Exorcising Spectres with Secure Compilers

Abstract—Attackers can access sensitive information of pro-
grams by exploiting the side-effects of speculatively-executed
instructions using Spectre attacks. To mitigate theses attacks,
popular compilers deployed a wide range of countermeasures.
The security of these countermeasures, however, has not been
ascertained: while some of them are believed to be secure, others
are known to be insecure and result in vulnerable programs.

To reason about the security guarantees of these compiler-level
countermeasures, this paper presents a framework comprising
several secure compilation criteria characterizing when compilers
produce code resistant against Spectre attacks. With this frame-
work, we perform a comprehensive security analysis of compiler-
level countermeasures against Spectre attacks implemented in
major compilers.

This work provides sound foundations to formally reason
about the security of compiler-level countermeasures against
Spectre attacks as well as the first proofs of security and
insecurity of said countermeasures.

To better present notions, this paper uses colours in a way that
both colourblind and black&white readers can benefit from [49].
For a better experience, please print or view this in colour.

I. INTRODUCTION

By predicting the outcome of branching (and other) instruc-
tions, CPUs can trigger speculative execution and speed up
computation by executing code based on such predictions.
When predictions are incorrect, CPUs roll back the effects of
speculatively-executed instructions on the architectural state
(i.e., memory, flags, and registers). However, they do not roll
back effects on microarchitectural components like caches.

Attackers can exploit microarchitectural leaks caused by
speculative execution using Spectre attacks [35, 37, 38, 41,
57]. To mitigate these attacks, compilers deployed a number
of compiler-level countermeasures. For instance, the insertion
of 1lfence speculation barriers [31] and speculative load
hardening [16] can mitigate leaks introduced by speculation
over branch instructions (i.e., the Spectre v1 attack [37]).

Existing countermeasures, however, are often developed
in an unprincipled way, that is, they are not proven to be
secure, and some of them fail in blocking speculative leaks,
i.e., those resulting from speculatively executed instructions.
For instance, the Microsoft Visual C++ compiler misplaces
speculation barriers, thereby producing programs that are still
vulnerable to Spectre attacks [27, 36].

In this paper, we present a framework for reasoning about
compiler-level countermeasures against speculative execution
attacks. Using this framework, we precisely characterize the
security guarantees provided by Spectre countermeasures in
major C compilers. Thus, we make these contributions:

» We present a secure compilation framework tailored
towards reasoning about speculative execution attacks (Sec-
tion II). The distinguishing feature of our framework is that

compilers translate programs from a source language L, which
has a standard imperative semantics, into a target language
T that is equipped with a speculative semantics (inspired
by the always mispredict semantics from [27]) capturing the
effects of speculatively-executed instructions.! This matches
a programmer’s mental model: programmers do not think
about speculative execution when writing source code (and
they should not!) since speculation only exists in processors
(captured by T’s speculative semantics). It is the duty of a
(secure) compiler to ensure T’s features cannot be exploited.”
Through minor changes to the languages’ semantics,
our framework encompasses two different security mod-
els for speculative execution: (1) (Strong) speculative non-
interference [27] (SNI), which considers all leaks derived from
speculatively-executed instructions as harmful, and (2) Weak
speculative non-interference [28], which instead focuses only
on (speculative) leaks of speculatively-accessed data.

» We introduce speculative safety (SS, Section III), a novel
safety property that implies the absence of classes of specula-
tive leaks. The key features of SS are that (1) it is parametric in
a taint-tracking mechanism, which we leverage to reason about
security by focusing on single traces, and (2) it is formulated to
simplify proving that a compiler preserves it. We instantiate SS
using two different taint-tracking mechanisms obtaining strong
SS and weak SS. We characterize the security guarantees of
SS by showing that strong (resp. weak) SS over-approximates
strong (resp. weak) speculative non-interference.

» We define two novel secure compilation criteria: Robust
Speculative Safety Preservation (RSSP) and Robust Specu-
lative Non-Interference Preservation (RSNIP, Section IV).
These criteria respectively ensure that compilers preserve
(strong or weak) SS and SNI robustly, i.e, even when linked
against arbitrary (potentially malicious) code. Satisfying these
criteria implies that compilers correctly place countermeasures
to prevent speculative leaks. However, RSSP requires preserv-
ing a safety property (SS) and it is much simpler to prove
than RSNIP, which requires preserving a hyperproperty [20].
To the best of our knowledge, these are the first criteria that
concretely instantiate a recent theory that phrases security of
compilers as the preservation of (hyper)properties [3, 4, 52]
(here: absence of speculative leaks).

» Using our framework, we perform a comprehensive
security analysis of compiler-level countermeasures against
Spectre vl implemented in major compilers (Section V).
Specifically, we focus on (1) automated insertion of 1fences

'In this paper we use a blue, sans-serif font for elements of the source
language, an orange, bold font for elements of the target language.
Elements of the meta-language or common to all languages are typeset in
a black, italic font (to avoid repeating similar definitions twice).

2 Secure countermeasures can be seen as preventing speculative leaks.

(implemented in the Microsoft Visual C++ and the Intel ICC

compilers [33, 48]), and (2) speculative load hardening (SLH,

implemented in Clang [16]). Our analysis proves that:

— The Microsoft Visual C++ implementation of (1) violates
weak RSNIP and is thus insecure.

— The Intel ICC implementation of (1) provides strong

RSNIP, so compiled programs have no speculative leaks.
— SLH provides weak RSNIP, so compiled programs do

not leak speculatively-accessed data, which is sufficient to

prevent Spectre-style attacks. However, compiled programs
might still contain speculative leaks.
— The non-interprocedural variant of SLH violates weak

RSNIP and is thus insecure.

— We propose a variant of SLH, called strong SLH, that
provides strong RSNIP and blocks all speculative leaks.
All our security proofs follow a common methodology (see
Section IV-C) whose key insight is that, by exploiting that
SS over-approximates SNI, proving a countermeasure to be
RSSP is sufficient to ensure its security. This allows us to

directly leverage SS to simplify our security proofs.

After presenting these results, we discuss how to extend our
methodology to countermeasures against other Spectre variants
(Section VI). Then we discuss related work (Section VII) and
conclude (Section VIII).

For simplicity, most formalisation is elided or simplified
(but we discuss all key aspects); auxiliary lemmas and proofs
are omitted. Full details are in the supplementary material.

II. MODELLING SPECULATIVE EXECUTION

To illustrate our speculative execution model, we first
introduce Spectre vl (Section II-A). Using that, we define
the threat model that we consider (Section II-B). Then, we
present the syntax of our languages (Section II-C) and the
trace model (Section II-D). This is followed by the non-
speculative semantics of our languages (Section II-E). Next,
we present the source trace semantics (Section II-F), the
target speculative semantics (Section II-G), and the target trace
semantics (Section II-H). This formalisation focuses on the
strong variants of SS and SNI, so we conclude by defining
the changes necessary for the weak variants (Section II-I).

A. Spectre vi: Illustrative example

void get (int y)
if (y < size) then
temp = B[A[y]"512]

Listing 1. The classic Spectre v1 snippet.

Consider the standard Spectre vl example [37] in Listing 1.
Function get checks whether the index stored in variable y is
less than the size of array A, stored in the global variable size.
If so, the program retrieves A[y], multiplies it by the cache
line size (here: 512), and uses the result to access array B.

If size is not cached, modern processors predict the guard’s
outcome and speculatively continue the execution. Thus, line
3 might be executed even if y > size. When size becomes
available, the processor checks whether the prediction was
correct. If not, it rolls back all changes to the architectural state

and executes the correct branch. However, the speculatively-
executed memory accesses leave a footprint in the cache,
which enables an adversary to retrieve A[y] even for y > size.

B. Threat Model

As mentioned, we study compiler countermeasures that
translate source programs into (hardened) target ones.

In our setting, an attacker is an arbitrary program at target
level that is linked against a (compiled) partial program of
interest. The partial program (or, component) stores sensitive
information in a private heap that is not accessible to the
attacker. For example, in the snippet of Listing 1, the array
A would be stored in the private heap and the attacker is code
that runs before and after function get.

While attackers cannot directly access the private heap, they
can mount confused deputy attacks [29, 54] to trick compo-
nents into leaking sensitive information. We focus on prevent-
ing only speculative leaks, i.e., those caused by speculatively
executed instructions. For this, our attacker can observe the
program counter and the locations of memory accesses during
program execution. This attacker model is commonly used to
formalise timing side-channel free code [8, 45] without requir-
ing microarchitectural models. Following [27], we capture this
model in our semantics through traces that record the address
of all memory accesses (e.g., the address of B[A[y]*512] in
Listing 1) and the outcome of all control-flow instructions.

To model the effects of speculative execution, our target lan-
guage mispredicts the outcome of all branch instructions in the
component. This is the worst-case scenario in terms of leakage
regardless of how attackers poison the branch predictor [27].

C. Languages | and T

Technically, we have a pair of source and target languages
(L and T') for studying strong security definitions and a pair
of source and target languages (L~ and T") for studying the
weak ones. Strong (L-T) and weak (L™-T") languages have
the same syntax but slightly different semantics. We focus
this section and the following ones on the strong languages
L-T; we introduce the weak languages L™-T" in Section II-I.

The source (L) and target ('T') languages are single-threaded
while languages with a heap, a stack to lookup local variables,
and a notion of components (our unit of compilation). We
focus on such a setting, instead of an assembly-style language
like [17, 27], to reason about speculative leaks without getting
bogged down in complications like unstructured control flow.

Both L and T have a taint-tracking mechanism, where
values can be tainted as “safe” (denoted by S) or “unsafe”
(denoted by U). Taint-tracking is at the foundation of our
speculative safety definition and it enables reasoning about
security on single traces. We consider two taint-tracking mech-
anisms, a strong and a weak one, that lead to different security
guarantees (see Section III). Each mechanism is adopted in
the related pair of languages: strong (resp. weak) languages
use the strong (resp. weak) taint-tracking. Our semantics are
parametric in the taint-tracking, so that there is minimal
notation overhead and duplication of rules between languages.

The common syntax of L and T is presented below; we
indicate sequences of elements ej,---,e, as € and €- e
denotes a stack with top element e and rest of the stack e.

