
Spectector: Principled detection 
of speculative information flows

Marco Guarnieri 
IMDEA Software Institute

1

Joint work with 
José F. Morales, Andrés Sánchez @ IMDEA Software Institute 
Boris Köpf @ Microsoft Research 
Jan Reineke @ Saarland University



Exploits speculative 
execution

Almost all modern CPUs 
 are affected
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1. Semantic notion of 
security against 
speculative execution 
attacks

2. Analysis to detect 
vulnerability or prove 
security

In this talk..
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if (x < A_size) 
  y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

Branch predictor

Prediction based on branch 
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state
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Spectre V1

void f(int x)  
 if (x < A_size) 
   y = B[A[x]]

What is in A[128]?

    1) Train branch predictor

    2) Prepare cache

    3) Run with x = 128

    4) Extract from cache

7

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]



Speculative non-interference

8



Leakage(P,     )Leakage(P,     )

Speculative non-interference
Program P is speculatively non-interferent if

=
Information leaked by 
executing P without  
speculative execution

Information leaked by 
executing P with  

speculative execution
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Non-speculative 
semantics

Speculative  
semantics

+ Attacker 
model

Capture attacker’s 
observational power

Model program’s behavior

Speculative  
semantics

Starts speculative 
transactions upon branch 
instructions 
• Committed upon correct 

speculation 
• Rolled-back upon 

misprediction

Prediction Oracle O : 
branch prediction + length of 
speculative window
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Non-speculative 
semantics

Speculative  
semantics

+ Attacker 
model

Capture attacker’s 
observational power

Model program’s behavior

Attacker 
model

Attacker can observe: 
- locations of memory accesses 
- branch/jump targets 
- start/end speculative execution
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Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’: 
Pnon-spec(s) = Pnon-spec(s’)    	             

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

See paper for: reasoning about arbitrary prediction oracles 
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Symbolic trace: path condition + 
observations along the symbolic path



Symbolic execution

16

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



true

Symbolic execution

16

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



true

Symbolic execution

16

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic execution

16

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size) 
2.   y = A[x] 
3.   z = B[y] 
4. end



Symbolic trace: path condition + 
observations along the symbolic path

    rax <- A_size 
    rcx <- x 
    jmp rcx≥rax, END 
L1: load rax, A + rcx 
    load rax, B + rax 
END:

Detecting speculative leaks

Symbolic 
execution

Detect leaks

17



Symbolic trace: path condition + 
observations along the symbolic path

    rax <- A_size 
    rcx <- x 
    jmp rcx≥rax, END 
L1: load rax, A + rcx 
    load rax, B + rax 
END:

Detecting speculative leaks

Symbolic 
execution

Detect leaks

17

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE



Symbolic trace: path condition + 
observations along the symbolic path

    rax <- A_size 
    rcx <- x 
    jmp rcx≥rax, END 
L1: load rax, A + rcx 
    load rax, B + rax 
END:

Detecting speculative leaks

Symbolic 
execution

Detect leaks

17

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ
pathCnd(τ) ∧ obsEqv(τ |non−spec ) ∧ ¬obsEqv(τ |spec )

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ

Check with self-composition

pathCnd(τ) ∧ obsEqv(τ |non−spec ) ∧ ¬obsEqv(τ |spec )

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ

Check with self-composition

s1

s2

pathCnd(τ) ∧ obsEqv(τ |non−spec ) ∧ ¬obsEqv(τ |spec )

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ

Check with self-composition

s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec ) ∧ ¬obsEqv(τ |spec )

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ

Check with self-composition

=
s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec ) ∧ ¬obsEqv(τ |spec )

18



Memory leaks
Speculative memory accesses must be fully 
determined by non-speculative observations

τ

Check with self-composition

= ≠

s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec ) ∧ ¬obsEqv(τ |spec )

18



Spectector + Case studies

19



Spectector
mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
mov  rax, A[rcx] 
mov  rax, B[rax]

    rax <- A_size 
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    jmp rcx≥rax, END 
L1: load rax, A + rcx 
    load rax, B + rax 
END:

x64 to μASM
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More details 
• Built in                    Prolog 

• Z3 for symbolic execution and leak detection 



Case study: compiler mitigations
Target: 

• 15 variants of Spectre V1 by Paul Kocher* 

• Compiled with Microsoft Visual C++, Intel ICC, and Clang 
with different mitigations and optimization levels 

• 240 assembly programs of up to 200 instructions each 

How: 

• Use Spectector to prove security or detect leaks
21

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html



Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10
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• Policy definition 
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• Path explosion 

How: 
• Analyze scalability of checking SNI relative to symbolic execution 

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000 
functions)
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• ISA coverage 
• Path explosion 

How: 
• Analyze scalability of checking SNI relative to symbolic execution 

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000 
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• SNI ≤10x faster
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• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Checking SNI scales roughly as well as 
discovering new paths in symbolic execution 
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Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’: 
Pnon-spec(s) = Pnon-spec(s’)    	             

