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ABSTRACT

The evolution of information systems sees an increasing need
of flexible and sophisticated approaches for the automated
detection of anomalies in security policies. One of these
anomalies is redundancy, which may increase the total cost
of management of the policies and may reduce the perfor-
mance of access control mechanisms and of other anomaly
detection techniques.

We consider three approaches that can remove redun-
dancy from access control policies, progressively reducing
the number of authorizations in the policy itself. We show
that several problems associated with redundancy are NP-
hard. We propose exact solutions to two of these prob-
lems, namely the Minimum Policy Problem, which consists
in computing the minimum policy that represents the be-
haviour of the system, and the Minimum Irreducible Policy
Problem, consisting in computing the redundancy-free ver-
sion of a policy with the smallest number of authorizations.
Furthermore we propose heuristic solutions to those prob-
lems. We also present a comparison between the exact and
heuristics solutions based on experiments that use policies
derived from bibliographical databases.
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1 Introduction

Access control policies used in real systems are often un-
necessarily large due to redundancy. Since the size of the
policy is one of the main factors that determine the cost of
managing the security configuration of a system, minimizing
the size of a policy can ease the management of the policy
itself and can reduce the cost of the management process.
Furthermore the size of a policy influences the performance
of the access control system, and thus minimizing the size
of the policy can improve the access control system perfor-
mance [11,16].

Although redundancy seems a natural and quite simple
concept, providing a formal definition of it in case of ac-
cess control policies is not trivial for several reasons. One
of the reasons is that we may have to deal with conflicts
between authorizations that may influence the result of our
redundancy detection process. Another reason is that at a
certain point during our redundancy detection process we
may consider as redundant a subset of the authorizations
in the policy, and the choice of the authorizations to effec-
tively tag as redundant may influence the redundancy of the
others. In the following, we are going to survey several defi-
nitions of redundancy that were presented in the literature.
Al-Shaer et al. in [1–3] define a rule r as redundant iff there
are other rules that produce the same actions as r, such that
the removal of r does not affect the security policy. A similar
definition can be found in the work of Kolovski et al. [10],
which defines a policy element as redundant if its removal
does not change the final behavior of the policy. Also Liu
et al. [11] and Yuan et al. [16] agree with the definition of
redundancy given above by saying that a rule is redundant
iff its removal does not influence at all the behavior of the
firewall. All these authors give a very similar definition of
redundancy (which we call basic definition in the following)
and we can consider all the definitions as equivalent to saying
that an authorization (or a rule) is redundant iff it does not
affect the behavior of the access control mechanisms (i.e., its
presence or absence in a policy passes unnoticed). The main
problem of this definition is that, although it is very simple
and intuitive, it often lacks in precision and flexibility: the
definition of behavior of a policy is usually not specified in a
formal way and it is only defined in terms of a specific and



concrete access control system. Hu et al. [9] try to overcome
this problem by providing a more formal definition, saying
that a rule r is redundant in case the authorization space
(which is a collection of access requests to which a policy
element is applicable) derived from the policy that contains
r is the same as the one derived from the policy without r.

Although the definition given above seems clear, it presents
subtle side-effects that we show with a simple example. Let
P be a policy composed by the authorizations a1, a2, a3
where a1 produces exactly the same effect as the combina-
tion of authorizations a2 and a3.

A first problem is that the basic definition of redundancy is
not invariant w.r.t. the decisions of our redundancy-removal
process. This fact means that a rule may be considered re-
dundant at a certain point in time during the redundancy-
removal process, and lose this property at a later time. For
instance, if we consider the policy P , the redundant autho-
rizations are a1, a2, a3 (i.e., the complete policy), but if we
remove authorization a3, then a1 is not redundant anymore.
This means that we cannot safely remove sets of redundant
authorizations and the definition cannot be applied looking
only at the starting policy state. The definition of redun-
dancy should take into account all the decisions taken during
the redundancy-removal process.

Furthermore, by iteratively removing authorizations that
satisfy the basic definition, we usually do not obtain a unique
solution. Rather, we can obtain several equivalent policies
with different number of authorizations. For instance, in
our example both policies {a1} and {a2, a3} are equivalent
and redundancy-free, but they have different size. The fact
that the basic definition of redundancy does not take into
account the number of authorizations in the final policy can
be surprising, since the main motivation behind the develop-
ment of redundancy detection techniques is the improvement
of access control mechanisms’ performance, which primarily
depends on the size of the access control policies. This aspect
of the redundancy problem is important, because an effec-
tive redundancy-removal process should always aim at com-
puting the minimum redundancy-free version of the given
policy, not limiting the goal to the identification of one of
the redundancy-free versions.