Programs W,P = H,F, T Codebase C ::=F, T
Imports I ::=f

Functions F ::= f(z) — s; return;
Attackers A = H,F [] Taint 0 == S| U
Heaps H ::= @ | H;n—v:0 where n € Z

Value Heaps H, ::=
Taint Heaps H; ::=

Ezxpressions e ::

@ | Hy;n— v where n €7

@ | H;;n— o where n €Z

Values v :=n € N

zlv|ede
Statements s ::= skip | s;s|let x =ein s| call f e
| ifz e then s else s|e:=¢€ele:=p e
|let z=rd ein s|let t=rd, e in s
| ifence | let x = e (if e) in s
We model components, i.e., partial programs (P), and attack-
ers (A). A (partial) program P defines its heap H, a list of
functions F, and a list of imports 1, which are all the functions
an attacker can define. An attacker A just defines its heap and
its functions. We indicate the code base of a program (its
functions and imports) as C.

Functions are untyped, and their bodies are sequences of
statements s that include standard instructions: skipping, se-
quencing, let-bindings, conditional branching, writing the pub-
lic and the private heap, reading the public and private heap,
speculation barriers, and conditional assignments. Statements
can contain expressions e, which include program variables z,
natural numbers n, arithmetic and comparison operators .

Heaps H map memory addresses n € Z to tainted values
v : 0. Heaps H can be split in their value-only part H, (used
for the language semantics) and their taint-only part H; (used
for taint-tracking). We denote this split as H = H,, + H;. All
heaps are partitioned in a public part (when the domain n > 0)
and a private part (if n < 0). An attacker A can only define
and access the public heap. A program P defines a private
heap and it can access both private and public heaps.

D. Labels and Traces

Computation steps in L and T are labelled with labels
A, which can be the empty label €, an action o recording
the control-flow between attacker and code (as required for
secure compilation proofs [2, 4, 50, 52]), or a parch. action
0 capturing what a microarchitectural attacker can observe.

Actions « = call f v?|call f v!|ret!|ret?
parch. Acts. § := read(n) | write(n) | if(v) | rlb
Labels A::=¢|ald
Action call f v? represents a call to a function f in the com-
ponent with value v. Dually, call f v! represents a call(back)
to the attacker with value v. Action ret! represents a return
to the attacker and ret? a return(back) to the component.

The read(n) and write(n) actions denote respectively read
and write accesses to the heap location n, and they model
leaks through the data cache. In contrast, the if(v) action

denotes the outcome of branch instructions and the r1b action
indicates the roll-back of speculatively-executed instructions.
These actions implicitly expose which instruction we are
currently executing, and thus the instruction cache content.

Traces \° are sequences of labels, each tainted with a taint
o. The semantics only track parch. actions executed inside
the component P, whereas those executed in the attacker-
controlled context A are ignored (Rule E-L-single later on).
The reason is that parch. actions produced by A can be safely
ignored, as done in other robust safety works [23, 25, 40, 60],
since A cannot access the private heap. Therefore, traces
have this normal form: a?°§°«!®, where aCs are tainted
calls/returns, §%s are tainted parch. actions, and the alternation
of 7 and ! actions is due to well-bracketed control-flow.

E. Non-Speculative Semantics for L and T

Both languages are given a labelled operational semantics
that describe how whole programs execute. A component P
and an attacker A can be linked to obtain a whole program
W = A|[P] that contains the functions and heaps of A and P.
Only whole programs can run, and a program is whole only
if it defines all functions that are called and if the attacker
defines all the functions in the interfaces of P.

Program states C, H, B > (s)7 consist of a codebase C, a
heap H, a stack of local variables B, a statement s, and a stack
of function names f. Just like heaps, local variable bindings
B are split between a value part B,, and a taint part B, that
can be merged as B, + B;. C is used to look up function
bodies and to determine which functions are the component’s
and which are the attacker’s. Function names f, which we
often omit for simplicity, are used to infer if the code that
is executing comes from the attacker or from the component,
and this determines the produced labels.

Bindings B ::=
Value Bindings B, ::=
Taint Bindings By ::

| Bix—uv:o
| Byyz— v
| Bz o

Prog. States 2 := C,H, B> (s)f
Value States $2, == C, H,, B, > (s)7
Taint States (2, := C, H;, B> (s)F

The operational semantics (Section II-E1) relies only on value
states (2,, that is, states whose heap and stack of bindings only
contain values. The taint-tracking semantics (Section II-E2),
instead, relies on taint states (2;, whose heap only tracks
taint but whose stack of bindings contains both values and
taints (values are needed to determine how to update taints
for memory operations as we explain later).

1) Operational Semantics: Both L and T have a big-
step operational semantics for expressions and a small-step,
structural operational semantics for statements that generates
labels. The former produces judgments B, > e | v meaning:
“according to variables B,, expression e reduces to value v.”
The latter produces judgments 2, 2, £ meaning: “state
{2, reduces in one step to (2, emitting label \.” The rules
describing these semantics are standard and therefore omitted.

We remark that values are computed as expected (though we
use 0 for true in ifz statements) and expressions access only
local variables in B, (reading from the heap is treated as a
statement). The rules of conditionals, read, and write emit the
related parch. actions (from Section II-D).

2) Taint-tracking semantics: The taint-tracking semantics
tracks taints of values (both in heaps and variable bindings)
and of the program counter (pc).

Taints form the usual integrity lattice S < U and are
combined using the least-upper-bound (L) and greatest-lower-
bound (1) operators. For simplicity, we report the key cases
of the truth tables: SUU =U and SNU = S.

Taints are calculated using two judgements. Judgement
By>e | oreads as “expression e is tainted as o according to

the variable taints B,”. In contrast, judgement o; 2, —— 2}
reads as “when the pc has taint o, state {2; single-steps to {2}
producing a (possibly empty) action with taint ¢’”. The most
representative rules are those interacting with the private heap:

(T-write-prv)
Bre | n:o Bpoe | _:0” H{=HU-|n|—d"
— Mo pe - .
0pe; C,HyyB-Bre:=p € 7 C,H!,B - Bp skip
(T-read-prv)
Bre | n:0' no=-—|n|] Hin,)=0" o=0"U0o’

olMope

Ope; C,Hy,B-Bplet x=rdy e in s
C,Hy,B-BUz—0:Ups

Writing to the private heap (Rule T-write-prv) taints the
location (—|n|) with the taint of the written expression (o”).
In contrast, reading from the private heap (Rule T-read-prv)
taints the variable where the content is stored as unsafe (U)
and the read value is set to 0 (this information is not used
by the taint-tracking, see Section II-F). Both rules taint the
action with the least-upper-bound of the pc (o,.) and data
taint (o). In the rules, we use |n| for the absolute value of n,
H, U n — o to update the binding for n in H,, and H,(n) to
look up n’s taint in H,.

To correctly taint memory accesses, we need to evaluate
expression e to derive the accessed location |n|; see, for
instance, Rule T-write-prv. This is why taint-tracking states
{2; contain the full stack of bindings B and not just the taints
B;. The rules above rely on a judgement B> e | n: o which
is obtained by joining the result of the expression semantics on
B’s values and of the taint-tracking semantics on B’s taints.

(Combine-B)
B By,>e | v
Bre | v:o

By + B, = Bive | o

Here ends the part of the semantics that is common to both
L and T, we now introduce the bits where they differ.
FE. Trace Semantics for L

The operational and taint single-steps from Section II-E are
combined according to the judgement 2 25 Q' below.

(Combine-s-L)

Q+%=0 L+ =0 o 2 Q S0 2 Q

Q0 2 o
(MergeQ)i -
H,+H=H B/,+Bi=B B,+B:=B’

C;H,;B,bs+ C;H;;Brs'=C;H;B'>s

Intuitively, the operational semantics determines how states
reduce (€2, BN), whereas the taint-tracking semantics
determines the action’s label and how taints are updated
S: Q0 2 Q}). We remark that the pc taint is always safe
since there is no speculation in L. Moreover, merging states
Q, + €, results in ignoring the value information accumulated
in (; since we rely on the computation performed by the
operational semantics for values (Rule Merge-(2).

Next, we can define the big-step semantics = of L, which
concatenates single steps into multiple ones and single labels

. . X7 . « .
into traces. The judgement Q == Q' is read: “state {2 emits
trace \? and becomes . The most interesting rule is below:

(E-L-single)
Q=F,I,H,Bv (s); Q' =F,LH B >(s)7q
Q"5 Q" iff==f and f€lthen \7 = ¢ else A = a°
Q=2 Q

As mentioned in Section II-D, the trace does not contain
parch. actions performed by the attacker (see the ‘then’
branch, recall that functions in | are defined by the attacker).

Finally, the behaviour Beh(W) of a whole program W is the
trace \° generated according to the = semantics starting
from the initial state of W (indicated as Qo (W)) until it
terminates.’ Intuitively, the initial state of a program is the
main function, which is defined by the attacker.

G. Speculative Semantics for T

Our semantics for T' is inspired by the “always mispredict”
semantics of Guarnieri ef al. [27], which captures the worst-
case scenario (from an information theoretic perspective) in-
dependently of the branch prediction outcomes. Whenever the
semantics executes a branch instruction, it first mis-speculates
by executing the wrong branch for a fixed number w of
steps (called speculation window). After speculating for w
steps, the speculative execution is terminated, the changes
to the program state are rolled back, and the semantics
restarts by executing the correct branch. The parch. effects of
speculatively-executed instructions are recorded on the trace
as actions. For taint-tracking, the taint of the program counter
starts as S and it is raised to U when speculation happens.

As for the non-speculative semantics, we decouple the op-
erational aspects from the taint-tracking ones. Speculative pro-
gram states (20) are defined as stacks of speculation instances
(®), which in turn are split in their operational (®.,) and taint
(®) sub-parts. A speculation instance ({2, w, o) records the

3 n [3, 4], a program behaviour is a set of traces due to non-determinism.
Our language is fully deterministic; so the behaviour is a single trace [39].

program state (2, the remaining speculation window w, and
the taint o of the program counter. The operational part (P.,)
keeps track of the operational part of the program state ({2,)
and of the speculation window. The taint part (®:) keeps
track of the taint part of the program state ({2;) and the
taint of the pc (o). As before, ®, and ¥ can be merged as
® = &, + P,. The speculation window is a natural number n
or L when no speculation is happening; its maximum length
is a global constant w that depends on physical characteristics
of the CPU like the size of the reorder buffer.

