
A Model-Driven Approach for Securing Software Architectures∗

Mario Arrigoni Neri1, Marco Guarnieri2, Eros Magri3, Simone Mutti1 and Stefano Paraboschi1
1Dip. di Ingegneria Informatica e Metodi Matematici, University of Bergamo, Italy

2Institute of Information Security, ETH Zürich, Switzerland
3Comelit R & D, Comelit Group S.p.A, Italy

{mario.arrigonineri, simone.mutti, stefano.praboschi}@unibg.it, marco.guarnieri@inf.ethz.ch,
eros.magri@comelit.it

Keywords:
Access Control, Model-driven Security, Security Policy, Software Architectures

Abstract:
Current IT systems consist usually of several components and services that communicate and ex-
change data over the Internet. They have security requirements that aim at avoiding information
disclosure and at showing compliance with government regulations. In order to effectively handle
the security management of complex IT systems, techniques are needed to help the security admin-
istrator in the design and configuration of the security architecture. We propose a model-driven
security approach for the design and generation of concrete security configurations for software
architectures. In our approach the system architect models the architecture of the system by
means of UML class diagrams, and then the security administrator adds security requirements to
the model by means of Security4UML, a UML profile. From the model enriched with security
requirements, the concrete security configuration is derived in a semi-automated way. We present
a tool that supports this model-driven approach, and a case study that involves a distributed
multi-user meeting scheduler application.

1 INTRODUCTION

IT systems are becoming more and more com-
plex as the range of offered services increases
and the capabilities of the systems themselves
improve. Current IT systems consist usually of
several components and services communicating
and exchanging data over complex IT infrastruc-
ture through the Internet. These systems usually
have strict and complex security requirements,
which are needed in order to adequately pro-
tect sensitive data and to assure the availabil-
ity of the systems themselves ([Patterson, 2002,
Pertet and Narasimhan, 2005] analyze the costs
of unavailability of applications). The manage-
ment of security requirements is a critical task
that has the goal of avoiding possible information
disclosure and showing compliance with respect

∗This work was partially supported by the EC
within the 7FP, under grant agreement 257129
“PoSecCo” and 256980 “NESSoS”, by the Italian Min-
istry of Research within the PRIN projects “PEPPER
2008”, “GATECOM” and “GenData 2020”.

to the many regulations promulgated by govern-
ments.

The security of the global system arises both
from the security of the components and from
the correct configuration of the entire IT infras-
tructure. Managing the security of these sys-
tems is a tough task, because the high num-
ber of components, which usually need an ac-
cess to the Internet, leads to a large attack sur-
face, whilst the high level of interconnections be-
tween components increases the damage that an
attack to one of the components may cause to
the entire system. Recent analysis of informa-
tion security breaches has found empirical evi-
dence that highlights the fact that security man-
agement is a difficult and error prone task, (e.g.,
[7safe, 2010, Langevin et al., 2008]) showing that
misconfigurations of the security infrastructure
are one of the main causes of breaches.

A viable way for handling the complexity of
security management is by using a model-driven
approach. In a way similar to the evolution seen



in the area of software development and database
design, the model-driven engineering of security
leads to the specification of security requirements
at an abstract level, with the subsequent refine-
ment of the abstract model toward a concrete im-
plementation. It is then guaranteed that, when
the high-level representation of the security re-
quirements is correct, the security configuration
of the system satisfies the requirements. The
application of this approach requires the imple-
mentation of a rich collection of tools support-
ing, for each of the many components in the sys-
tem, the refinement from the high-level represen-
tation of security requirements to the concrete
security configuration. A significant investment
in research and development is needed to realize
this vision, in order to manage the heterogeneous
collection of devices and security services that in-
formation and communication technology offers
to system administrators. Still, this large invest-
ment promises to produce adequate returns, con-
sidering the importance that the correct manage-
ment of security requirements presents in modern
information systems.

The model-driven approach described above
has several advantages: (1) the concrete config-
uration can be generated in a semi-automated
way from the models (in this way the risk of
misconfigurations is low), (2) the models can be
analyzed for an early identification of anomalies
and inconsistencies, (3) the models act as docu-
mentation of the security architecture of the sys-
tem, (4) the modeling process requires that the
security administrator defines the security prop-
erties of the system and explicits the assump-
tions behind the requirements, (5) it allows the
adoption of a defence-in-depth approach that de-
ploys security countermeasures at several layers,
(6) changes in the security requirements can be ef-
fectively handled by modifying the initial model
and then by generating the new concrete config-
uration.