An underlying assumption in all the previous definitions
is that the only way on which we can act on a policy is by
removing redundant authorizations. This assumption intro-
duces some limitations in the search for performance im-
provements. For instance, if P is a policy with 6 authoriza-
tions, there may exist another policy P ′ that is equivalent to
P but it contains only 4 authorizations that were not in P .
In this case, we should prefer P ′ over P because it can lead
to an improvement in system performance. We consider as
another aspect of the redundancy problem the computation
of the policy that models the behavior of the system with
the minimum number of authorizations.

It is then obvious that the basic definition of redundancy
is not enough for handling this issue effectively. There is
the need of one or more definitions for several aspects of the
redundancy problem that take into account the size of the
resulting policy, and the dependency between actions per-
formed at different steps of the redundancy-removal process.

In this work we present a formalization of the redundancy
problem in access control policies that considers three dif-
ferent ways in which a security administrator can act on
a policy containing redundancy. In the first approach, the

administrator can compute an equivalent policy that does
not contain redundancy anymore, i.e., she computes an irre-
ducible policy. However, given a certain policy there usually
are several irreducible versions of the same policy. Given the
fact that the number of authorizations of the policy is one
of the major factors that influence the management cost of
the policy itself, in the second approach the security admin-
istrator identifies among the irreducible policies obtained by
the original policy one with the minimum number of au-
thorizations, which is the minimum irreducible policy. With
the third approach, the security administrator may be inter-
ested in computing the representation of the access control
system with the minimum number of authorizations, i.e.,
the minimum policy.

Main contributions: The main contributions of our work
are: (a) we propose a definition of the redundancy removal
problem in access control policies; (b) we study in detail two
new problems related with redundancy; (c) we provide two
exact solutions and two heuristic solutions for these prob-
lems; (d) we provide an evaluation of the various approaches
based on data extracted from bibliographical databases.

Structure of the paper: Section 2 describes the under-
lying model used in our approach. In Section 3 we study
in detail the problem of removing redundancy from secu-
rity policies. Section 4 presents exact solutions and heuris-
tic algorithms for solving two different redundancy-removal
problems; we present also a detailed performance analysis.
In Section 5 we illustrate an analysis of the state of the art
with respect to redundancy detection. Finally, Section 6
draws our conclusions.

2 Model

In enterprise scenarios, policy definition and management
systems are needed that provide a high level of flexibility, to
correctly represent the large number and variety of security
requirements. In order to achieve this goal, we have defined
an access control model containing the following entities:

• Principals: represent users and groups of principals.
Each Principal may contain one or more other Princi-
pals and this fact is represented by the function con-
tains:Principal→2Principal. The function contains+:
Principal→2Principal is the transitive closure of con-
tains.

• Actions: represent the actions that users can exe-
cute. Each Action may be composed by one or more
Actions and this fact is represented by the function
composed :Action→2Action. The function composed+:
Action→2Action is the transitive closure of composed.

• Resources: represent the resources on which users
can act. Each Resource may contain one or more Re-
sources and this fact is represented by the function
containsResources:Resource→2Resource . The function
containsResources+:Resource→2Resource is the transi-
tive closure of containsResources.

An instance M of our model is a list of Principals, Actions
and Resources with the associated functions1. �P , �A and
�R are partial orders defined over Principals, Actions and
Resources respectively. For instance, given two principals p1
and p2 we say that p1 �P p2 iff p1 ∈contains+(p2) ∪ {p2}.
The definition of �A and �R can be obtained in a similar
way (the fact that �P , �A and �R are partial orders is

1The hierarchies defined in M must be acyclic.



Figure 1 Targets Hierarchy

enforced by the fact that the hierarchies over Principals,
Actions and Resources are acyclic). We say that an element
of one of the hierarchies in M is primitive iff it is a leaf of
the hierarchy (e.g., a principal p is a primitive element iff
contains(p) = ∅).

We assume that the assignment of permissions to users
can be derived from the system, e.g. in Role-Based Access
Control (RBAC) [14] the user-permission assignment matrix
can be directly computed from the user-role assignment and
the role-permission assignment matrices.

The basic element about which we can express access con-
trol decisions is called a Target, and it is defined in the fol-
lowing way:

Definition 1. Target: a target consists of a Principal p,
an Action a and a Resource r. We represent a target as
a triple < p, a, r >. We say that a target < p, a, r > is
primitive iff p, a and r are primitive elements.