Speculative States ¥ = ®

Speculation Instance ® ::= (2, w, o)
Speculation Instance Vals. @, := (O, w)
Speculation Instance Taint ® ::= (), 0)

The execution of program W starts in state (2o (W), [, S),
i.e., in the same initial state that L starts in, with the program
counter tainted as S since no speculation has happened yet.
1) Operatlonal Semantics: In the small-step operational
semantics &, » @/ , reductions happen at the top of the stack:

(E T- speculate Ifence)

Q, = Q7 =C,H, >s:s s = Ifence
P, - (QV n+1)5®,-(Q,,0)
(E-T- speculate actlon)
Q, 250, Q,=C,H,,Bybs;s
s #Zifz _then _else _and s ;‘é Ifence
D, (Qy,n+1)2 - (92, n)

- (E T- speculate if)
Q,=C H,,B, -By>(s;s)f_f
Q, = Q) C=F;I

s =if e then s” else s

Fgl

j=min(w,n)

"

if B,>e | Othen Q) =C H, B Db”/."/
if B, {>c¢11andn>0thenﬂ”_CH -By>s
?V-(Qv.rlil)f}eill‘v-(Q:,.n,)»(ﬂi,’.j)

(E-T-speculate-rollback)
n = 0 or €2, is stuck

&, - (Qy,n) 22, P,

Mis-speculation pushes the mis-speculating state on top of
the stack (Rule E-T-speculate-if). Note that speculation does
not happen in attacker code (condition f ¢ I, recall that f
is the function executing now and I are all attacker-defined
functions). This is without loss of generality since (1) attackers
cannot directly access the private heap, and (2) our security
definitions (Section III) will consider any possible attacker, so
the speculative behavior of an attacker (i.e., the speculative
execution of the ‘wrong branch’) will be captured by another
one who has the same branches but inverted (e.g., the ‘then’
code of one attacker is the ‘else’ code of another). When the
speculation window is exhausted (or if the speculation reached
a stuck state), speculation ends and the top of the stack is
popped (Rule E-T-speculate-rollback). The role of the lfence
instruction is setting to zero the speculation window, so that
rollbacks are triggered (Rule E-T'-speculate-lfence).

2) Taint-tracking semantics: Similarly to the operational
semantics, reductions happen at the top of the stack also for the
taint-tracking semantics @, 7. ®/. Selected rules are below:

(T-T-speculate-action)

Qt ECAHt.EDSZS/

s #Zifz _ then _ else _ and s # Ifence

@ - (,0) , @ - (2, 0)
(T-T'-speculate-if)
Q. =C,H,,B-B> (s; s/)gvf s = if e then s” else s
o';Qy = Q C=F;I fel
ifBre | 0:0then O/ =C H,, B-Bps";s

ifBre | n:oandn>0then Q) =C.H,, B -Bprs’;s

o < Q

/
o No

"

Py - (e, 0) 202, B - (Q, 0) - (QF, V)

In these rules, o is the program counter taint which is
combined with the action taint o' (Rules T-T-speculate-action
and T-T-speculate-if). Mis-speculation pushes a new state on
top of the stack whose program counter is tainted U denoting
the beginning of speculation (Rule T-T-speculate-if).

H. Trace Semantics for T

The two operational and taint-tracking single steps from
Section II-G are combined in a single reduction as follows:

(Combine-T)
P, 4+ D=8 P+ =X DD, DL P
ALY
This reduction is used by the big-step semantics > =—— >/

that concatenates single labels into traces, which, as before,
do not contain microarchitectural actions generated by the
attacker. Rules for traces of T' are analogous to those of L
(e.g., Rule E-L-single) except that they rely on single steps
made by the speculative semantics () instead of the non-
speculative one (—).

As before, the behaviour Beh(W) of a whole program W
is the trace \“ generated, according to the —- semantics,
starting from the initial state of W until termination.

We now show how to apply the trace semantics to Listing 1.

Example 1 (L and T Traces for Listing 1). Consider array
A being U and size=4. Trace t,s below indicates a valid
execution of the code in L, and thus without speculation. On
the other hand, trace t, is a valid execution of the code in
T, and therefore with speculation. We indicate the addresses
of arrays A and B in the source and target heaps with n4 and
np respectively and the value stored at A[i] with v}.

ths = call get 07° - if(0) - read(na)® - read(ng + v1)° - ret!®
tsp = call get 875 . if(l)s -read(na - 8)5-
read(ng + Vi)u .r1b° . ret!S

In the two traces, the function is called with different
parameters. Specifically, the parameter is out-of-bound in t,
thereby resulting in speculatively-executed instructions. The
key difference between the traces is that while all actions in
tns are S, there is a U action in t.;, (which speculatively leaks
the unsafe value A[8] from the private heap). D]

1. Weak Languages L~ and T"

We are now ready to introduce the weak languages L~ and
T, which we use to study weak security definitions. These

languages differ from L and T in two aspects:

1) Following [28], non-speculatively reading from the pri-
vate heap produces an action read(n — v) that contains the
read value v as well as the accessed memory address n.
Speculative reads, instead, produce actions read(n) as before.

2) For taint-tracking, we replace Rule T-read-prv with the
one below that taints the read variable with the glb of the
taints of pc and read value (0’ M 0,,) instead of U.

(T-read-prv-weak)

Bre | n:o' n,=—|n] H(n.,d) =0" o=0"U0d

olMope

apE;C,Ht,E»Bblet x=rd, e in s
C,Hy,B-BUzr 0:0 Mopb>s

III. SECURITY DEFINITION FOR SECURE SPECULATION

We now present semantic security definitions against spec-
ulative leaks. We start by presenting (robust) speculative non-
interference (RSNI, Section III-A). Next, we introduce (robust)
speculative safety (RSS, Section III-B). These definitions can
be applied to programs in the four languages L, T, L°, and
T". Thus, in the following, we write RSNI(L) and RSS(L)
to indicate which language L the definitions are referring to.
Since these languages have the same syntax and different
semantics, we can study the relationships between RSNI and
RSS for weak and strong languages (Section III-C).

A. Robust Speculative Non-Interference

Speculative non-interference is a class of security proper-
ties [27, 28] characterizing speculative leaks. Here, we instan-
tiate robust speculative non-interference in our framework.*
For this, we need to introduce two concepts:

o SNI is parametric in a policy denoting sensitive informa-
tion. As mentioned in Section II-B, we assume that only the
private heap is sensitive. Hence, whole programs W and W’
are low-equivalent, written W’ = W, if they differ only in
their private heaps.

o SNI requires comparing the leakage resulting from non-
speculative and speculative instructions. The non-speculative
projection t[nse [27] of a trace t extracts the observations
associated only with non-speculatively-executed instructions.
We obtain t[,s. by removing from ¢ all sub-strings enclosed
between if(v) and rlb observations. We illustrate this using
an example: below is [,s. applied to t., from Example 1.

tsplnse= call get 875. if(l)S -ret!S
We are now ready to formalise SNI. A whole program W
is SNI if its traces do not leak more than their non-speculative
projections. That is, whenever an attacker can distinguish the
traces produced by W and a low-equivalent program W', the
distinguishing observation must be generated by an instruction
that does not result from mis-speculation.
Definition 1 (Speculative Non-Interference (SNI)).
F W SNIEVW. if W= W
and Beh(2p (W) nse= Beh(2g (W) nse

4We follow SNI’s trace-based characterization from [27, Proposition 1].

then Beh(£2y (W)) = Beh(£2y (W'))

A component P is robustly speculatively non-interferent if
it is SNI no matter what valid attacker it is linked to (Defi-
nition 2), where an attacker is valid (indicated as - A : atk)
if it does not define a private heap and if it does not contain
instructions to read and write the private heap.

Definition 2 (Robust Speculative Non-Interference (RSNI)).
- P:RSNIZ VA if - A: atk then - A[P]: SNI

Example 2 (Listing 1 is not RSNI in T'). Consider the code
of Listing 1 (indicated as P;) and an attacker A® that calls
function get with 8. Since array A is in the private heap,
the low-equivalent program required by Definition 1 is the
same A® linked with some Py, which is the same P; with
some array N with contents different from A in the heap
such that A[8]#N[8]. Whole program A® [P;| generates trace
t.p from Example 1 while A® [P | generates t., below. We
indicate the address of array N as np and the content of N|i]
as vi;. Low-equivalence yields that addresses are the same
(na + 8 = ny + 8) but contents are not (v # v¥), and
thus B is accessed at different offsets (np + v # np + vi).

t;p = call get 875 .if(1)S - read(nyn + 8)5-
read(ng + Vi)u -r1bS - ret!®

Listing 1 is not RSNI in T since the non-speculative projec-

tions of t;p and of tg;, are the same (see above) while t;p and

tep are different (read(npg + v3)Y # read(ng + v&)Y). @

B. Robust Speculative Safety

Speculative safety ensures that whole programs W generate
only safe (S) actions in their traces. As we show in Sec-
tion III-C, its security guarantees depend on the underlying
language (and on its taint-tracking mechanism).

Definition 3 (Speculative Safety (SS)).

W :SSE VAT € Beh(W).Ya® e Xo.o = 8
A component P is RSS if it upholds SS when linked against
arbitrary valid attackers (Definition 4).

Definition 4 (Robust Speculative Safety (RSS)).

FP:RSSE VA. if - A: atk then - A[P]:SS
The snippet of Listing 1 is not RSS in T because the
attacker that calls get with argument & generates trace tg,
which has an unsafe action (Example 1). The same code in L
is RSS because it never generates actions tainted as U.

C. Relationships Between Security Definitions

We now illustrate the relationships between the security
definitions instantiated for our languages L, T, L°, and T".

1) Relationships for L and L : All programs in L and L
trivially enjoy both speculative non-interference and specu-
lative safety, because L and L~ do not speculatively execute
instructions and produce traces with only S actions.

