
Spectector: Principled detection
of speculative information flows

Marco Guarnieri
IMDEA Software Institute

1

Joint work with
José F. Morales, Andrés Sánchez @ IMDEA Software Institute
Boris Köpf @ Microsoft Research
Jan Reineke @ Saarland University

Exploits speculative
execution

Almost all modern CPUs
 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:
Exploiting Speculative Execution — S&P 2019

🤔
Program CPU with speculative

execution

+ = Secure?

🤔
Program CPU with speculative

execution

+ = Secure?

1. Semantic notion of
security against
speculative execution
attacks

2. Analysis to detect
vulnerability or prove
security

In this talk..

Speculative execution attacks 101

4

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

Branch predictor

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

5

Size of array A

Branch predictor

Prediction based on branch
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state

Spectre V1

6

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

6

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

6

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

6

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

6

What is in A[128]?
A_size=16

B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

7

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

7

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

7

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

7

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

7

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

7

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

7

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

 4) Extract from cache

7

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Speculative non-interference

8

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=
Information leaked by
executing P without  
speculative execution

Information leaked by
executing P with  

speculative execution

9

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Model program’s behavior

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Non-speculative
semantics

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Non-speculative
semantics

Standard in-order semantics

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Speculative  
semantics

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Speculative  
semantics

Prediction Oracle O :
branch prediction + length of
speculative window

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Speculative  
semantics

Starts speculative
transactions upon branch
instructions
• Committed upon correct

speculation
• Rolled-back upon

misprediction

Prediction Oracle O :
branch prediction + length of
speculative window

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Attacker
model

How to capture leakage?

10

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

Attacker
model

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

How to capture leakage?

11

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

How to capture leakage?

11

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

start
pc 2

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

load A+x

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

load B+A[x]

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

rollback
pc 4

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

How to capture leakage?

11

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x > A_size

x < A_size predicted as satisfied

Speculative non-interference

12

Formally!

Speculative non-interference

12

Program P is speculatively non-interferent for prediction oracle O if

Formally!

Speculative non-interference

12

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:

Formally!

Speculative non-interference

12

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Formally!

Speculative non-interference

12

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

Speculative non-interference

12

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

See paper for: reasoning about arbitrary prediction oracles

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

x=128
A_size=16
A[128]=1

x < A_size predicted as satisfied

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

x=128
A_size=16
A[128]=1

x < A_size predicted as satisfied

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load A+128

load A+128

x=128
A_size=16
A[128]=1

x < A_size predicted as satisfied

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

x=128
A_size=16
A[128]=1

x < A_size predicted as satisfied

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load B+1

load B+0

x=128
A_size=16
A[128]=1

x < A_size predicted as satisfied

Speculative non-interference

13

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load B+1

load B+0

x=128
A_size=16
A[128]=1

x < A_size predicted as satisfied

Detecting speculative leaks

14

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Detecting speculative leaks

Symbolic
execution

Detect leaks

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Detecting speculative leaks

Symbolic
execution

Detect leaks

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Detecting speculative leaks

Symbolic
execution

Detect leaks

15

Symbolic trace: path condition +
observations along the symbolic path

Symbolic execution

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

true

Symbolic execution

16

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

true

Symbolic execution

16

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

16

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

17

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

17

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

17

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ
pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ

Check with self-composition

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ

Check with self-composition

s1

s2

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ

Check with self-composition

s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ

Check with self-composition

=
s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

18

Memory leaks
Speculative memory accesses must be fully
determined by non-speculative observations

τ

Check with self-composition

= ≠

s1

s2

⊧
⊧

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

18

Spectector + Case studies

19

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

20

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

20

More details
• Built in Prolog 

• Z3 for symbolic execution and leak detection

Case study: compiler mitigations
Target:

• 15 variants of Spectre V1 by Paul Kocher*

• Compiled with Microsoft Visual C++, Intel ICC, and Clang
with different mitigations and optimization levels

• 240 assembly programs of up to 200 instructions each

How:

• Use Spectector to prove security or detect leaks
21

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results No countermeasures

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results Automated insertion of
fences

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results Speculative load
hardening

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

22

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

Summary
• Leaks in all unprotected programs 

(except example #08 with optimizations)

• Confirm all vulnerabilities in VCC pointed out by Paul Kocher

• Programs with fences (ICC and Clang) are secure

• Unnecessary fences

• Programs with SLH are secure except #10 and #15

22

Case study: scalability

23

Target: Xen hypervisors

Main challenges for scalability:
• Policy definition
• ISA coverage
• Path explosion