Integrating this model-driven security ap-
proach with Architecture Description Languages
(ADLs) can lead to great advantages. Software
architectures are produced in the early steps of
the development process, and thus integrating se-
curity properties in architecture design allows de-
velopers to integrate security early in the devel-
opment process. In this way, developers consider
security during the whole process and not only as
an afterthought, and they can also analyze early
security configurations in order to detect flaws.
This fact leads to better security and reduces the

costs of changes in the security configuration.
In this work, we present an approach that can

be used to add security requirements to architec-
tural models of distributed, data-intensive appli-
cations represented in the C2 architecture style
[Taylor et al., 1996]. The paper is organized as
follows. In Section 5 a comparison is made with
previous related work. Section 2 presents a brief
overview of the C2 architecture style. Section 3
describes the Model-Driven Design process in de-
tail. In Section 4 we present our UML profile,
called Security4UML, that can be used to add se-
curity properties to architectural models. In Sec-
tion 6 we present a case study describing how our
approach can be used to model security require-
ments for a distributed multi-user meeting sched-
uler application. Finally, Section 7 draws a few
concluding remarks and presents future work.

2 BACKGROUND

The C2 architectural style is a software ar-
chitectural style that can be used to model user
interface intensive systems [Taylor et al., 1996].
It can thus be used to model the majority
of data intensive applications, e.g., e-commerce
web applications, by means of the C2 ADL
[Medvidovic, 1996]. In [Robbins et al., 1998],
Robbins et al. present a way to represent C2
ADL by means of UML class diagrams. In the
remainder of the paper, we use simply C2 to re-
fer to both the architecture style and the ADL.
C2 architectures are based on two main concepts:
components and connectors.

Components are those parts of the architec-
ture that maintain state and perform opera-
tions. They contain objects with defined inter-
faces. Each component exchanges messages by
means of two interfaces, called “top” and “bot-
tom”. In a UML class diagram, a component can
be modeled by means of a class with the stereo-
type � C2Component �. In C2, components
are not allowed to directly exchange messages;
they can exchange messages by means of connec-
tors, which have the responsibility to route, filter
and broadcast messages. In a UML class dia-
gram, a connector can be modeled by means of
a class with the stereotype � C2Connector �.
Each interface of a component may be connected
to only one connector, whereas a connector may
be connected with one or more components.

2



3 MODEL-DRIVEN DESIGN
PROCESS

The management of security aspects of cur-
rent IT systems is a tough task, and misconfigura-
tions may cause security breaches. The increasing
complexity of this task may be effectively handled
by using model-driven approaches for the defini-
tion and management of the security configura-
tions of the system. Our model-driven process
involves two stakeholders: (a) the system archi-
tect and (b) the security administrator. The sys-
tem architect models the architecture of the sys-
tem in the C2 architectural style. As shown in
[Robbins et al., 1998], there is a way to represent
C2 models by means of UML class diagrams, and
thus, without loss of generality, we assume that
the system architect models the architecture by
means of UML diagrams.

Then, the security administrator receives the
architectural model of the system and he/she
can enrich it with a representation of the secu-
rity requirements. The security administrator
can extract information on the security require-
ments from two sources: (a) business require-
ments, which express a high-level description of
the expected behaviour of the global system (se-
curity administrators usually receive business re-
quirements from the business and they cannot
modify them), (b) the physical configuration of
the system, i.e., servers, applications etc. (this
aspect also cannot be usually influenced by the
security administrator, at least in the short term).
The security modeling process is divided into
three different phases. In each phase the security
administrator adds security relevant information
to the model.