Theorem 1 (All L and L™ programs are secure).
VP. P :RSS(L) and F P :RSS(L)
and + P :RSNI(L) and F P : RSNI(L")
2) Relationships for T and 'T": The relationships are sum-
marized below in terms of security guarantees and precision.

least precise most precise

most secure RSS(T) —eeM 2, RSNI(T)
Theorem éLU ﬂ'l'heorem 4
Theorem 3

least secure RSS(T") === RSNI(T")

Characterization of speculative non-interference: Instan-
tiating RSNI with languages T and T" result in different secu-
rity guarantees. Specifically, RSNI(T') corresponds to specula-
tive non-interference [27, 28], which ensures the absence of all
speculative leaks. In contrast, RSNI('T") corresponds to weak
speculative non-interference [28], which allows speculative
leaks of information that has been retrieved non-speculatively.
That is, RSNI('T") ensures the absence only of speculative
leaks of speculatively-accessed data.

As shown in [28], strong and weak speculative non-
interference (that is, RSNI(T') and RSNI(T")) have different
implications for secure programming. In particular, programs
that are traditionally constant-time (i.e., constant-time under
the non-speculative semantics) and satisfy strong speculative
non-interference are also constant-time w.r.t. the speculative
semantics. Similarly, programs that are traditionally sandboxed
(i.e., do not access out-of-the-sandbox data non-speculatively)
and satisfy weak speculative non-interference are also sand-
boxed w.r.t. the speculative semantics.

Speculative non-interference and speculative safety:
As mentioned before, RSNI(T') semantically characterize the
absence of speculative leaks. In contrast, RSS(T) is an over-
approximation of RSNI('T) whose preservation through com-
pilation is easier to prove than RSNI(T)-preservation.

Theorem 2 (RSS(T") over-approximates RSNI('T)).
1) VP. if P :RSS(T) then + P : RSNI(T)
2) dP. F P : RSNI(T) and ¥ P : RSS(T)

To understand point 1, observe that RSS(T) ensures that
only safe observations are produced by a program P. This, in
turn, ensures that no information originating from the private
heap is leaked through speculatively-executed instructions in
P. Therefore, P satisfies RSNI('T") because everything except
the private heap is visible to the attacker, i.e., there are no
additional leaks due to speculatively-executed instructions.

To understand point 2, consider function get nc from List-
ing 2, which always accesses B[A[y]]. This code is RSNI('T)
because any two states that can be distinguished by looking
at the traces would also be distinguished by looking at
their non-speculative projections, i.e., speculatively-executed
instructions do not leak additional information. However, it
is not RSS(T) because speculative memory accesses will
produce U actions.

void get_nc (int vy)
if (y < size) then B[A[y] *512] else B[A[y] *512]

Listing 2. Code that is RSNI but not RSS.

RSNI(T") and RSS(T") enjoy a relationship similar to
RSNI(T) and RSS(T).

Theorem 3 (RSS(T") over-approximates RSNI(T")).
1) VP.if P :RSS(T") then - P : RSNI(T")
2) 3P.F P : RSNI(T") and ¥ P : RSS(T")

Strong variants imply the weak ones: Since RSNI(T)
ensures the absence of all speculative leaks while RSNI(T")
only ensures the absence of some of them, any RSNI(T)
program is also RSNI('T"). Similarly, any RSS(T) program is
also RSS(T") since all actions tainted S by I’s taint-tracking
are tainted S also by T ’s taint-tracking.

Theorem 4 (Strong Variants Imply Weak Ones).
vP. if P :RSNI(T) then + P : RSNI(T")
vP. if P :RSS(T) then + P : RSS(T")

IV. COMPILER CRITERIA FOR SPECTRE SECURITY

In this section, we introduce our secure compilation criteria:
robust speculative safety preservation (RSSP, Section IV-A),
which preserves RSS, and robust speculative non-interference
preservation (RSNIP, Section IV-B), which preserves RSNI.
We conclude by discussing how compilers can be proven
secure or insecure using these criteria (Section IV-C).

As before, criteria can be instantiated using pairs of lan-
guages L-T or L-T". Criteria instantiated with the strong
languages (say RSSP(L,T')) are indicated with a + (that
is, RSSP*). Those instantiated with weak languages (say
RSNIP(L,T)) are indicated with a - (that is, RSNIP"). When
we omit the ‘sign’, we refer to both criteria. For simplicity,
we only present the strong criteria (for L-T'), weak ones are
defined identically (but for L=-T7).

A. Robust Speculative Safety Preservation

The first criterion (Definition 5) is clear: a compiler pre-
serves RSS if, given a source component that is RSS, the
compiled counterpart is also RSS.

Definition 5 (RSSP™).
F[]:RSSP* € WP e L. if FP:RSS(L)
then + [P] : RSS(T)

Definition 5 is a “property-ful” criterion since it explicitly
refers to the property that the compiler preserves [3, 4] and it
clearly states the security implications of a compiler upholding
it. Unfortunately, proving a “property-ful” criterion can be
fairly complex at times, but fortunately, it is generally possible
to turn a “property-ful” definition into an equivalent “property-
free” one [3, 4, 52]. This is often beneficial because “property-
free” criteria come in so-called backtranslation form, which
have established proof techniques [2, 4, 13, 46, 50, 52].

To state the equivalence of these criteria, we introduce a
cross-language relation between traces of the two languages,
which specifies when two possibly different traces have the
same “meaning”. Our property-free security criterion (RSSC),
Definition 6) states that a compiler is RSSC' if for any target-
level attacker A that generates a trace A%, we can build a
source-level attacker A that generates a trace \° that is related
to A\“. A source trace \° and a target trace \° are related
(denoted with \° ~ \?) if the target trace contains all the
actions of the source trace, plus possible interleavings of safe
(S) actions (Rules Trace-Relation-Safe and Trace-Relation-
Safe-Heap). All other actions must be the same (i.e., =,
Rules Trace-Relation-Same and Trace-Relation-Same-Heap).

(Trace-Relation-Same)

(Trace-Relation-Same-Heap)

TN a’ =af N AT 67 =467
N AT - af PR D G
(Trace-Relation-Safe) (Trace-Relation-Safe-Heap)

N AT AT
A7 = A7 - oS AT AT -5

We are now ready to formalise RSSC, which is equivalent
to RSSP (Theorem 5). Importantly, this result implies that our
choice for the trace relation is correct; a relation that is too
strong or too weak would not let us prove this equivalence.
Definition 6 (RSSCY).

F[]: RSSC* E WP €L, A, A7, if Beh(A [[P]]) = A~

then 3A, \7.Beh(A[P]) = A\ and \7 =~ A7
Theorem 5 (RSSP and RSSC are equivalent).
V[-]-F []: RSSP* <=+ [] : RSSC*
V[-] -+ []: RSSP™ <+ [-] : RSSC"

Definition 6 requires providing an existentially-quantified
source attacker A. The general proof technique for these
criteria is called backtranslation [4, 51], and it can either be
attacker-based [13, 21, 46] or trace-based [2, 50, 52]. The
distinction tells us what quantified element we can use to build
the source attacker A, either the target attacker A or the trace

A7 respectively. In our proofs, we will use an attacker-based
backtranslation.

B. Robust Speculative Non-Interference Preservation

Here, we only present a property-ful criterion for the
preservation of RSNI (Definition 7). The reason is that we
only directly prove that compilers do not attain RSNIP. This
kind of proof is simple already (Corollary 1), and we do not
need a property-free criterion.

Definition 7 (RSNIP*).
F[] : RSNIP* £ ¥P e L. if P : RSNI(L)
then F [P] : RSNI(T)
Corollary 1 (+* [-] : RSNIP™).
¥ []: RSNIP* £ 3P e L. P :RSNI(L)
and ¥ [P] : RSNI(T)

Here, the second clause gets unfolded to the following; recall
that low-equivalent programs simply differ in their private
heap, so A’ [[P']] is the same attacker A linked with the same
program with a different private heap.

ts. : JA.F A : atk and given A’ [[P']] =L A [[P]]
we have Beh(Qg (A [[P]]))Inse= Beh(Qo (A [[P']]))nse
and Beh(Qq (A [[P]])) # Beh(Q20 (A’ [[P']]))

Note that finding the existentially-quantified program (and
attacker) that demonstrate insecurity of a countermeasure may
be hard. Fortunately, some failed attempts at proving RSSC
can provide hints for how to do this; we provide more insights
after discussing proof techniques in Appendix B. O

C. A Methodology for Provably-(In)Secure Countermeasures

Recall from Section III-A that RSNI in the target language is
the property we should have for components that are compiled
with secure countermeasures. Conversely, components that are
compiled with insecure countermeasures cannot attain RSNI
in the target. These intuitive ideas are represented as two
chains of implications in Figure 1. The first one lists the
assumptions (black dashed lines) and logical steps (theorem-
annotated implications) to conclude compiler security while
the second one lists assumptions and logical steps for com-
piler insecurity. For simplicity, the figure focuses on security
definitions and compiler criteria for L and T. There are similar
chains of implications instantiated with languages L~ and T"
that use Theorem 3 instead of Theorem 2.

et N H@
vPel |F[]:RSSCT) M el
FPIRSS(L)! | heorem s F P RSNI(L)
ﬂ L] : RSSP* J[L’%f[[i]]fééj\h}:?
FP] : RSS(T")rh:> F [P] : RSNI(T) ¥[P] : RSNI(T)
eorem 2
Figure 1. Our methodology to prove security (1) and insecurity (2) for

compiler countermeasures against speculative leaks

To show security (1), we need to prove that any compiled
component is RSNI in the target language. By Theorem 2, it
suffices to show that any compiled component is RSS in the
target. This can be obtained by (i) an RSSP* compiler so long
as (ii) any P is RSS in the source. By Theorem 5, for point
(1) it is sufficient to show that the compiler is RSSC*. Point
(ii) holds for any P; see Theorem 1.

To show insecurity (2), we need to prove that there exists a
compiled component that is not RSNI in the target language.
For this, we show (A) that the compiler is not RSNIP* given
that (B) the source component P was RSNI in the source. To
show (A), we follow Corollary 1, whereas point (B) holds for
any source component P (Theorem 1).