How:
• Analyze scalability of checking SNI relative to symbolic execution

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000
functions)

Case study: scalability

23

Target: Xen hypervisors

Main challenges for scalability:
• Policy definition
• ISA coverage
• Path explosion

How:
• Analyze scalability of checking SNI relative to symbolic execution

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000
functions)

}Trade-offs affect analysis
soundness and completeness

Results

24

Results

24

• SNI 10x-100x faster
• 20.2% traces

Results

24

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

Results

24

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

Results

24

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Results

24

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Checking SNI scales roughly as well as
discovering new paths in symbolic execution

Conclusion

25

Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

See paper for: reasoning about arbitrary prediction oracles

26

Results

!X

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

"X

Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

See paper for: reasoning about arbitrary prediction oracles

26

Results

!X

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

"X

https://spectector.github.io

marco.guarnieri@imdea.org

@MarcoGuarnier1

Spectector

Backup

27

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load A+128 load A+128

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load B+1load B+0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x=128
A_size=16
A[128]=1

x=128
A_size=16
A[128]=0

load B+1load B+0

Speculative non-interference

28

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Symbolic execution

29

• Program analysis technique

Symbolic execution

29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

• Program analysis technique

• Execute programs over symbolic values  

Symbolic execution

29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths, each with its own  
path constraint 

Symbolic execution

29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths, each with its own  
path constraint 

• Each path represents all concrete  
executions satisfying the constraint 

Symbolic execution

29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

• Program analysis technique

• Execute programs over symbolic values  

• Explore all paths, each with its own  
path constraint 

• Each path represents all concrete  
executions satisfying the constraint 

• Branch and jump instructions: fork
paths and update path constraint

Symbolic execution

29

Programming

B. W
egbreit

Languages

Editor

Symbolic Execution

and Program Testin
g

James C. King

IBM Thomas J. W
atson Research Center

This p
aper describes th

e symbolic execution of pro-

grams. I
nstead of su

pplying the normal in
puts to

 a

program (e.g. numbers) o
ne supplies sy

mbols r
epresent-

ing arbitrary values. T
he execution proceeds as in

 a

normal execution except th
at values m

ay he symbolic

formulas over the input sy
mbols. T

he diffic
ult, y

et in
-

terestin
g issu

es arise during the symbolic execution of

conditional branch type sta
tements.

A particular system

called EFFIGY which provides sy
mbolic execution for

program testin
g and debugging is a

lso described, it

interpretively executes programs w
ritten in a sim

ple

PL/I sty
le programming language. It

includes m
any

standard debugging features, th
e ability

 to manage and

to prove things about sy
mbolic expressio

ns, a
 sim

ple

program testin
g manager, and a program verifier. A

brief discussio
n of th

e relationship between symbolic

execution and program proving is a
lso included.

Key Words and Phrases: s
ymbolic execution, pro-

gram testin
g, program debugging, program proving,

program verification, symbolic interpretation

CR Categories: 4
.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.

General permissio
n to republish

, but not fo
r profit,

all or part

of this m
aterial is

granted provided that ACM's c
opyright notice

is g
iven and that reference is m

ade to the publication, to its
date

of iss
ue, and to the fact th

at re
printing privileges were granted

by permissio
n of the Association for Computing Machinery.

Author's address:
IBM Thomas J.

 Watson Research Center,

P.O. Box 218, Yorktown Heights, N
.Y. 10598.

385

1. Introduction

The large-scale production of re
liable programs is

one of th
e fundamental re

quirements for applying com-

puters to today's challenging problems. Several tech-

niques are used in practice; others are the focus of cur-

rent re
search. The work reported in this paper is

 directed

at assuring that a program meets its
 requirements even

when formal specific
ations are not given. The current

technology in this area is
basically a testing technology.

That is
, some small s

ample of th
e data that a program is

expected to handle is presented to the program. If t
he

program is judged to produce correct results for the

sample, it is
 assumed to be correct. M

uch current w
ork

[11] focuses on the question of how to choose this

sample.

Recent w
ork on proving the correctness of programs

by formal analysis 15] shows great promise and appears

to be the ultim
ate technique for producing reliable pro-

grams. However, t
he practical accomplishments in this

area fall short of a tool for routine use. Fundamental

problems in reducing the theory to practice are not

likely to be solved in the im
mediate future.