In the first phase of the process, the Model-
ing Phase, the security administrator models the
security requirements and adds them to the ar-
chitectural model. The security requirements are
expressed by using the Security4UML profile de-
fined in Section 4. Despite the fact that business
requirements are usually expressed in natural lan-
guage, the security administrator can easily de-
fine a first high level model that is close to the
business requirements. Then, he/she refines the
model in several steps, by adding details at each
iteration. During this refinement process the ad-
ministrator can execute automated analysis tools
over the model, in order to detect conflicts and
anomalies in the model itself. The results of the
analysis can lead to further modifications to the
model. The resulting model, called Sec-Model, is

a platform independent model (PIM).
In the second phase of our process, the Enrich-

ment Phase, the security administrator enriches
the Sec-Model with context dependent informa-
tion, i.e., he/she adds information about the con-
crete configuration of the system, e.g., informa-
tion about type and version of DBMSs or web
servers. In this phase the security administra-
tor can extract the needed information from the
actual configuration of the system. The result
of this phase is an Enriched Sec-Model (ESec-
Model) which contains the specification of the
security requirements and information about the
actual infrastructure. The ESec-Model is a plat-
form specific model (PSM).

The last phase, called Derivation Phase, con-
sists in the derivation and the deployment, in a
semi-automated way, of the concrete security con-
figuration of the system. During this phase, the
ESec-Model is given as input to several deriva-
tion modules that generate and deploy the global
concrete configuration. Each module generates
and deploys part of the concrete configuration,
e.g., in the example presented in Section 6 we
have defined a module for PostgreSQL, which
extracts the information needed from the ESec-
Model. The platform dependent model has to
contain enough information to allow the gener-
ation of the configuration.

A critical aspect of our process is the need of
a dedicated derivation module for each kind of
resource in the IT system under modeling. How-
ever, once the effort for the development of the
adequate modules is done, the entire security ar-
chitecture of the application can be managed, up-
dated and modified without directly operating
over the concrete configuration.

4 SECURITY4UML

In order to adequately represent the large
number and variety of entities involved in actual
enterprise scenarios, we need a rich metamodel
and a flexible language for expressing relation-
ships between the entities of the model. In this
section we are going to present a UML profile,
called Security4UML, which can be used to model
security properties. Due to space constraints we
are going to present only a brief overview of the
profile and in the remainder of the section we are
going to present only the Sec-Model meta-model.
The ESec-Model meta-model, not shown, is an
extension of the Sec-Model meta-model that re-

3



fines and enriches classes and associations with
system dependent information. System depen-
dent information is stored in tagged values asso-
ciated with stereotypes.

Abstract Syntax The meta-model of the Se-
curity4UML Sec-Model consists of six sub-meta-
models, each one focusing on a particular aspect
of the system.

Figure 1: Principal meta-model

Principal meta-model: it can be used to rep-
resent all the individuals and entities that can
appear as beneficiaries of authorizations or in-
volved in an authentication rule. The meta-model
is shown in Figure 1. It contains the abstract
class Principal, which represents an abstraction
of the principals in the system. We can represent
single users by means of the SingleId class and
groups of users using the GroupId class. Both
classes have a common abstract superclass called
Identity. SingleIds are flexible, they may repre-
sent single users of the system, legal entitites (i.e.,
external companies or customers of the system
under modeling) or software components. Over
the identities we can define a hierarchy, because
groups are organized in a taxonomy via the con-
tains relationship. The class Role can be used to
model roles. In RBAC, each role represents the
binding between users and permissions associated
to them. The meta-model allows the definition of
the role hierarchy by means of the roleHierarchy
relationship. Roles may be used to represent sev-
eral concepts. For instance, they may represent
organizational roles (i.e., specific enterprise func-
tions), collections of privileges that may be ac-
tivated by users or system accounts available on
certain systems.
Privilege meta-model: this meta-model con-
tains the Privilege class, which can be used to

