
Spectector: Principled detection of 
speculative information flows
M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, A. Sánchez
To appear at IEEE Symposium on Security and Privacy 2020

Available at: https://spectector.github.io
Contact: marco.guarnieri@imdea.org  
We’re hiring interns and PhD students!

How can we reason about speculative leaks?
Speculative semantics
- Parametric in branch predictor
- Execute mispredicted branches for fixed number of steps
- Backtrack on wrong decisions

Automatically detecting speculative leaks!

Attacker model
Attacker observes:

- locations of memory accesses
- branch/jump targets
- start/end speculative execution

Speculative non-interference
Compares a program’s leakage w.r.t. two semantics:
- Standard, non-speculative semantics (proxy for intended

program behavior)
- Speculative semantics (proxy for speculative leaks)

 A program P is speculatively non-interferent if
	 program states s and s’,
	 	 Pnon-spec(s) = Pnon-spec(s’) 	
	 	 	 	 Pspec(s) = Pspec(s’)

∀ ⇒

Formally:

 rax <- A_size
 rcx <- x
 beqz rcx<rax, END
L1: load rax, A + rcx
 load rax, B+rax
END:

Spectector

x64 to μASM
Symbolic  
execution

Speculative leaks 
detection

Assembly program μASM program Symbolic traces Security decision

 mov rax, A_size
 mov rcx, x
 cmp rcx, rax
 jae END
L1: mov rax, A[rcx]
 mov rax, B[rax]

Case study: compiler countermeasures
Goals:
	 - Determine if speculative non-interference captures 	 	 	
	 speculative leaks on 15 variants of SPECTRE v1
	 - Assess Spectector’s precision
How:
	 Analyze 240 microbenchmarks obtained by compiling 15 		
	 variants of SPECTRE v1 with Clang, Intel ICC, and 	 	 	 	 	
	 Microsoft Visual C++
Results:
Ex.

VCC ICC CLANG

UNP FEN 19.15 FEN 19.20 UNP FEN UNP FEN SLH

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

01 � � •� •� •� •� � � •� •� � � •� •� •� •�

02 � � •� •� •� •� � � •� •� � � •� •� •� •�

03 � � •� � •� •� � � •� •� � � •� •� •� •�

04 � � � � •� •� � � •� •� � � •� •� •� •�

05 � � •� � •� � � � •� •� � � •� •� •� •�

06 � � � � � � � � •� •� � � •� •� •� •�

07 � � � � � � � � •� •� � � •� •� •� •�

08 � •� � •� � •� � •� •� •� � •� •� •� •� •�

09 � � � � � � � � •� •� � � •� •� •� •�

10 � � � � � � � � •� •� � � •� •� •� �

11 � � � � � � � � •� •� � � •� •� •� •�

12 � � � � •� •� � � •� •� � � •� •� •� •�

13 � � � � � � � � •� •� � � •� •� •� •�

14 � � � � •� •� � � •� •� � � •� •� •� •�

15 � � � � � � � � •� •� � � •� •� � •�

Fig. 7. Analysis of Kocher’s examples [16] compiled with compilers and options. For each of the 15 examples, we analyzed the unpatched version (denoted by
UNP), the version patched with speculation barriers (denoted by FEN), and the version patched using speculative load hardening (denoted by SLH). Programs
have been compiled without optimizations (-O0) or with compiler optimizations (-O2) using the compilers VISUAL C++ (two versions), ICC, and CLANG.
� denotes that SPECTECTOR detects a speculative leak, whereas •� indicates that SPECTECTOR proves the program secure.

10

Case study: Xen Project hypervisor
Goal:
	 Assess Spectector’s scalability
How:
	 Compare time spent on discovering new symbolic paths 	 	 	
	 with the time spent on checking SNI
Results:

Detecting SNI violations caused by memory ops Detecting SNI violations caused by control-flow ops

Symbolic execution Symbolic execution versus checking SNI

Su
pp

or
te

d
by

 In
te

l S
tra

te
gi

c
Re

se
ar

ch
 A

llia
nc

e
(IS

RA
) “

In
fo

rm
at

io
n

Flo
w

 T
ra

ck
in

g
ac

ro
ss

 th
e

H
ar

dw
ar

e-
So

ftw
ar

e
Bo

un
da

ry
”