Our security criteria, instantiated for the strong (L-T') and
weak (L™-T") languages, provide a way of characterizing the
security guarantees of any countermeasure [-], which we do
next. In particular, showing that [-] is RSSC™ ensures that

compiled code has no speculative leak. Similarly, showing that
[-] is RSSC" (and not RSNIP*) ensures that compiled code
does not leak information about speculatively-accessed data,
i.e., it would prevent leaks like the Spectre v1 attack. Finally,
showing that [[-] is not RSNIP- implies that compiled code
leaks speculatively accessed data, like in Spectre attacks.

V. COUNTERMEASURES SECURITY AND INSECURITY

In this section, we precisely characterise the security guaran-
tees of the two main Spectre vl countermeasures implemented
by compiler vendors: insertion of speculation barriers and
speculative load hardening. We show that the Microsoft Visual
C++ [48] (MSVC) compiler implements the first counter-
measure in an insecure way, i.e., MSVC violates RSNIP-
and produces programs that are vulnerable to Spectre attacks
(Section V-A). We also prove that the Intel C++ compiler [33]
(ICC) implements the same countermeasure securely, that
is, ICC is RSSP* and prevents all speculative leaks (Sec-
tion V-B). Finally, we study the security of SLH (Sec-
tion V-C). We prove that SLH prevents only leaks involving
speculatively-accessed data, i.e., SLH is RSSP- but it violates
RSNIP*. While this is sufficient for preventing Spectre-
style attacks, compiled programs may still speculatively leak
data retrieved non-speculatively, which might result in break-
ing properties like constant-time (see [28]). Additionally, we
provide a modification to SLH that prevents all speculative
leaks, i.e., it is RSSP*. SLH also has a non-interprocedural
variant but we prove that it is completely insecure, i.e., it
violates RSNIP-. We provide a high-level proof overview in
Section V-D; full proofs are in supplementary material.

A. MSVC is insecure

Inserting speculation barriers—the Ifence x86 instruction—
after branch instructions is a simple countermeasure against
Spectre v1 [31, 33, 48]. This instruction stops speculative
execution at the price of significant performance overhead.

MSVC implements a countermeasure that tries to mini-
mize the number of Ifences by selectively determining which
branches to patch.’ However, MSVC fails in inserting some
necessary Ifences, thereby producing insecure code that is not
RSNI(T"). To show this, we follow Corollary 1 and provide a
program that is RSNI(L") and its compilation is not RSNI(T").
The program we consider, which is RSNI(L") (Theorem 1), is
given in Listing 3.

void get (int y)
if (y < size) then
if (A[y] == 0) then
temp = B[O];

Listing 3. A variant of the classic Spectre v1 snippet (Example 10 from [36]).

Its compiled counterpart does not contain Ifences and it spec-
ulatively leaks whether A[y] is O through the branch statement
in line 3, i.e., it violates RSNI(T"). We refer to [27, 36] for
additional examples of MSVC'’s insecurity.

5The countermeasure can be activated with the /Qspectre flag.

B. ICC is secure

The Intel C++ compiler also implements a countermeasure
that inserts Ifences after each branch instruction.® We model
this countermeasure with [[ﬂf , @ homomorphic compiler that
takes a component in L and translates all of its subparts to T'.
Its key feature is inserting an Ifence at the beginning of every
then and else branch of compiled code.

[ifz e then s else '} = ifz [e] then {Ifence; [s]’}
else {lfence; [[s’]]f}

It should come at no surprise that [-]/ is RSSC* (Theorem 6).
In T, the only source of speculation are branches (Rule E-
T-speculate-if) but any branch, whether it evaluates to true
or false, will execute an Ifence (Rule E-T-speculate-Ifence),
triggering a rollback (Rule E-T-speculate-rollback). So, com-
piled code performs no action during speculation. It can only
perform actions when the pc is tainted as S, which makes all
actions S. These actions are easy to relate to their source-
level counterparts since they are generated according to the
non-speculative semantics.

Theorem 6 (ICC is secure). - []/ : RSSC*

C. Speculative Load Hardening

Clang implements a countermeasure called speculative load
hardening [16] (SLH) that works as follows:’

o Compiled code keeps track of a predicate bit that records
whether the processor is mis-speculating (predicate bit set to
1) or not (predicate bit set to 0). This is done by replicating
the behaviour of all branch instructions using branch-less cmov
instructions, which do not trigger speculation. SLH-compiled
code tracks the predicate bit inter-procedurally by storing it
on the most-significant bits of the stack pointer register, which
are always unused. We remark that whenever all speculative
transactions have been rolled back, the predicate bit is reset
to O by the rollback capabilities of the processor.

o Compiled code uses the predicate bit to initialise a mask
whose usage is detailed below. At the beginning of a function,
SLH-compiled code retrieves the predicate bit from the stack
and uses it to initialize a mask either to OxF..F if predicate
bit is 1 or to 0x0..0 otherwise. During the computation, SLH-
compiled code uses cmov instructions to conditionally update
the mask and preserve the invariant that mask = OxF..F if
code is mis-speculating and mask = 0x0..0 otherwise. Before
returning from a function, SLH-compiled code pushes the
most-significant bit of the current mask to the stack; thereby
preserving the predicate bit.

« All inputs to control-flow and store instructions are hard-
ened by masking their values with mask (i.e., by or-ing their
value with mask). That is, whenever code is mis-speculating
(i.e., mask = OxF.F) the inputs to control-flow and store
statements are effectively “F-ed” to OxF..F, otherwise they

%The countermeasure can be activated with the -mconditional-
branch=all-fix flag.
7 The countermeasure has been available from Clang v7.0.0 and it can be

activated using the -mllvm -x86-speculative-load-hardening flag.

oo

are left unchanged. This effectively prevents speculative leaks
through control-flow and store statements.

o The outputs of memory loads instructions are hardened
by or-ing their value with mask. So, when code is mis-
speculating, the result of load instructions is “F-ed” to OxF'. . F'.
This prevents leaks of speculatively-accessed memory loca-
tions. Inputs to load instructions, however, are nor masked.

In the following, we analyse the security guarantees of SLH.

1) SLH is not RSNIP*: We start by showing that SLH
is not RSNIP*, that is, it does not preserve (strong) specu-
lative non-interference. Following Corollary 1, we do this by
providing a program that is RSNI(L) and that is compiled
to a program that is not RSNI(T). Consider the program in
Listing 4, which differs from Listing 1 in that the first memory
access is performed non-speculatively (line 2).

void get (int y)
x = Alyl;
if (y < size) then
temp = B[x];

Listing 4. Another variant of the classic Spectre v1 snippet.

SLH hardens the value of Aly] using the mask retrieved
from the stack pointer. When the get function is invoked
non-speculatively, the mask is set to 0x0..0 and Aly] is
not masked. Thus, speculatively executing the load in (the
compiled counterpart of) line 4 leaks the value of A[y], which
might differ for low-equivalent states, and violates RSNI(T).

2) SLH is RSSC": We now show that SLH is RSSC", that
is, it prevents leaks of speculatively-accessed data.

We formalise SLH using the [-]° compiler, whose most
interesting cases are given in the top of Figure 2. The compiler
takes components in L~ and outputs compiled code in T". The
compiler keeps track of the predicate bit in a cross-procedural
way, masks inputs to control-flow and store instructions, and
masks outputs of load instructions as described before.

Since the stack pointer is not accessible from an attacker
residing in another process, [-]° tracks the predicate bit in
the first location of the private heap. So location —1 is
initialised to 1 (false) and updated to O whenever we are
speculating. Compiled code must update the predicate bit right
after the then and else branches (statements —1 :=, --).

Since location —1 is reserved for the predicate bit, all private s
memory accesses as well as the private heap are shifted by 1. _

Several statements may leak information to the attacker:
calling attacker functions, reading and writing the public
and private heap, and branching. For function calls, mem-
ory writes, and branch instructions, [[]]s masks these state-
ment’s input. That is, we evaluate the sub-expressions used
in those statements and store them in auxiliary variables
(called xr). Then, we look up the predicate bit (via statement
let pr =rd, —1 in ---) and store it in variable pr. Finally,
using the conditional assignment, we set the result of those
expressions to O if the predicate bit is O (true). In contrast, for
memory reads, [-]° masks the output of these statement based
on the predicate bit stored in pr.

Theorem 7 (SLH is weakly-secure). - []* : RSSC"

[-]° is RSSC- for two reasons. First, location —1 (and thus
variable pr where its contents are loaded) always correctly
tracks whether speculation is ongoing or not. This is true since
location —1 and pr cannot be tampered by the attacker, the
compiler initializes —1 correctly, and the assignments right af-
ter the branches correctly update location —1 (via the negation
of the guard x). Second, whenever speculation is happening,
the result of load operations is set to a constant O whose taint
is S. So, computations happening during speculation either
depend on data loaded non-speculatively, which are tainted as
S thanks to the taint-tracking of T", or on masked values,
which are also tainted S. Therefore, labels generated when
speculating will be tainted S, thereby satisfying RSS(T").

3) Making SLH More Secure: We now show how to modify
SLH to prevent all speculative leaks. We do so by introducing
strong SLH (SSLH for short) that differs from standard SLH
in that it masks the input (rather than the output) of memory
read operations. We model SSLH using the [-]** compiler that
takes components in L and outputs compiled code in T. [-]*
differs from [-]° in how memory reads are compiled, as shown
in Figure 2. The compiler masks the input of memory loads by
evaluating the sub-expressions and storing them in auxiliary
variables (called x¢), retrieving the predicate bit and storing
it in variable pr, conditionally masking the value of x¢, and,
finally, performing the memory access using xr as address.

Theorem 8 (SSLH is secure). = []** : RSSC*

[-]°° satisfies RSSC* (Theorem 8) for two reasons. First,
as discussed above, the compiler correctly tracks whether
speculation is ongoing. Second, whenever speculation is hap-
pening, the result of any possibly-leaking expression is set to a
constant 0 whose taint is S. That is, labels during speculation
are tainted as S, and RSS(T') holds.