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

See paper for: reasoning about arbitrary prediction oracles 
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Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.
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Spectector
mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
mov  rax, A[rcx] 
mov  rax, B[rax]

    rax <- A_size 
    rcx <- x 
    jmp rcx≥rax, END 
L1: load rax, A + rcx 
    load rax, B + rax 
END:

x64 to μASM

Symbolic 
execution

Check for speculative leaks

L1:

"X
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Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
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mov  rax, B[rax]
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END:

x64 to μASM
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execution

Check for speculative leaks

L1:
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1. Introduction 

The large-scale production of  re
liable programs is 

one of th
e fundamental re

quirements for applying com- 

puters to today's challenging problems. Several tech- 

niques are used in practice; others are the focus of  cur- 

rent re
search. The work reported in this paper is

 directed 

at assuring that a program meets its
 requirements even 

when formal specific
ations are not given. The current 

technology in this area is 
basically a testing technology. 

That  is
, some small s

ample of th
e data that a program is 

expected to handle is presented to the program. If  t
he 

program is judged to produce correct results for the 

sample, it is
 assumed to be correct. M

uch current w
ork 

[11] focuses on the question of  how to choose this 

sample. 

Recent w
ork on proving the correctness of programs 

by formal analysis 15] shows great promise and appears 

to be the ultim
ate technique for producing reliable pro- 

grams. However, t
he practical accomplishments in this 

area fall short of  a tool for routine use. Fundamental  

problems in reducing the theory to practice are not 

likely to be solved in the im
mediate future. 

Program testing and program proving can be con- 

sidered as extreme alternatives. While testing, a pro- 

grammer can be assured that sample test ru
ns work cor- 

rectly by carefully checking the results. The correct exe- 

cution for in
puts not in

 the sample is 
still

 in doubt. Al- 

ternatively, in
 program proving the programmer form- 

ally proves that the program meets its
 specific

ation for 

all executions without being required to execute the 

program at all. To do this he gives a precise specific
a- 

tion of th
e correct program behavior and then follows a 

formal proof  procedure to show that the program and 

the specific
ation are consistent. The confidence in this 

method hinges on the care and accuracy employed in 

both the creation of the specific
ation and in the con- 

struction of  th
e proof  steps, as well a

s on the attention 

to machine-dependent iss
ues such as overflo

w, ro
unding 

etc. 
This paper describes a practical approach between 

these tw
o extremes. F rom one simple view, it 

is an en- 

hanced testing technique. In
stead of executing a program 

on a set of sample inputs, a program is "symbolically" 

executed for a set of  classes of in
puts. T

hat  is,
 each sym- 

bolic execution result m
ay be equivalent to

 a large num- 

ber of normal test cases. These results can be checked 

against the programmer's  expectations for correctness 

either fo
rmally or in

formally. 

The class of  in
puts characterized by each symbolic 

execution is 
determined by the dependence of  th

e pro- 

gram's control fl
ow on its

 inputs. If  t
he control fl

ow of  

the program is c
ompletely independent of  th

e input var- 

iables, a single symbolic execution will s
uffic

e to check 

all possible executions of th
e program. If  the control 

flow of th
e program is dependent on the inputs, one 

must resort to a case analysis. Often the set of input 
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• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths, each with its own  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• Each path represents all concrete  
executions satisfying the constraint 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1. Introduction 

The large-scale production of  re
liable programs is 

one of th
e fundamental re

quirements for applying com- 

puters to today's challenging problems. Several tech- 

niques are used in practice; others are the focus of  cur- 

rent re
search. The work reported in this paper is

 directed 

at assuring that a program meets its
 requirements even 

when formal specific
ations are not given. The current 

technology in this area is 
basically a testing technology. 

That  is
, some small s

ample of th
e data that a program is 

expected to handle is presented to the program. If  t
he 

program is judged to produce correct results for the 

sample, it is
 assumed to be correct. M

uch current w
ork 

[11] focuses on the question of  how to choose this 

sample. 

Recent w
ork on proving the correctness of programs 

by formal analysis 15] shows great promise and appears 

to be the ultim
ate technique for producing reliable pro- 

grams. However, t
he practical accomplishments in this 

area fall short of  a tool for routine use. Fundamental  

problems in reducing the theory to practice are not 

likely to be solved in the im
mediate future. 