Program testing and program proving can be con-

sidered as extreme alternatives. While testing, a pro-

grammer can be assured that sample test ru
ns work cor-

rectly by carefully checking the results. The correct exe-

cution for in
puts not in

 the sample is
still

 in doubt. Al-

ternatively, in
 program proving the programmer form-

ally proves that the program meets its
 specific

ation for

all executions without being required to execute the

program at all. To do this he gives a precise specific
a-

tion of th
e correct program behavior and then follows a

formal proof procedure to show that the program and

the specific
ation are consistent. The confidence in this

method hinges on the care and accuracy employed in

both the creation of the specific
ation and in the con-

struction of th
e proof steps, as well a

s on the attention

to machine-dependent iss
ues such as overflo

w, ro
unding

etc.
This paper describes a practical approach between

these tw
o extremes. F rom one simple view, it

is an en-

hanced testing technique. In
stead of executing a program

on a set of sample inputs, a program is "symbolically"

executed for a set of classes of in
puts. T

hat is,
 each sym-

bolic execution result m
ay be equivalent to

 a large num-

ber of normal test cases. These results can be checked

against the programmer's expectations for correctness

either fo
rmally or in

formally.

The class of in
puts characterized by each symbolic

execution is
determined by the dependence of th

e pro-

gram's control fl
ow on its

 inputs. If t
he control fl

ow of

the program is c
ompletely independent of th

e input var-

iables, a single symbolic execution will s
uffic

e to check

all possible executions of th
e program. If the control

flow of th
e program is dependent on the inputs, one

must resort to a case analysis. Often the set of input

Communications

July 1976

of

Volume 19

the ACM

Number 7

“The execution proceeds as in a normal
execution except that values may be

symbolic formulas over the input symbols”
— James C. King

Symbolic execution

30

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

true

Symbolic execution

30

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

true

Symbolic execution

30

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Symbolic execution

30

x ≥ A_size x < A_size

start pc 2 load A+x load B+A[x] rollback pc 4

	 	 	 Always mispredict  
	 	 	 branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Policy
x, A_size, A, B

are public

31

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

Policy
x, A_size, A, B

are public

31

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

Policy
x, A_size, A, B

are public

31

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧
31

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧
31

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

=

31
Always true!

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

=

31
Always true!

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

≠=

31
Always true!

start pc L1 load A+x load B+A[x] rollback pc END

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

≠= ∨

31
Always true!

start pc L1 load A+x load B+A[x] rollback pc END

B2+A2[x2]

B1+A1[x1]

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)`

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

≠ ≠= ∨

31
Always true!

start pc L1 load A+x load B+A[x] rollback pc END

B2+A2[x2]

B1+A1[x1]

Memory leaks
 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

s1

s2

⊧
⊧

x1≥A_size1

x2≥A_size2

Policy
x, A_size, A, B

are public

x1=x2 A_size1=A_size2 A1=A2 B1=B2 ∧ ∧ ∧

A1+x1

A2+x2

≠ ≠= ∨

31
Always true!

start pc L1 load A+x load B+A[x] rollback pc END

Reasoning about arbitrary oracles

32

Reasoning about arbitrary oracles

32

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Reasoning about arbitrary oracles

32

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

Reasoning about arbitrary oracles

32

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

If program P satisfies

then P satisfies SNI w.r.t. all O
Pam(s) = Pam(s’)⇒

∀s,s’.Pnon-spec(s) = Pnon-spec(s’)

if (x < A_size)
 y = B[A[x]*512]

Example #01 - SLH

33

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
shl rax, 9
or rax, rdx
mov rax, B[rax]

if (x < A_size)
 y = B[A[x]*512]

Example #01 - SLH

33

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
shl rax, 9
or rax, rdx
mov rax, B[rax]

if (x < A_size)
 y = B[A[x]*512]

rax is -1 whenever x ≥ A_size
We can prove security

Example #01 - SLH

33

if (x < A_size)
 if (A[x]==k)
 y = B[0]

Example #10 - SLH

34

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
jne rax, END
cmovne -1, rdx
mov rax, [B]

if (x < A_size)
 if (A[x]==k)
 y = B[0]

Example #10 - SLH

34

mov rax, A_size
mov rcx, x
mov rdx, 0
cmp rcx, rax
jae END
cmovae -1, rdx
mov rax, A[rcx]
jne rax, END
cmovne -1, rdx
mov rax, [B]

if (x < A_size)
 if (A[x]==k)
 y = B[0]

Leaks A[x]==0 via  
control-flow

We detect the leak!