4) Non-interprocedural SLH is insecure: We conclude by
showing that the non-interprocedural variant of SLH, where
the predicate bit is set to O at the beginning of each function,
is insecure.® Consider the program in Listing 5 that splits the
memory accesses of A and B of the classical Spectre v1 snippet
across functions get and get 2.

void get (int y)
x = Alyl;
if (y < size) then get_2 (x);

void get_2 (int x) temp = B[x];

10

Listing 5. Inter-procedural variant of the Spectre v1 snippet [43].

Once compiled, get starts the speculative execution (line 3),
then the compiled code corresponding to get 2 is executed
speculatively. However, the predicate bit of get 2 is set to O
upon calling the function. Hence, the memory access corre-
sponding to B[x] is not masked leading to the leak of x (which
contains A[y]). Hence, the target program violates RSNI(T").

D. How to Prove RSSC

We now illustrate the proof technique used to prove SLH-
related countermeasures secure. Recall from Section IV that

8Non-interprocedural SLH can be activated with the -mllvm
-x86-speculative-load-hardening -mllvm -x86-slh-ip=false flag.

[[H;F;i]]s =[HPU (-1~ 1:8S); [[?]]g [mr
[H,—n—v: U =[H],] —1—[v]°: U

[[ifz e then s else s’]]s

[let x=rdy eins]° = |let xg=[e]°+1 in let pr = rd,

[e:=p€]°

let x¢=[e]® in let pr = rd, —1 in let x¢ = 0 (if pr) in

let x¢=[e]°+1 in let X;—[[e/ﬂs in let pr =rdp —1 in

let x¢ = 0 (if pr) in let x; = 0 (if pr) in x¢ :=p Xt

ifz x¢ then —1 :=, pr V —xs; [s]° else —1 :=p prV xg; [s/]]s

1 in let x = rdp x¢ in let x = 0 (if pr) in [s]*

[let x=rd, eins][> = |let x¢=[e]*+1 in let pr = rd, —1 in let xf = 0 (if pr) in let x = rdp x¢ in [s]*

Figure 2. Key bits of the SLH compiler [-]° (above). The SSLH compiler (below) differs from [-]** in the compilation of memory reads

to prove that a compiler is RSSC we backtranslate a target
attacker (A) to create a source attacker (A =({A))) so that the
two behave the same (i.e., they produce traces related by the
relation of Section IV). Our backtranslation function ({{-))),
which is the same for all proofs, homomorphically translates
target heaps, functions, statements etc. into source ones.

(a) A P/ [P]? executes (Aa) 1A
executes — == executes
a?? o1 % al?
1| ——— —— alf
O -0 TPl ———0 0 TG0
69 09
- — a
- [ifz]* | O---O
\ 4y
either A r/ltf .
or IIP]]S D222 00 o w=0 |
executes : =

Figure 3. A diagram depicting the proof that countermeasure [[-]° is RSSC".

We depict our proof approach in Figure 3. There, circles
and contoured statements represent source and target states.
A black dotted connection between source and target states
indicates that they are related; dashed target states are not
related to any source state. In our setup, execution happens
either on the attacker side or on the component side, coloured
connections between same-colour states represent reductions.

To prove that source and target traces are related, we set up
a cross-language relation between source and target states and
prove that reductions both preserve this relation and generate
related traces. The state relation we use is strong: a source
state is related to a target one if the latter is a singleton
stack and all the sub-part of the state are identical, i.e., heaps
bind the same locations to the same values and bindings
bind the same variables to the same values. To reason about
attacker reductions, we use a lock-step simulation: we show
that starting from related states, if A does a step, then ((A))
does the same step and ends up in related states (yellow areas).
To reason about component reductions, we adapt a reasoning
from compiler correctness results [10, 39]. That is, if s steps
and emits a trace, then [s]* does one or more steps and emits
a trace such that both ending states and traces are related
(green areas, related traces are connected by black-dotted
lines). This proof is straightforward except for the compilation
of ifz since it triggers speculation in T’ (grey area). After [ifz]’
is executed, speculation starts and the cross-language state

11

relation is temporarily broken (the stack of target states is not
a singleton, so the cross-language state relation cannot hold).
Speculative execution continues for w steps in both attacker
and compiled code and generating a trace A“. We then prove
that A7 is related to the empty source trace because all actions
in \“ are tainted S, and so they do not leak. This fact follows
from proving that while speculating, bindings always contain
S values and therefore any generated action is S. In turn, this
follows from proving that pr correctly captures if speculation
is ongoing or not and that the mask is S. As mentioned, both
of these hold for [-]* and [-]*°, so they are secure.

The compiler [[]]f can be proved secure in a simpler way
since speculative reductions immediately trigger an Ifence,
which rolls the speculation back (the speculation window w
is 0) reinstating the cross-language state relation right away.

VI. DISCUSSION
A. Scope of the model

Lifting our security analysis to actual microarchitectures is
only valid to the extent that our attacker model and speculative
semantics capture the target system.

Our attacker observes the location of memory accesses and
the outcome of control-flow statements during execution. This
attacker model offers a good tradeoff between precision and
simplicity [8, 45], and it has proven to capture interesting
microarchitectural leaks, like those resulting from caches and
port contention. Other classes of microarchitectural leaks,
like those resulting from internal buffers [63] or hardware
prefetchers [26], might not be captured by our model.

We also assume that attackers cannot access the private
heap. This can be achieved, for instance, by running attacker
and component in separate processes and leveraging OS-level
memory protection.

Finally, our target languages are adequate to reason about
Spectre vl-style attacks. The language semantics, however,
ignores out-of-order execution as well as other sources of
speculative execution, like speculation over indirect jumps,
that are exploited by other Spectre variants, as we discuss next.

B. Beyond Spectre vi

Spectre vl (also called Spectre-PHT) is just one of the
(many) variants of Spectre attacks. After a brief recount of
the variants and of their existing compiler countermeasures,
we discuss how the proof techniques applied for vl can be
applied for countermeasures against other Spectre variants.

o Spectre BTB [37] exploits speculation over indirect jump
instructions. The retpoline compiler-level countermeasure [32]
replaces indirect jumps with return-based trampoline that leads
to effectively dead code. As a result, the speculated jump
executes no code and thus cannot leak anything.

o Spectre-RSB [42], in contrast, exploits speculation over
return addresses (through ret instructions). To prevent it, Intel
deployed a microcode update [32] that renders retpoline a valid
countermeasure also against Spectre-RSB [15].

o Spectre-STL [30] exploits speculation over data depen-
dencies between in-flight store and load operations. To miti-
gate it, ARM introduced a dedicated SSBB speculation barrier
to prevent store bypasses that could be injected by compilers.

To reason about these Spectre variants and their countermea-
sures, we first have to extend the speculative semantics of T'.
This can be done similarly to other semantics [9, 17, 44, 64].

We believe that the new countermeasures are RSSP and
their proofs should follow the overview in Section V-D.
Specifically, proofs for retpoline would follow the approach
of Figure 3 since speculative execution gets diverted to code
that does not produce observations (we provide an in-depth
discussion on retpoline in Appendix C). In contrast, reasoning
about SSBB would be similar to reasoning about [[]]f since
SSBBs instructions act as speculation barriers.

VII. RELATED WORK

Speculative execution attacks: Many attacks analogous to
Spectre [35, 37] have been discovered; they differ in the
exploited speculation sources [30, 38, 41], the covert chan-
nels [57, 59, 62], or the target platforms [19]. We refer the
reader to [15] for a survey of attacks and countermeasures.

Speculative semantics: These semantics model the effects
of speculatively-executed instructions. Several semantics [9,
17, 28, 44, 64] explicitly model microarchitectural details
like multiple pipeline stages, reorder buffers, caches, and
predictors. These semantics are significantly more complex
than ours (which is inspired by [27]), and they would lead to
much harder proofs.

Security definition against Spectre attacks: SNI [27] has
been used as security definition against speculative leaks also
by [9, 28, 64]. Cheang et al. [18] propose trace property-
dependent observational determinism, a property similar to
SNI. Cauligi et al. [17] present speculative constant-time
(SCT), i.e., constant-time w.r.t. the speculative semantics.
Differently from SNI, SCT captures leaks under the non-
speculative and the speculative semantics, and it is inadequate
for reasoning about compiler-level countermeasures that only
modify a program’s speculative behaviour. More generally,
Guarnieri et al. [28] presents a secure programming framework
that subsumes both SNI and SCT.

Compiler-level countermeasures for Spectre vl: Apart from
the insertion of speculation barriers [5, 31] and SLH [16, 47],
few countermeasures for Spectre v1 exist. Replacing branch
instructions with branchless computations (using cmov and
bit masking) is effective [53] but not generally applicable.
007 [65] is a tool that automatically patches speculative leaks

12

by injecting speculation barriers. However, 007 misses some
speculative leaks [27] and violates RSNIP-.

Blade [64] is a compiler-level countermeasure that aims at
optimising compiled code performance. It finds the minimal
set of variables that need to be masked in order to eliminate
paths between sources (i.e., speculative memory reads) and
sinks (i.e., operations resulting in microarchitectural side-
effects). Since Blade employs an SLH-style mechanism for
preventing leaks, we believe Blade to satisfy RSSC. Its
security proof should follow the same insights of Figure 3.

Secure compilation: RSSC and RSSP are instantiations
of robustly-safe compilation [2, 3, 4, 52]. Like [3, 52], we
relate source and target traces using a cross-language relation;
however, our target language has a speculative semantics.

Fully abstract compilation (FAC') is a widely used secure
compilation criterion [24, 34, 50, 51, 55, 58]. FAC com-
pilers must preserve (and reflect) observational equivalence
of source programs in their compiled counterparts [1, 51].
While FAC has been used to reason about microarchitectural
side-effects [14], it is unclear whether FAC is well-suited for
reasoning about speculative leaks as it would require explicitly
modelling microarchitectural components that are modified
speculatively (like caches).

Constant-time-preserving compilation (CTPC') has been
used to show that compilers preserve constant-time [7, 10, 11].
Similarly to RSNIP, proving CTPC requires proving the
preservation of a hypersafety property, which is more challeng-
ing than preserving safety properties like RSS. Additionally,
CTPC has been devised for whole programs only (like SNI),
and it cannot be used to reason about countermeasures like
SLH that do not preserve constant-time.