represent the right of performing a certain action.
When a privilege is associated with a specific re-
source, it can be modeled by means of the Ob-
jectPrivilege class. The Action class represents
the actions that the principals can execute.
Security Rule meta-model: it is used to de-
scribe security rules and policies. The main class
is SecurityRule which is an abstract class rep-
resenting security rules. Each security rule is
granted to a certain principal, as represented by
the grantedTo relationship, by a particular sin-
gle id, modeled by the grantor relationship. Our
meta-model aims at handling several aspects of
security (i.e., authorization and authentication)
in a common way. For this reason the concrete
subclasses of SecurityRule are: (a) the RoleAu-
thorization class which gives the privilege to en-
able a certain role (this fact is represented by
the enabledRole relationship), (b) the SystemAu-
thorization class which associates the subject to
which the authorization is granted with a privi-
lege, (c) the AuthenticationRule which models the
authentication configuration for a principal with
respect to a certain resource. Security rules have
a sign, and may be marked with a grant option.
This meta-model contains the classes Policy, Pol-
icySet and Target which can be used to model
security policies in a way similar to what is done
in XACML.
Authentication meta-model: it can be used
to describe the properties that the authentication
service has to satisfy by means of the AuthcFea-
ture class. The class AuthcOption can be used to
specify the configuration options of the authenti-
cation feature.
Resource meta-model: this meta-model can
be used to model the entities of the IT system.
Given the fact that our meta-model is quite gen-
eral and aims at representing several aspects of
security, we have several concrete subclasses of
the SecurityObject abstract class: 1. the Service
class can be used to represent services in a Ser-
vice Oriented Architecture environment; 2. the
SoftwareModule class describes nodes and soft-
ware modules; 3. the Link class models com-
munication channels that are concrete, e.g., net-
work links, or abstract , e.g., software connectors;
4. the Data class can be used to represent static
resources like files and directories in a file sys-
tem or tables and views in a database. Protected
data may be modeled by means of the Protected-
Data class and its subclasses EncryptedData and
SignedData, which contain the details about the
encryption and signature processes. Protected

4



UML type Stereotype Security4UML
Class 〈〈Principal〉〉 Principal
Class 〈〈Role〉〉 Role
Class 〈〈GroupId〉〉 GroupId
Class 〈〈SingleId〉〉 SingleId

Association 〈〈contains〉〉 contains
Association 〈〈roleHierarchy〉〉 roleHierarchy

Table 1: Mapping between UML elements and
the ESec-Model metamodel

communication channels, e.g., SSL connections,
may be modeled by the ProtectedLink class (sub-
class of the Link class).
Security Domain meta-model: it contains
only the SecurityDomain class which can be used
to represent security domains and the contained
principals, by means of the principalSecurityDo-
main relationship, and resources, using the re-
sourceSecurityDomain relationship. Given the
fact that Security4UML aims at modeling secu-
rity architectures, which may consist of several
IT systems, the concept of security domain is im-
portant, because it may be used to represent trust
boundaries between systems.

Concrete Syntax In order to define the con-
crete syntax of our Security4UML modeling lan-
guage, we defined a UML profile based on the
meta-model presented above. The mapping be-
tween UML types and stereotypes and the Se-
curity4UML meta-model is straightforward. Due
to space constraints we present only an example.
Table 1 shows how the Principal meta-model can
be represented by using UML types and stereo-
types.

Tool support A critical aspect in model-driven
engineering approaches is the need of adequate
tools that can be used by developers in order to
handle, refine and transform the models. The
availability of such tools is usually one of the main
factors that may influence the success of the ap-
proach itself.

In order to help security administrators in the
definition and refinement of our models, we devel-
oped the Security4UML Tool. The tool provides
the developer with three functionalities:
- Reasoning: Security4UML Tool provides sev-
eral reasoning services that can be used to de-
tect anomalies and inconsistencies in the model,
and to report them to the user. In this way
the user can modify the model according to
the analysis’ results, in order to remove incon-

sistencies. These reasoning services are imple-
mented by using Semantic Web technologies, i.e.,
the Sec-Model is represented as an OWL on-
tology and the reasoning services are expressed
by means of Semantic Web tools, e.g., OWL-
DL, SWRL and SPARQL. The Minimization
service can be used to detect redundancies in
the Sec-Model, i.e., the model may contain au-
thorizations which are implied by other autho-
rizations and thus may be removed. The In-
compatibility service detects authorizations that
are incompatible, e.g., the Sec-Model may con-
tain conflicting authorizations. The SoD service
can be used to detect authorizations breaking
Separation of Duty constraints expressed in the
Sec-Model. A detailed description of these ser-
vices can be found in [Arrigoni Neri et al., 2012,
Arrigoni Neri et al., 2013].

- Enrichment: Security4UML Tool helps the de-
veloper in the definition of the ESec-Model. The
platform independent Sec-Model is enriched and
transformed in order to obtain the platform spe-
cific model. Security4UML Tool provides also
reasoning capabilities that can be used to check
the consistency of an instance of the ESec-Model.