Program testing and program proving can be con- 

sidered as extreme alternatives. While testing, a pro- 

grammer can be assured that sample test ru
ns work cor- 

rectly by carefully checking the results. The correct exe- 

cution for in
puts not in

 the sample is 
still

 in doubt. Al- 

ternatively, in
 program proving the programmer form- 

ally proves that the program meets its
 specific

ation for 

all executions without being required to execute the 

program at all. To do this he gives a precise specific
a- 

tion of th
e correct program behavior and then follows a 

formal proof  procedure to show that the program and 

the specific
ation are consistent. The confidence in this 

method hinges on the care and accuracy employed in 

both the creation of the specific
ation and in the con- 

struction of  th
e proof  steps, as well a

s on the attention 

to machine-dependent iss
ues such as overflo

w, ro
unding 

etc. 
This paper describes a practical approach between 

these tw
o extremes. F rom one simple view, it 

is an en- 

hanced testing technique. In
stead of executing a program 

on a set of sample inputs, a program is "symbolically" 

executed for a set of  classes of in
puts. T

hat  is,
 each sym- 

bolic execution result m
ay be equivalent to

 a large num- 

ber of normal test cases. These results can be checked 

against the programmer's  expectations for correctness 

either fo
rmally or in

formally. 

The class of  in
puts characterized by each symbolic 

execution is 
determined by the dependence of  th

e pro- 

gram's control fl
ow on its

 inputs. If  t
he control fl

ow of  

the program is c
ompletely independent of  th

e input var- 

iables, a single symbolic execution will s
uffic

e to check 

all possible executions of th
e program. If  the control 

flow of th
e program is dependent on the inputs, one 

must resort to a case analysis. Often the set of input 
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Reasoning about arbitrary oracles

32

Always-mispredict 
speculative semantics 

Mispredict all branch 
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case 
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

If program P satisfies 

then P satisfies SNI w.r.t. all O
Pam(s) = Pam(s’)⇒

∀s,s’.Pnon-spec(s) = Pnon-spec(s’)
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
shl   rax, 9 
or   rax, rdx 
mov   rax, B[rax]

if (x < A_size) 
 y = B[A[x]*512]
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
shl   rax, 9 
or   rax, rdx 
mov   rax, B[rax]

if (x < A_size) 
 y = B[A[x]*512]

rax is -1 whenever x ≥ A_size 
We can prove security

Example #01 - SLH
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
jne   rax, END 
cmovne -1, rdx 
mov   rax, [B]  

if (x < A_size) 
 if (A[x]==k) 
  y = B[0]
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mov   rax, A_size 
mov   rcx, x 
mov   rdx, 0 
cmp   rcx, rax 
jae   END 
cmovae -1, rdx 
mov   rax, A[rcx] 
jne   rax, END 
cmovne -1, rdx 
mov   rax, [B]  

if (x < A_size) 
 if (A[x]==k) 
  y = B[0]

Leaks A[x]==0 via  
control-flow 

We detect the leak!

Example #10 - SLH
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y = B[A[x<A_size?(x+1):0]*512]
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y = B[A[x<A_size?(x+1):0]*512]

mov   rax, A_size 
mov   rcx, x 
lea   rcx, [rcx+1]  
xor   rdx,rdx 
cmp   rcx, rax 
cmovae rdx, rcx  
mov   rax, A[rdx] 
shl   rax, 9 
lfence 
mov   rax, B[rax]

Example #08 - FEN
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y = B[A[x<A_size?(x+1):0]*512]

mov   rax, A_size 
mov   rcx, x 
lea   rcx, [rcx+1]  
xor   rdx,rdx 
cmp   rcx, rax 
cmovae rdx, rcx  
mov   rax, A[rdx] 
shl   rax, 9 
lfence 
mov   rax, B[rax]

 lfence is unnecessary

Example #08 - FEN
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void f(int x)  
 if (x < A_size) 
   y = B[A[x]]

What is in A[128]?

    1) Training

    2) Prepare cache

    3) Run with x = 128

    4) Extract from cache

f(0);f(1);f(2); …

37

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]
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Compiler-level countermeasures

Bottom line: No guarantees!

“compiler […] produces unsafe code when the static 
analyzer is unable to determine whether a code pattern 
will be exploitable”

"there is no guarantee that all possible instances of 

[Spectre] will be instrumented”
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Size of array A

Branch predictor

Prediction based on branch 
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state
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Informally:

Program P is speculatively non-interferent if
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model
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Model program’s behavior
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Always-mispredict 
speculative semantics 

Mispredict all branch 
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case 
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

If program P satisfies 

then P satisfies SNI w.r.t. all O
Pam(s) = Pam(s’)⇒

∀s,s’.Pnon-spec(s) = Pnon-spec(s’)
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Symbolic trace: path condition + 
observations along the symbolic path
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For each symbolic trace τ ∈ traces(prg)
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Spectector
mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
mov  rax, A[rcx] 
mov  rax, B[rax]
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More details 
• Built in                    Prolog 

• Z3 for symbolic execution and leak detection 



Case study: compiler mitigations
Target: 

• 15 variants of Spectre V1 by Paul Kocher* 

• Compiled with Microsoft Visual C++, Intel ICC, and Clang 
with different mitigations and optimization levels 

• 240 assembly programs of up to 200 instructions each 

How: 

• Use Spectector to prove security or detect leaks
58

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html



Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59
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01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�
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Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
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Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
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Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
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Checking SNI scales roughly as well as 
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