Verifying Hypersafety as Safety Properties: Verifying if
a program satisfies a 2-hypersafety property [20] (like
RSNI) is notoriously challenging. Approaches for this in-
clude taint-tracking [6, 56] (which over-approximates the 2-
hypersafety property with a safety property), secure multi-
execution [22] (which runs the code twice in parallel) and
self-composition [12, 61] (which runs the code twice se-
quentially). Our secure compilation criterion leverages taint-
tracking (RSS); we leave investigating criteria based on the
other approaches as future work.

VIII. CONCLUSION

The paper presented a comprehensive and precise character-
ization of the security guarantees of compiler countermeasures
against Spectre vl1, as well as the first proofs of security for
such countermeasures. For this, it introduced SS, a safety
property implying the absence of (classes of) speculative leaks.
SS provides precise security guarantees in that it can be in-
stantiated to over-approximate both strong [27] and weak [28]
SNI, and it is tailored towards simplifying secure compilation
proofs. The paper also formalised secure compilation criteria
that state how to preserve SS and SNI properties robustly
through compilation, which are at the basis of security proofs.

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Martin Abadi. Protection in programming-language
translations. In JCALP’98, pages 868-883, 1998.
Carmine Abate, Arthur Azevedo de Amorim, Roberto
Blanco, Ana Nora Evans, Guglielmo Fachini, Catalin
Hritcu, Théo Laurent, Benjamin C. Pierce, Marco
Stronati, and Andrew Tolmach. When good components
go bad: Formally secure compilation despite dynamic
compromise. CCS ’18, 2018.

Carmine Abate, Roberto Blanco, Stefan Ciobaca,
Alexandre Durier, Deepak Garg, Catalin Hrifcu, Marco
Patrignani, , Eric Tanter, and Jérémy Thibault. Trace-
relating compiler correctness and secure compilation. In
ESOP 2020, 2020.

Carmine Abate, Roberto Blanco, Deepak Garg, Catélin
Hritcu, Marco Patrignani, and Jérémy Thibault. Jour-
ney beyond full abstraction: Exploring robust property
preservation for secure compilation. In CSF 2019, 2019.
Advanced Micro Devices, Inc. Software techniques
for managing speculation on amd processors.
https://developer.amd.com/wp-content/resources/
90343-B_SotwareTechniquesforManagingSpeculation_
WP_7-18Update_FNL.pdf, 2018.

Peter Aldous and Matthew Might. Static analysis of non-
interference in expressive low-level languages. In Static
Analysis, pages 1-17, 2015.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago
Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-
Yves Strub. Jasmin: High-assurance and high-speed
cryptography. In CCS 17, pages 1807-1823, 2017.
José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
Francois Dupressoir, and Michael Emmi. Verifying
constant-time implementations. In 25¢th {USENIX} Secu-
rity Symposium ({USENIX} Security 16), pages 53-70,
2016.

Musard Balliu, Mads Dam, and Roberto Guanciale. In-
spectre: Breaking and fixing microarchitectural vulnera-
bilities by formal analysis. CoRR, abs/1911.00868, 2019.
G. Barthe, B. Gregoire, and V. Laporte. Secure com-
pilation of side-channel countermeasures: The case of
cryptographic constant-time. In CSF 2018, pages 328—
343, 2018.

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi
Hutin, Vincent Laporte, David Pichardie, and Alix Trieu.
Formal verification of a constant-time preserving ¢ com-
piler. Proc. ACM Program. Lang., 4(POPL), 2019.
Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk.
Secure information flow by self-composition. Math.
Struct. Comput. Sci., 21(6):1207-1252, 2011.

William J. Bowman and Amal Ahmed. Noninterference
for free. In ICFP. ACM, 2015.

Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Gal-
letta, Pierpaolo Degano, Jan Tobias Miihlberg, and Frank
Piessens. Provably secure isolation for interruptible

13

[27]

enclaved execution on small microprocessors: Extended
version. CoRR, abs/2001.10881, 2020.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von
Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss.
A Systematic Evaluation of Transient Execution Attacks
and Defenses. In USENIX Security 19, 2019.
Chandler Carruth. Speculative load hardening. https:
/Nlvm.org/docs/SpeculativeLoadHardening.html, 2018.
Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall,
Deian Stefan, Tamara Rezk, and Gilles Barthe. Towards
constant-time foundations for the new spectre era. arXiv
preprint arXiv:1910.01755, 2019.

Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia,
and Pramod Subramanyan. A formal approach to secure
speculation. In CSF ’19, 2019.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian
Zhang, Zhiqiang Lin, and Ten H. Lai. Stealing intel
secrets from SGX enclaves via speculative execution. In
EuroS&P 19, 2019.

Michael R. Clarkson and Fred B. Schneider. Hyperprop-
erties. Journal of Computer Security, 18(6):1157-1210,
2010.

Dominique Devriese, Marco Patrignani, and Frank
Piessens. Fully-abstract compilation by approximate
back-translation. In POPL ’16, 2016.

Dominique Devriese and Frank Piessens. Noninterfer-
ence through secure multi-execution. In S&P 2010, pages
109-124, 2010.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis.
A type discipline for authorization policies. ACM Trans.
Program. Lang. Syst., 29(5), August 2007.

Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-
Evariste Dagand, Pierre-Yves Strub, and Benjamin

Livshits. Fully abstract compilation to JavaScript. In
Proceedings POPL 13, pages 371-384, 2013.
Andrew D. Gordon and Alan Jeffrey. Authenticity

by typing for security protocols.
11(4):451-519, July 2003.

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz
Lipp, and Stefan Mangard. Prefetch side-channel attacks:
Bypassing smap and kernel aslr. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS *16. ACM, 2016.
Marco Guarnieri, Boris Kopf, José F. Morales, Jan
Reineke, and Andrés Sinchez. SPECTECTOR: princi-
pled detection of speculative information flows. In S&P
’20. 1IEEE, 2020.

Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe
Vila. Harware/software contracts for secure speculation.
In S&P °21. IEEE, 2021.

Norm Hardy. The confused deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev.,
22(4):36-38, October 1988.

Jann Horn. Google project zero - issue 1528: speculative
execution, variant 4: speculative store bypass. https://
bugs.chromium.org/p/project-zero/issues/detail 7id=1528.

J. Comput. Secur.,

https: //developer.amd.com/wp- content/resources/90343-B_SotwareTechniquesforManagingSpeculation_WP_7- 18Update_FNL.pdf
https: //developer.amd.com/wp- content/resources/90343-B_SotwareTechniquesforManagingSpeculation_WP_7- 18Update_FNL.pdf
https: //developer.amd.com/wp- content/resources/90343-B_SotwareTechniquesforManagingSpeculation_WP_7- 18Update_FNL.pdf
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
 https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
 https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Intel. Intel Analysis of Speculative Ex- CoRR, abs/1902.05178, 2019.

ecution Side Channels. https://software. [45] David Molnar, Matt Piotrowski, David Schultz, and
intel.com/sites/default/files/managed/b9/f9/ David Wagner. The program counter security model:
336983-1Intel- Analysis-of-Speculative-Execution-Side-Channels- Mitom&tipedetection and removal of control-flow side
pdf, 2018. channel attacks. In International Conference on Informa-
Intel. Retpoline: A branch target injec- tion Security and Cryptology, pages 156—168. Springer,
tion mitigation. https://software.intel.com/ 2005.
security-software-guidance/api-app/sites/default/files/ [46] Max S. New, William J. Bowman, and Amal Ahmed.
Retpoline- A-Branch-Target-Injection-Mitigation.pdf, Fully abstract compilation via universal embedding. In
2018. ICFP ’16, pages 103-116, 2016.

Intel. Using Intel Compilers to Mitigate [47] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark
Speculative Execution Side-Channel Is- Silberstein, and Christof Fetzer. You shall not bypass:
sues. https://software.intel.com/en-us/articles/ Employing data dependencies to prevent bounds check
using-intel-compilers-to-mitigate-speculative-execution-side-chabyplasssu€aRR, abs/1805.08506, 2018.

2018. [48] Andrew Pardoe. Spectre mitigations in MSVC.
Yannis Juglaret, Catédlin Hritcu, Arthur Azevedo de https://blogs.msdn.microsoft.com/vcblog/2018/01/15/
Amorim, Boris Eng, and Benjamin C. Pierce. Beyond spectre-mitigations-in-msvc/, 2018.

good and evil: Formalizing the security guarantees of [49] Marco Patrignani. Why should anyone use colours?
compartmentalizing compilation. In CSF ’16, pages 45— or, syntax highlighting beyond code snippets. CoRR
60, 2016. abs/2001.11334, 2020.

Vladimir Kiriansky and Carl Waldspurger. Specula- [50] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart
tive Buffer Overflows: Attacks and Defenses. CoRR, Jacobs, Dave Clarke, and Frank Piessens. Secure compi-
abs/1807.03757, 2018. lation to protected module architectures. TOPLAS, 2015.
Paul Kocher. Spectre mitigations in Microsoft’s [51] Marco Patrignani, Amal Ahmed, and Dave Clarke. For-
C/C++ compiler. https://www.paulkocher.com/doc/ mal approaches to secure compilation a survey of fully
MicrosoftCompilerSpectreMitigation.html, 2018. abstract compilation and related work. ACM Comput.
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Surv., 51(6):125:1-125:36, January 2019.

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, [52] Marco Patrignani and Deepak Garg. Robustly Safe
Stefan Mangard, Thomas Prescher, Michael Schwarz, Compilation. In ESOP’19, 2019.

and Yuval Yarom. Spectre Attacks: Exploiting Specu- [53] Filip Pizlo. What Spectre and Meltdown
lative Execution. In S&P ’19. IEEE, 2019. mean for WebKit. https://webkit.org/blog/8048/
Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, what-spectre-and-meltdown-mean-for-webkit/, 2018.
Chengyu Song, and Nael Abu-Ghazaleh. Spectre returns! [54] V. Rajani, D. Garg, and T. Rezk. On access control, ca-
speculation attacks using the return stack buffer. In pabilities, their equivalence, and confused deputy attacks.
WOOT 18, 2018. In CSF ’16, pages 150-163, 2016.