- Code Generation: Security4UML Tool man-
ages the process that leads to the concrete imple-
mentation and deployment of the security config-
uration. The tool supports the definition of sev-
eral code generation modules that generate the
concrete configuration for a particular element of
the infrastructure, e.g., a particular version of a
DBMS. Each module takes as input the ESec-
Model, extracts the needed information and gen-
erates part of the concrete configuration.

We implemented Security4UML Tool on the
basis of the Eclipse framework, because Eclipse
is today one of the de-facto standard in terms
of IDEs. Several model-driven engineering tools
are based upon Eclipse, e.g., TopCased or IBM
Rational Rose. Security4UML Tool can be in-
tegrated in one of such tools, and this fact lets
us providing developers with reasoning, enrich-
ment and code generation capabilities. The ex-
tension point mechanism allows an easy integra-
tion of new reasoning services, enrichment mod-
ules and code generation modules. A detailed
description of part of the tool can be found in
[Mutti et al., 2011, Guarnieri et al., 2012].

5



5 RELATED WORK

The last decade has seen a growing interest
in model-driven techniques concerning security
aspects [Basin et al., 2011], and several solutions
have been proposed to formalize the development
of secure systems.

Basin et al. have proposed SecureUML
[Basin et al., 2006], a UML profile that can
be used to model Role-Based Access Control
[Sandhu, 1998] (RBAC) infrastructures. They
have proposed the application of SecureUML in
several contexts: from the definition of security
aware GUIs [Basin et al., 2010] to process ori-
ented systems [Basin et al., 2003]. They have
shown how SecureUML can be used for support-
ing a model-driven security approach that leads
to the concrete implementation of IT systems.
The SecureUML meta-model is primarily focused
on access control systems, and more in detail on
RBAC. On the contrary, our Security4UML pro-
file can model several aspects of security. It sup-
ports the definition of access control policies, it
can be used to model authentication properties,
it also considers encrypted and signed resources
and protocols such as SSL.

In [Jürjens, 2003], Jürjens proposed, as a se-
curity extension of UML, the UMLSec profile. In
[Jürjens, 2005], he shows how UMLSec can be
used for security analysis and formal security re-
quirement verification. Although UMLSec sup-
ports the annotation of UML models with secu-
rity requirements, we need a more extended meta-
model, like Security4UML or SecureUML, to fa-
cilitate a model-driven security approach.

Some works present approaches for the in-
tegration of security concepts in ADLs. In
[Mouratidis et al., 2005], Mouratidis et al. pro-
pose an ADL for agent systems that is able to
express security properties by means of protec-
tion objectives, i.e., desiderable security proper-
ties that an agent might have. Each agent may
own several security mechanisms to satisfy ob-
jectives. The ADL allows the definition of secu-
rity constraints that may restrict goals and ca-
pabilities of agents. In [Ren and Taylor, 2005],
Ren et al. extend the existing Architecture De-
scription Language xADL with security concepts.
They provide a new SecureConnector which can
be used to model architectural access control. In
[Oladimeji et al., 2007], Oladimeji et al. present
a UML-based ADL that can express access con-
trol properties. On the contrary, our work can
model several aspects of security, not only access

control. Another difference is that we integrate
security requirements in a well-known ADL, i.e.,
C2, instead of defining a new one.

Integrating security in software architectures
may be a viable way of handling the increas-
ing complexity of IT systems. Although a lot of
work has been done on model-driven security ap-
proaches, these works are not integrated in the
current software architecture design process. On
the other hand, some approaches propose ways of
integrating security requirements in ADLs. Given
the fact that these approaches tackle security at
a very abstract level, they are not able to effec-
tively support a model-driven security approach.
In this work, we want to propose a model-driven
security approach that can be used to integrate
the C2 ADL with security requirements.

6 CASE STUDY

The management of security requirements is a
critical task specially in modern application. In
order to aid the Security Administrator in this
task, we implemented a prototype that permits to
start from business security requirements, trans-
forms them into a more concrete representation
(i.e., policies), ties them to a representation of the
elements in the software architecture, and pro-
duces a concrete configuration for each element
involved in the policies. In order to point out
the benefit of the tool we have defined the fol-
lowing case study. Figure 2 shows the software
architecture of a distributed multi-user meeting
scheduler. Usually, the architecture model is pro-
vided by the System Architect. Figure 3 shows
the architecture modeled by means of UML.