Example #10 - SLH

34

y = B[A[x<A_size?(x+1):0]*512]

Example #08 - FEN

35

y = B[A[x<A_size?(x+1):0]*512]

mov rax, A_size
mov rcx, x
lea rcx, [rcx+1]
xor rdx,rdx
cmp rcx, rax
cmovae rdx, rcx
mov rax, A[rdx]
shl rax, 9
lfence
mov rax, B[rax]

Example #08 - FEN

35

y = B[A[x<A_size?(x+1):0]*512]

mov rax, A_size
mov rcx, x
lea rcx, [rcx+1]
xor rdx,rdx
cmp rcx, rax
cmovae rdx, rcx
mov rax, A[rdx]
shl rax, 9
lfence
mov rax, B[rax]

 lfence is unnecessary

Example #08 - FEN

35

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

36

What is in A[128]?
A_size=16

B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

 1) Training

36

What is in A[128]?
A_size=16

B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training f(0);

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training f(0);f(1);

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training f(0);f(1);f(2); …

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

f(0);f(1);f(2); …

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

f(0);f(1);f(2); …

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

f(0);f(1);f(2); …

37

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre V1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Training

 2) Prepare cache

 3) Run with x = 128

 4) Extract from cache

f(0);f(1);f(2); …

37

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Countermeasures

Countermeasures

	 Long Term: Co-design of software and hardware countermeasures

Countermeasures

	 Long Term: Co-design of software and hardware countermeasures

	  
	 Short and Mid Term: Software countermeasures

Compiler-level countermeasures
• Example: insert LFENCE to selectively stop speculative execution

• Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

Countermeasures

	 Long Term: Co-design of software and hardware countermeasures

	  
	 Short and Mid Term: Software countermeasures

Compiler-level countermeasures
• Example: insert LFENCE to selectively stop speculative execution

• Implemented in major compilers (Microsoft Visual C++, Intel ICC, Clang)

PR
OBL

EM

SOL
VE

D ?

39

Compiler-level countermeasures

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

39

Compiler-level countermeasures

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

39

Compiler-level countermeasures

“compiler […] produces unsafe code when the static
analyzer is unable to determine whether a code pattern
will be exploitable”

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

39

Compiler-level countermeasures

“compiler […] produces unsafe code when the static
analyzer is unable to determine whether a code pattern
will be exploitable”

"there is no guarantee that all possible instances of

[Spectre] will be instrumented”

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

39

Compiler-level countermeasures

Bottom line: No guarantees!

“compiler […] produces unsafe code when the static
analyzer is unable to determine whether a code pattern
will be exploitable”

"there is no guarantee that all possible instances of

[Spectre] will be instrumented”

Outline
1. Speculative execution attacks 101

2. Speculative non-interference

3. Detecting speculative leaks

4. Spectector + Case studies
40

Speculative execution attacks 101

41

Speculative execution + branch prediction

42

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

42

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

42

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

42

Size of array A

Branch predictor

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

42

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

42

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

42

Size of array A

Branch predictor

Prediction based on branch
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state

Speculative non-interference

43

Speculative non-interference

44

Speculative non-interference

44

Program P is speculatively non-interferent if

Speculative non-interference

Leakage of P in  
speculative

execution

Leakage of P in  
non-speculative

execution =

44

Informally:

Program P is speculatively non-interferent if

How to capture leakage?

45

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

How to capture leakage?

45

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Model program’s behavior

How to capture leakage?

45

Non-speculative
semantics

Speculative  
semantics

+ Attacker
model

Capture attacker’s
observational power

Model program’s behavior

μAssembly + non-speculative semantics

46

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

46

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

46

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

46

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

46

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

μAssembly + non-speculative semantics

46

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

if (x < A_size)
 y = B[A[x]]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Speculative semantics

47

Starts speculative transactions
upon branch instructions

Committed upon  
correct speculation

Rolled back upon misspeculation

Prediction Oracle O : branch prediction + length of speculative window

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

start
pc L1

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

load A+x

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

load B+A[x]

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

rollback
pc END

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Leakage into μarchitecture

Attacker can observe:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time” rqmts

48

Speculative non-interference

49

Formally!

Speculative non-interference

49

Program P is speculatively non-interferent for prediction oracle O if

Formally!

Speculative non-interference

49

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:

Formally!

Speculative non-interference

49

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Formally!