Given two targets t1 =< p1, a1, r1 > and t2 =< p2, a2, r2 >,
we say that t1 implies t2, denoted by t1 �T t2, iff p1 �P
p2 ∧ a1 �A a2 ∧ r1 �R r2. The partial order �T defines
the Target Hierarchy THM, shown in Figure 1. Primitive
targets are the leafs of the hierarchy.

Security administrators can define access rights on the
targets by means of authorizations, which are defined in the
following way:

Definition 2. Authorization: An authorization consists
of a triple composed by a set of Principals P , a set of Actions
A and a set of Resources R. Each authorization has a sign
s that can be + or −. It is used in order to state, respec-
tively, whether an authorization is positive (i.e., it grants
the permission to do something) or negative (i.e., it denies
the permission to do something). We graphically represent
an authorization in the following way: < s, P,A,R >.

An authorization auth =< s, P,A,R > defined over the
model M is associated in an unique way to a set of Targets
Tauth = P×A×R on which the authorization acts. Without
loss of generality, we can express access control decisions
only in terms of primitive targets (and thus we consider only
primitive targets when we compute the set Tauth). Given an
authorization, the following functions can be used in order
to obtain the elements contained in it:

• principals:Authorization→2Principal retrieves the set
of Principals involved in the authorization,

Figure 2 Graphical representation of authorizations

• actions:Authorization→2Action retrieves the set of Ac-
tions involved in the authorization,

• resources:Authorization→2Resource retrieves the set of
Resources involved in the authorization,

• sign:Authorization→ {+,−} retrieves the sign of the
authorization.

Given a set of authorizations ∆ and an authorization a ∈ ∆,
the region defined by a over ∆ is R∆

a = {a′ ∈ ∆|Ta ∩ Ta′ 6=
∅}. The region of an authorization a contains all the autho-
rizations that may interact with a. We can define a hierarchy
over authorizations in the following way: given two autho-
rizations auth1 and auth2, we say that auth1 is dominated
by auth2, i.e., auth1 � auth2, iff Tauth1 ⊆ Tauth2 .

Example 1. Figure 2 shows a graphical representation of
a set of authorizations applied over a set of targets. This
example will be used in the next sections as running exam-
ple. The graph is composed by two different components
(a) the authorizations, represented by squares labeled with
a sign, and (b) the targets, represented by circles (this set
of targets represent a part of the target hierarchy shown in
Figure 1). Edges between authorizations represent the �
ordering relation, whereas edges between targets represent
the �T ordering relation. In this representation, given an
authorization auth the set Tauth is defined by all the nodes
in the target hierarchy reachable from the node represent-
ing auth. For instance, if we consider the authorization A2
then TA2 is the set {T0, T1, T6}. The region defined by the
authorization A2 is {A1, A2, A3, A4}.

Let auth be an authorization. auth specifies an access
control decision on the targets on which it can act (repre-
sented by the sign sign(auth)), and we represent this fact
by saying that auth assigns a label sign(auth) to the targets
in Tauth. We represent the basic access control decision by
means of the concept of Privilege, which represents a Target
labeled with a sign s, defined in the following way:

Definition 3. Privilege: A privilege consists of a target
t =< p, a, r > and a sign s ∈ {+,−} (inherited from an
authorization). We graphically represent a privilege in the
following way: < s, p, a, r >. If the sign s is + then the
privilege represents the fact that the Principal p is allowed
to do the Action a on the Resource r. On the contrary, if
the sign s is − then the privilege represents the fact that the



Principal p is not allowed to do the Action a on the Resource
r. We say that a privilege < s, p, a, r > is primitive, i.e., it
does not imply other privileges, iff the target < p, a, r > is
primitive.

Given a privilege the following functions can be used in
order to obtain the elements of the model contained in it:

• principal :Privilege→Principal retrieves the Principal
involved in the privilege,

• action:Privilege→Action retrieves the Action involved
in the privilege,

• resource:Privilege→Resource retrieves the Resource in-
volved in the privilege,

• sign:Privilege→ {+,−} retrieves the sign of the privi-
lege.

Each authorization auth, thus, grants a set of privileges
(i.e., a set of labeled targets). More formally, we say that
each authorization auth associates a sign s to the targets
in the set Tauth. The procedure shown in Algorithm 1 can
be used to compute the set of privileges associated with an
authorization. We denote the set of privileges associated
with the authorization auth as privileges(auth).

