
		2
		_
		4
		-
		-
		-
	-	
		-
		-
		7
		7
		-
		-
		_
	_	
		-
		-
		7
		7
		-
		-
		_
	_	
		-
		-
		-
		7
		1
		-
		-
		_
		_
	1	-
		-
		-
		7
		-
		_
		-
		-
	-	-
		-
		-
		7
<u> </u>	1	-
	4	

SNI 10x-100x faster
20.2% traces

SNI ≤10x faster
 41.9% traces

10⁵ Symbolic Execution [ms (logscale)] 10^{4} 10^{3} 10² 10^{1} 10^{0} 10^{-1} 10^{-1}

' '	-
	-
	-
	-
	_
	-
	- 7
	-
	-
	_
	-
	-
	-
	-
	_
	-
	_
	_
	-
	-
	-
	_
	_
	-
	-
	_
	-
	_
	-
	-
	-
	-
	-
	-
	7
	-
	-
	-
	-
	_
	_
	_
	_
	-
	-
	_
	-
	-
	_
	-
	17

- SNI 10x-100x faster
 20.2% traces
- SNI ≤10x faster
 41.9% traces
- SNI ≤10x slower
 26.9% traces

		-
	105	
	10	Ē
		-
		-
Ð	10 ⁴	
g	TO	
S		
Q		-
0	-	-
$\mathbf{}$	10^{3}	-
С С	τŪ	Ē
<u>0</u>	7	
H	102	
Ũ		
Υ Ψ		
ш		- 2337
U	10 ¹	7. 2. 3
Ξ	TO	Ē
ğ		• /
З		-
$\overline{\boldsymbol{\Sigma}}$		
(V)	10^{0}	-
	± 0	
	1	
	10^{-1}	E
		10-1
		TO

	_
	2
	-
	-
	-
	/
	-
	_
	_
	-
	-
	7
	-
	-
	-
	-
	-
	_
	_
	_
	_
_	
	-
	-
	7
	-
	-
	-
•	_
	-
	-
	-
	-
	_
	-
	-
	-
	2
	_
	-
	-
	-
·	_
	-
	7
т т т <i>.</i>	
	_

- SNI 10x-100x faster • 20.2% traces
- $SNI \leq 10x$ faster • 41.9% traces
- $SNI \leq 10x$ slower • 26.9% traces
- SNI 10x-100x slower • 7.9% traces

	10 ⁵	
gscale)]	10 ⁴	
[ms (log	10 ³	
ecution	10 ²	
ibolic Ex	10 ¹	
Sym	10 ⁰	
	10 ⁻¹	
		10-1

Ĺ

1 1	
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	_
	-
	-
	_
	1-
	-

	1	-
		_
		-
	-	
		2
		_
		_
		4
		_
		-
	-	
		Ξ
		2
		_
		4
		-
		-
		-
	-	
		-
		-
		7
		7
		-
		-
		_
	_	
		-
		-
		7
		7
		-
		-
		_
	_	
		-
		-
		-
		7
		1
		-
		-
		_
		_
	1	-
		-
		-
		7
		-
		_
		-
		-
	-	-
		-
		-
		7
<u> </u>	1	-
	4	

Conclusion

Speculative non-interference

Formally!

Program **P** is **speculatively non-interferent** for prediction oracle **O** if

For all program states *s* and *s* ': $\mathbf{P_{non-spec}}(\boldsymbol{s}) = \mathbf{P_{non-spec}}(\boldsymbol{s'})$ $\implies \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s},\boldsymbol{O}) = \mathbf{P}_{\mathtt{spec}}(\boldsymbol{s'},\boldsymbol{O})$

Ex.	Vcc						ICC				CLANG				
	Unp		Fen 19.15		Fen 19.20		Unp		Fen		Unp		Fen		SI
	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00	-02	-00
01	0	0	•	•	•	•	0	0	•	•	0	0	•	•	•
02	0	0	•	•	•	•	0	0	•	•	0	0	•	•	•
03	0	0	•	0	•	•	0	0	•	•	0	0	•	•	•
04	0	0	0	0	•	•	0	0	•	•	0	0	•	•	•
05	0	0	•	0	•	0	0	0	•	•	0	0	•	•	•
06	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
07	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
08	0	•	0	•	0	•	0	•	•	•	0	•	•	•	•
09	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
10	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
11	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
12	0	0	0	0	•	•	0	0	•	•	0	0	•	•	•
13	0	0	0	0	0	0	0	0	•	•	0	0	•	•	•
14	0	0	0	0	•	•	0	0	•	•	0	0	•	•	•
15	0	0	0	0	0	0	0	0	•	•	0	0	•	•	0

Speculative non-interference

Program **P** is **speculatively non-interferent** for prediction oracle

Ex.

08

15

Spectector	

rax, **A size**

Formally!								
)	oracle	0	if					

rcx, X rcx, rax ENDrax, A[rcx]

mov

mov

cmp

jae

L1: mov

x64 to µASM

rax <- A size rcx <- **x** jmp rcx≥rax, *END* load rax, A + rcx load rax, B + rax

L1:

END:

 10^{3}

 10^{4}

Spectector

https://spectector.github.io

marco.guarnieri@imdea.org

@MarcoGuarnier1

Symbolic execution