Speculative non-interference

49

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

Reasoning about arbitrary oracles

50

Reasoning about arbitrary oracles

50

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Reasoning about arbitrary oracles

50

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

Reasoning about arbitrary oracles

50

Always-mispredict
speculative semantics

Mispredict all branch
instructions

Fixed speculative window

Rollback of every transaction

Always-mispredict is worst-case
Pam(s) = Pam(s’) ⇔

O. Pspec(s,O) = Pspec(s’,O)∀

If program P satisfies

then P satisfies SNI w.r.t. all O
Pam(s) = Pam(s’)⇒

∀s,s’.Pnon-spec(s) = Pnon-spec(s’)

Detecting speculative leaks

51

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

52

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

52

Symbolic trace: path condition +
observations along the symbolic path

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

true

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start pc L1 load A+x load B+A[x] rollback pc END

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start pc L1 load A+x load B+A[x] rollback pc END

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic execution

53

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x ≥ A_size x < A_size

start pc L1 load A+x load B+A[x] rollback pc END

	 	 	 Always mispredict  
	 	 	 branch instructions

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

54

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

54

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Symbolic trace: path condition +
observations along the symbolic path

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

Detecting speculative leaks

Symbolic
execution

Detect leaks

54

For each symbolic trace τ ∈ traces(prg)
if MemLeak(τ) then

return INSECURE
if CtrlLeak(τ) then

return INSECURE
return SECURE

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ
pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

s1

s2

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

s1

s2

Equivalent
wrt policy

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

s1

s2

⊧
⊧

Equivalent
wrt policy

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

=
s1

s2

⊧
⊧

Equivalent
wrt policy

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Memory leaks
Speculative memory accesses must depend only on

• Non-sensitive information

• Non-speculative observations

τ

Check with self-composition

= ≠

s1

s2

⊧
⊧

Equivalent
wrt policy

φ
φ

pathCnd(τ) ∧ obsEqv(τ |non−spec) ∧ ¬obsEqv(τ |spec)

55

Spectector + Case studies

56

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

57

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

57

More details
• Built in Prolog 

• Z3 for symbolic execution and leak detection

Case study: compiler mitigations
Target:

• 15 variants of Spectre V1 by Paul Kocher*

• Compiled with Microsoft Visual C++, Intel ICC, and Clang
with different mitigations and optimization levels

• 240 assembly programs of up to 200 instructions each

How:

• Use Spectector to prove security or detect leaks
58

* Paul Kocher - Spectre Mitigations in Microsoft C/C++ Compiler — https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results No countermeasures

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results Automated insertion of
fences

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results Speculative load
hardening

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

59

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

Summary
• Leaks in all unprotected programs 

(except example #08 with optimizations)

• Confirm all vulnerabilities in VCC pointed out by Paul Kocher

• Programs with fences (ICC and Clang) are secure

• Unnecessary fences

• Programs with SLH are secure except #10 and #15

59

Case study: scalability

60

Target: Xen hypervisors

Main challenges for scalability:
• Policy definition
• ISA coverage
• Path explosion

How:
• Analyze scalability of checking SNI relative to symbolic execution

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000
functions)

Case study: scalability

60

Target: Xen hypervisors

Main challenges for scalability:
• Policy definition
• ISA coverage
• Path explosion

How:
• Analyze scalability of checking SNI relative to symbolic execution

• 24’000 symbolic paths of < 10’000 instructions (from ~ 4’000
functions)

}Trade-offs affect analysis
soundness and completeness

Results

61

Results

61

• SNI 10x-100x faster
• 20.2% traces

Results

61

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

Results

61

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

Results

61

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Results

61

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Checking SNI scales roughly as well as
discovering new paths in symbolic execution

Conclusion

62

63

Results

!X

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

"X

Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

63

Results

!X

• SNI 10x-100x faster
• 20.2% traces

• SNI ≤10x faster
• 41.9% traces

• SNI ≤10x slower
• 26.9% traces

• SNI 10x-100x slower
• 7.9% traces

Ex.
VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Results

!X

Spectector
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

"X

Speculative non-interference

!X

Program P is speculatively non-interferent for prediction oracle O if

 For all program states s and s’:
Pnon-spec(s) = Pnon-spec(s’) 	

Pspec(s,O) = Pspec(s’,O)⇒

Formally!

https://spectector.github.io

marco.guarnieri@imdea.org

@MarcoGuarnier1

Spectector