As described in Section 3 the architecture pre-
sented in Figure 2 can be easily translated into the
corresponding UML class diagram with the use of
the� C2Component� and� C2Connector �
stereotypes. With this translation the Security
Administrator has all the information needed to
add the security requirements. According to the
ISAE 3402 standard, a business requirement that
the application has to fulfill is the following: Stan-
dards and policies exist to authenticate all admin-
istrative users. This top level requirement ex-
emplifies requirements related to authentication
(and authorization) of administrative users. For
example, this requirement can be refined into the
following set of authorizations and authentica-
tions:
• access to Admin GUI requires authentication,

6



Figure 2: C2 Architecture Figure 3: UML Architecture

• the data exchanged through Admin GUI must
be protected,

• the data exchanged between the web server
and the Database must be protected,

• only the Administrative roles can create a new
meeting,

• persistent data must be encrypted.
The requirements presented above lead also to

the definition of a set of negative authorizations
and authentications in order to make explicit the
assumptions behind the requirement.
• the role User cannot create a new meeting,
• the Admin GUI is not accessible from the In-

ternet,
• the role User must not access the Admin GUI,
• the data exchanged between the web server

and the Database must be protected.
With the use of Security4UML the Security

Administrator is able to represent the above poli-
cies in a more concrete way. Figure 4 shows the
ESec-Model representing the following authoriza-
tions: (a) only the Administrative roles can cre-
ate a new meeting (authz-1), (b) the role User
cannot create a new meeting (authz-2) and (c)
the role User must not access the Admin GUI
(authz-3). These authorizations are not tied to
the specific system, hence in order to add the se-
curity requirements to the software architecture,
the Security Administrator has to refine the Sec-
Model into the ESec-Model as described in Sec-
tion 3. For instance, the Security Administrator
may enrich the top-level action Create with infor-

mation about the concrete action. If we assume
that the new meeting corresponds to a new row in
the Meeting_Table, then the corresponding con-
crete action will be an Insert into the database.
Furthermore, in this phase, the Security Admin-
istrator can introduce additional properties in or-
der to tie the authorizations and/or authentica-
tions with the technologies related to the architec-
ture. For instance he/she can specify which cryp-
tographic technique (e.g., 3DES, AES) is used for
the encryption of the Meeting_Table.

Figure 4: Security requirements

The result of the Enrichment process above is
a set of policies related to the actual infrastruc-
ture and ready to be translated into the concrete
configuration in order to fulfill the security re-
quirements. After the Enrichment phase the Se-
curity Administrator can perform the Derivation
phase in order to produce a set of scripts and con-
figuration files in order to enforce the authoriza-
tions and authentications defined by means of Se-
curity4UML. The requirements only the Admin-
istrative roles can create a new meeting (authz-
1), and the role User cannot create a new meeting
(authz-2) are implemented by the following SQL
scripts:

CREATE ROLE Admin LOGIN
CREATE ROLE User LOGIN
GRANT INSERT ON Meeting_Table TO Admin
REVOKE INSERT ON Meeting_Table TO User

7



7 Conclusion and Future Work

The increasing complexity of current IT sys-
tems requires techniques that can be used to
help security administrators and system archi-
tects in the design, implementation and deploy-
ment of secure software architectures. A viable
way for handling this increasing complexity is
by using model-driven security approaches, which
can guide the user from the formal definition of
security requirements to the concrete implemen-
tation of the security configuration.

In this paper we presented a model-driven se-
curity approach that can be used to introduce se-
curity requirements in software architectures, and
to implement and deploy the security configura-
tion in a semi-automated way. We have shown
how a well-known ADL (C2) may be integrated
with a representation of security requirements.
We presented an overview of our Security4UML
meta-model, and we have shown how this meta-
model can be mapped on a UML profile. We also
presented a case study in which we have modeled
a distributed multi-user meeting scheduler appli-
cation.