Algorithm 1: privileges procedure for authorizations

Input : Authorization auth
Output: Privileges
begin

Privileges = ∅;
for p ∈ principals(auth), a ∈ actions(auth),
r ∈ resources(auth) do

for p′ ∈ contains + (p)
⋃
{p},

a′ ∈ composed + (a)
⋃
{a},

r′ ∈ containsResources(r)
⋃
{r} do

if contains(p′) = ∅ ∧ composed(a′) =
∅ ∧ containsResources(r′) = ∅ then

Privileges = Privileges
⋃
{<

sign(auth), p′, a′, r′ >};

Due to the fact that authorizations and privileges have a
sign, we may have conflicts between different authorizations
and privileges in the same policy P . Several approaches have
been proposed in the literature for the solution of conflicts
between authorizations [6, 12, 15]. Our approach is not tied
to any particular conflict resolution strategy, indeed it can
be used with any conflict resolution strategy that satisfies
certain requirements, explained in detail in Section 2.1. Let
M be a model, let PM, AM and RM be the set of principals,
actions and resources associated with the model, and let ∆
be the set of all possible authorizations that can be defined
over M. We represent a conflict resolution strategy as a
function ψ : PM ×AM ×RM ×P(∆) → ∆∪{⊥} that takes
as input a target < p, a, r > and a set of authorizations
A and returns the authorization in A that determines the
privilege granted by the set A w.r.t. the < p, a, r > (if no
authorization in ∆ can be applied to < p, a, r > then ψ
returns ⊥).

Let ∆ be a set of authorizations, we denote with priv-
ileges(∆, ψ) the set of privileges granted by ∆ w.r.t. the
conflict resolution strategy ψ. In this case privileges(∆, ψ)
can be computed by using the procedure shown in Algorithm
2 that returns the set of labeled targets associated with ∆
w.r.t. the strategy ψ. Given a set of authorizations ∆, a
conflict resolution strategy ψ and an authorization auth, we

say that ∆ dominates auth w.r.t. ψ, denoted by auth � ∆,
iff privileges(auth) ⊆ privileges(∆, ψ).

Algorithm 2: privileges procedure for sets of authoriza-
tions
Input : Set of authorizations ∆, Conflict resolution strategy ψ
Output: Privileges
begin

Privileges = ∅;
for auth ∈ ∆ do

for p ∈ principals(auth), a ∈ actions(auth),
r ∈ resources(auth) do

for p′ ∈ contains + (p)
⋃
{p},

a′ ∈ composed + (a)
⋃
{a},

r′ ∈ containsResources(r)
⋃
{r} do

if contains(p′) = ∅ ∧ composed(a′) =
∅ ∧ containsResources(r′) = ∅ then

a = ψ(p′, a′, r′,∆);
Privileges = Privileges

⋃
{<

sign(a), p′, a′, r′ >};

Definition 4. Policy: A policy consists of a set of autho-
rizations ∆ and a conflict resolution strategy ψ. We repre-
sent a policy as a pair < ∆, ψ >.

Let P =< ∆, ψ > be a policy, we denote with P ′ ⊂ P a
policy P ′ =< ∆′, ψ′ > such that ∆′ ⊂ ∆ and ψ′ = ψ.

Each policy is identified by its behaviour, which is defined
in the following way:

Definition 5. Behaviour of a Policy: the behaviour of a
policy P is the set of privileges granted, directly or indirectly,
by the policy.

The behaviour of a policy P can be computed using the
function privileges presented in Algorithm 2, thus we can
check whether two different policies are equivalent by check-
ing whether they enable the same set of privileges. The
behaviour of the policy models how the real access control
system behaves. Given the fact that the same behaviour can
be modeled by means of several different policies, the equiv-
alence relation between policies is defined in the following
way:

Definition 6. Equivalence of Policies: Two policies
P =< ∆, ψ > and P ′ =< ∆′, ψ′ > are equivalent, P ≡ P ′,
iff they have the same behaviour, i.e., iff privileges(∆, ψ) =
privileges(∆′, ψ′).

Let P be a policy defined over the model M. There ex-
ists always a policy P ′ expressed only in terms of primitive
elements of M which is equivalent to P and such that |P | =
|P ′|. In order to obtain P ′ we can proceed in the following
way: we define an authorization < s, Pr′, A′, R′ >∈ P ′ for
each authorization < s,Pr,A,R >∈ P where Pr′, A′ and
R′ contains only the primitive elements that can be derived
from the elements in Pr, A, and R respectively. The fact
that P ≡ P ′ follows trivially from the definition of equiv-
alence and from the privilege procedure. In the following
we can thus consider, without loss of generality, policies ex-
pressed only in terms of primitive elements.



2.1 Conflict resolution strategies

Let M be a model, let PM, AM and RM be the set of
principals, actions and resources associated with the model
and let ∆ be the set of all possible authorizations that can
be defined over M.