Xavier Leroy. A formally verified compiler back-end. [55] Gabriel Scherer, Max New, Nick Rioux, and Amal
Journal of Automated Reasoning, 43(4):363-446, 2009. Ahmed. Fabous interoperability for ml and a linear
Sergio Maffeis, Martin Abadi, Cédric Fournet, and An- language. In FOSSACS 18, pages 146-162, 2018.
drew D. Gordon. Code-carrying authorization. In [56] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld.
ESORICS 2008, pages 563-579, 2008. Explicit secrecy: A policy for taint tracking. In Euro
Giorgi Maisuradze and Christian Rossow. Ret2Spec: S&P 16, pages 15-30, 2016.

Speculative Execution Using Return Stack Buffers. In [57] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
CCS 18, 2018. Masters, and Daniel Gruss. Netspectre: Read arbitrary
Giorgi Maisuradze and Christian Rossow. Ret2Spec: memory over network. In European Symposium on
Speculative Execution Using Return Stack Buffers. In Research in Computer Security, pages 279-299, 2019.
Proceedings of the 25th ACM SIGSAC Conference [58] Lau Skorstengaard, Dominique Devriese, and Lars
on Computer and Communications Security, CCS ’18. Birkedal. Reasoning about a machine with local capabil-
ACM, 2018. ities: Provably safe stack and return pointer management.
Andrea Mambretti, Matthias Neugschwandtner, Alessan- ACM Trans. Program. Lang. Syst., 42(1):5:1-5:53, 2020.
dro Sorniotti, Engin Kirda, William Robertson, and Anil [59] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
Kurmus. Let’s Not Speculate: Discovering and Analyzing FPU register state using microarchitectural side-channels.
Speculative Execution Attacks. In IBM Technical Report CoRR, abs/1806.07480, 2018.

RZ3933, 2018. [60] David Swasey, Deepak Garg, and Derek Dreyer. Robust
Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. and compositional verification of object capability pat-
Titzer, and Toon Verwaest. Spectre is here to stay: terns. In OOPSLA 17, 2017.

An analysis of side-channels and speculative execution. [61] Tachio Terauchi and Alex Aiken. Secure information

14

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues
https://software.intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/

flow as a safety problem. In SAS ’05, 2005.

[62] Caroline Trippel, Daniel Lustig, and Margaret Martonosi.
MeltdownPrime and SpectrePrime: Automatically-
synthesized attacks exploiting invalidation-based

coherence protocols. CoRR, abs/1802.03802, 2018.
Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In Proceedings of the 40th IEEE
Symposium on Security and Privacy, S&P ’19. IEEE,
2019.

Marco Vassena, Klaus Gleissenthall, Rami Kici, Deian
Stefan, and Ranjit Jhala. Automatically eliminating
speculative leaks with BLADE. CoRR, to appear, 2020.
Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits,
Tulika Mitra, and Abhik Roychoudhury. o007: Low-
overhead defense against spectre attacks via binary anal-
ysis. CoRR, abs/1807.05843, 2018.

[63]

[64]

[65]

APPENDIX A
NISLH: A SECURE NON-INTERPROCEDURAL SLH

It is also possible to secure the variant of SLH that does not
carry the predicate bit across procedures. We model NISLH
as [-]° by having the predicate bit initialized at the beginning
of each function to 1 (false) in a local variable pr. As before,
compiled code updates pr after every branching instruction.
To ensure that pr correctly captures whether we are mis-
speculating, we place an Ifence as the first instruction of every
compiled function.

Ilf(x) — s;- ’ — f(x) s Ifence; let pr=false in
return; 1, / [[S]]Z:I'Ctul'll:
ifz e ® let x¢=[e]; in
then s|| = | ifz x¢ then let pr=prV —x¢ in [s];
else s'| N else let pr=pr V x¢ in [s'])

This compiler is also RSSC" for the same reason as before.
Instead of having location —1 that correctly tracks speculation,
local variable pr does (masking is done as in [-]° before).

Theorem 9 (The NISLH compiler is RSSC"). + [-]7 : RSSC"

In a similar way, one can construct a secure, non-
interprocedura version of [-]** that satisfies RSSC*.

APPENDIX B
FAILING RSSC PROOFS

When a countermeasure is not RSSC we can use the
insights of its failed proof to understand whether it is also
not RSNIP. In fact, while MSVC was already known to be
insecure, this was not true for SLH. When we modelled vanilla
SLH and started proving RSSC*, the proof broke in the “gray
area”. While this does not directly mean that SLH is insecure,
the way the proof broke provided insights on the speculative
leaks not blocked by SLH. Concretely, we were not able to
show that the property on speculating target states holds when
speculating reductions are done and this led to the example

15

Listing 4. We believe the insights of this proof technique can
guide proofs of (in)security of other countermeasures too.

APPENDIX C
THE SPECTRE V2 CASE

This section describes how to apply our methodology to
reason about countermeasures against the Spectre v2 attack.
The Spectre v2 attack relies on speculation over the outcome
of indirect jumps, rather than branch instructions. When an
indirect jump is encountered, if the location where to jump
is not present in the cache, heuristics are used in order to
understand where to jump to. As for the speculation over
branches, these heuristics can be wrong, and when this is
detected, execution is rolled back. An attacker can therefore
exploit this kind of speculative execution in order to make
benign code execute malicious one. The main countermeasure
against this kind of attack is the use of a retpoline, i.e.,
a return-based trampoline. Intuitively, the retpoline replaces
indirect jumps with a return to dead code, where the program
will effectively sleep until the speculation window is over.

In order to prove security of the retpoline countermeasure,
we therefore need the following:

o add indirect jumps to our languages and give them a
regular semantics (Section C-A);
« give a speculative reduction to jump in T' such that the
location where to jump is nondeterministically chosen;
this will be the start of speculation (Section C-B);
« change the call/return semantics in order to model retpo-
lines, i.e., have the return address explicit (Section C-C).
With these changes, we can formalise a compiler that intro-
duces the retpoline countermeasure (Section C-D) and reason
about whether it is secure (Section C-E).

A. Indirect Jumps

The simplest way to add indirect jumps to our while lan-
guages is to treat function names f as natural numbers and add
a statement goto e that jumps to function f where B>e | f.
Additionally, we need to add the way for a component to
specify private functions, i.e., functions that are not callable
from the attacker. This is still generic enough that one can
model the assembly-level kind of attacks without having to
add a pc to all instructions or labels to the language.

B. Speculative Execution of Jumps

To focus only on speculation over jumps, we would replace
Rule E-T-speculate-if (handling the speculation over branch
instructions) with a rule that checks that the statement being
executed is a goto e where e evaluates to f. In that case, the
right state (jumping to f) is pushed on the stack of states, but
on top of that we push another state with a jump to function
1" # f, for a non-deterministically chosen f’ that is valid.

C. Explicit Call and Return Semantics

We need to add a return address, keep track of the return
address in a stack of return addresses as well as a register
where the return address can be read from. The reason is that

the retpoline countermeasure relies on another kind of spec-
ulation, the one on return addresses. Normally, architectures
push the return address on the stack and in a specific register
rsp. When it is time to return, if the value on top of the stack
differs from that on rsp, speculation starts, and a return to the
top of the stack is made. When speculation ends, it is rolled
back (as before, with the usual microarchitectural leaks) and
a return to the value of rsp is done.

D. The Retpoline Countermeasure

The retpoline countermeasure [-]" is a homomorphic com-
piler with a single salient case: the compilation of goto e,
where we encode the implementation of retpolines from Com-
piling a goto will not rely on target-level goto, since they
would trigger the goto-speculation and result in vulnerable
code. Instead, the compilation of goto will be turned into a
call to an auxiliary function aux. Function aux will change
the contents of register rsp to the function where the source
goto wanted to jump. Then, function aux will contain code
that sleeps. This way, when the compiled goto is executed,
function aux is called and the address where to the goto
should have jumped to to is pushed on the stack. This function
speculatively returns to the code that sleeps and then, when
speculation ends, execution resumes from the address popped
from the stack (the target of the goto).

E. Security of [-]"

We believe [-]" is RSSC* and we can argue that using the
same proof technique described in Section V-D. As before,
the key part of these proofs is reasoning when speculation
happens, i.e., in the gray area of Figure 3. In the case of
[-]", we see that the only code executed during speculation
is sleeping code. Additionally, once the speculation window
runs out, we need to prove that the state we end up in is the
same as the source state that executed the goto. However, this
last step only amounts to proving that the retpoline is correct,
i.e., that it jumps where it is supposed to.

16

	Introduction
	Modelling Speculative Execution
	Spectre v1: Illustrative example
	Threat Model
	Languages RoyalBlueL and RedOrangeT
	Labels and Traces
	Non-Speculative Semantics for RoyalBlueL and RedOrangeT
	Operational Semantics
	Taint-tracking semantics

	Trace Semantics for RoyalBlueL
	Speculative Semantics for RedOrangeT
	Operational Semantics
	Taint-tracking semantics

	Trace Semantics for RedOrangeT
	Weak Languages RoyalBlueRoyalBlueL- and RedOrangeRedOrangeT-

	Security Definition for Secure Speculation
	Robust Speculative Non-Interference
	Robust Speculative Safety
	Relationships Between Security Definitions
	Relationships for RoyalBlueL and RoyalBlueRoyalBlueL-
	Relationships for RedOrangeT and RedOrangeRedOrangeT-

	Compiler Criteria for Spectre Security
	Robust Speculative Safety Preservation
	Robust Speculative Non-Interference Preservation
	A Methodology for Provably-(In)Secure Countermeasures

	Countermeasures Security and Insecurity
	MSVC is insecure
	ICC is secure
	Speculative Load Hardening
	SLH is not cr:snip+
	SLH is cr:rdss-
	Making SLH More Secure
	Non-interprocedural SLH is insecure

	How to Prove cr:rdss

	Discussion
	Scope of the model
	Beyond Spectre v1

	Related Work
	Conclusion
	Appendix A: NISLH: a Secure Non-Interprocedural SLH
	Appendix B: Failing cr:rdss Proofs
	Appendix C: The Spectre v2 Case
	Indirect Jumps
	Speculative Execution of Jumps
	Explicit Call and Return Semantics
	The Retpoline Countermeasure
	Security of black"464A671 RoyalBlue "564B679 blackr