Our approach is currently based on UML class
diagrams. This is not a restriction, because there
are ways to represent Architectural Design Lan-
guages with UML models [Robbins et al., 1998].
We plan in the future to integrate our model-
driven approach in ADLs that are not UML-
based.

References

[7safe, 2010] 7safe (2010). UK security breach inves-
tigations report. Technical report, University of
Bedfordshire.

[Arrigoni Neri et al., 2013] Arrigoni Neri, M.,
Guarnieri, M., Magri, E., and Mutti, S. (2013).
On the Notion of Redundancy in Access Control
Policies. In Proc. of SACMAT.

[Arrigoni Neri et al., 2012] Arrigoni Neri, M.,
Guarnieri, M., Magri, E., Mutti, S., and Para-
boschi, S. (2012). Conflict Detection in Security
Policies using Semantic Web Technology. In Proc.
of IEEE ESTEL - Security Track.

[Basin et al., 2011] Basin, D., Clavel, M., and Egea,
M. (2011). A decade of model-driven security. In
Proc. of SACMAT.

[Basin et al., 2010] Basin, D., Clavel, M., Egea, M.,
and Schläpfer, M. (2010). Automatic generation
of smart, security-aware GUI models. In Proc. of
ESSOS.

[Basin et al., 2003] Basin, D., Doser, J., and Lodder-
stedt, T. (2003). Model driven security for process-
oriented systems. In Proc. of SACMAT.

[Basin et al., 2006] Basin, D., Doser, J., and Lodder-
stedt, T. (2006). Model driven security: From
UML models to access control infrastructures.
ACM Trans. Soft. Eng. Methodol., 15(1).

[Guarnieri et al., 2012] Guarnieri, M., Magri, E., and
Mutti, S. (2012). Automated management and
analysis of security policies using eclipse. In Proc.
of the Eclipse-IT 2012.

[Jürjens, 2003] Jürjens, J. (2003). Secure Systems
Development with UML. Springer Berlin / Hei-
delberg.

[Jürjens, 2005] Jürjens, J. (2005). Sound methods
and effective tools for model-based security engi-
neering with UML. In Proc. of ICSE.

[Langevin et al., 2008] Langevin, J., McCaul, M.,
Charney, S., and Raduege, H. (2008). Securing cy-
berspace for the 44th presidency. Technical report,
DTIC Document.

[Medvidovic, 1996] Medvidovic, N. (1996). Formal
modeling of software architectures at multiple lev-
els of abstraction. In Proc. of the California Soft-
ware Symposium.

[Mouratidis et al., 2005] Mouratidis, H., Kolp, M.,
Faulkner, S., and Giorgini, P. (2005). A secure ar-
chitectural description language for agent systems.
In Proc. of AAMAS. ACM.

[Mutti et al., 2011] Mutti, S., Neri, M. A., and Para-
boschi, S. (2011). An eclipse plug-in for specifying
security policies in modern information systems. In
Proc. of the Eclipse-IT 2011.

[Oladimeji et al., 2007] Oladimeji, E., Supakkul, S.,
and Chung, L. (2007). A Model-driven Approach
to Architecting Secure Software. In Proc. of SEKE.

[Patterson, 2002] Patterson, D. A. (2002). A simple
way to estimate the cost of downtime. In Proceed-
ings of LISA, Usenix.

[Pertet and Narasimhan, 2005] Pertet, S. and
Narasimhan, P. (2005). Causes of failures in web
applications. CMU Technical Report.

[Ren and Taylor, 2005] Ren, J. and Taylor, R. N.
(2005). A Secure Software Architecture Descrip-
tion Language. In Proc. of SSATTM Workshop.

[Robbins et al., 1998] Robbins, J., Medvidovic, N.,
Redmiles, D., and Rosenblum, D. (1998). Inte-
grating architecture description languages with a
standard design method. In Proc. of ICSE.

[Sandhu, 1998] Sandhu, R. (1998). Role-based access
control. Advances in computers, 46.

[Taylor et al., 1996] Taylor, R., Medvidovic, N., An-
derson, K., Whitehead, E.J., J., Robbins, J.,
Nies, K., Oreizy, P., and Dubrow, D. (1996). A
component- and message-based architectural style
for GUI software. IEEE Trans. on Soft. Eng.,
22(6).

8