A conflict resolution strategy is a function ψ : PM×AM×
RM×P(∆) → ∆∪{⊥}. ψ takes as input a set of authoriza-
tions ∆ and a target < p, a, r >, and it returns as output
the authorization auth ∈ ∆ that is applied over < p, a, r >
according to the strategy (if no authorization in ∆ can be
applied to < p, a, r > then ψ returns ⊥).

A conflict resolution strategy ψ may satisfy one or more
of the following properties:

• Polynomiality: we say that ψ is polynomial (in the
size of ∆ and of the target hierarchy) iff there is an
algorithm that implements ψ which is in P,

• Completeness: we say that ψ is complete iff for
any possible set of authorizations ∆ and for any target
t =< p, a, r > if ∃auth ∈ ∆ :< p, a, r >∈ Tauth then
ψ(p, a, r,∆) 6=⊥,

• Monotonicity: we say that ψ is monotone iff for
any possible set of authorizations ∆ and for any tar-
get t =< p, a, r > then ψ(p, a, r,∆) = ψ(p, a, r,∆ ∪
{auth}) holds for any authorization auth such that
< p, a, r > 6∈ Tauth. A monotone conflict resolution
strategy is one that produces a result that depends
only on the authorizations in ∆ that are related with
< p, a, r > (i.e., adding unrelevant authorizations do
not change the outcome of the strategy).

We say that ψ is a valid conflict resolution strategy for
our framework, iff ψ satisfies the three properties above.

For instance, we can represent the Denial takes precedence
strategy in the following way:

ψDTP (p, a, r,∆) =



























ai if < +, p, a, r >∈ privileges(ai)∧

6 ∃aj ∈ ∆ \ {ai} :

< −, p, a, r >∈ privileges(aj)

ai if < −, p, a, r >∈ privileges(ai)

⊥ otherwise

It is easy to see that the Denial takes precedence strategy
satisfies all the requirements stated above.

Example 2. If we consider only the authorizations A5 and
A6 of Figure 2, we can define the sets (a) TA5 = {T3, T4, T7},
and (b) TA6 = {T4, T5, T8}. We can notice that there is an
intersection between TA5 and TA6, and the two authoriza-
tions have a different sign. The application of the strategy
Denial takes precedence means that for the target T4 (i.e.,
the intersection) will be applied the authorization A6, the
negative one.

The Most Specific Wins strategy can be represented by
the following function ψMSW :

ψMSW (p, a, r,∆) =















































ai if < p, a, r >∈ Tai∧

6 ∃aj ∈ ∆ \ {ai} :

(< p, a, r >∈ Taj ∧ aj � ai)

⊥ if ∃ai, aj ∈ ∆ :< p, a, r >∈ Tai
∧ < p, a, r >∈ Taj∧

ai 6� aj ∧ aj 6� ai

⊥ otherwise

It is easy to see that ψMSW is not complete because it may
return ⊥ also in case there are authorizations in ∆ that can
be applied to the target < p, a, r > but these authorizations
are not comparable.

Example 3. If we consider only the authorizations A2 and
A3 of Figure 2, we can define the sets (a) TA2 = {T0, T1, T6},
and (b) TA3 = {T0}. We can notice that A3 � A2 because
TA3 ⊆ TA2. For instance, for the target T0 we can apply
two authorizations A2 and A3. The Most Specific Wins
strategy chooses to apply the authorization A3 because it is
more specific than A2.

Although our framework is independent from a specific
conflict resolution strategy, for concreteness in the the run-
ning example and in Section 4 we consider the conflict res-
olution strategy ψ that applies the Most Specific Wins and
Denial takes precedence criteria. This strategy can be mod-
eled in the following way:

ψ(p, a, r,∆) =

{

ψMSW (p, a, r,∆) if ψMSW (p, a, r,∆) 6=⊥

ψDTP (p, a, r,∆) otherwise

ψ satisfies all the requirements stated above.

3 Redundancy

Sometimes real policies contain redundancy [13], for several
reasons caused by the evolution of security policies during
time. Although the concept of redundancy is easy to under-
stand, defining it formally is not trivial, especially, as in our
case, when we consider conflicts.

A simple definition of redundancy may be the following:
“Given a policy P , we can define an authorization auth

as redundant when it does not add anything to the be-
haviour of P .”. The process of removing redundancy is
called redundancy-removal process. The problem of this def-
inition is that redundancy is not invariant, i.e., it depends
on the sequences of decisions taken during the redundancy-
removal process. Indeed, by solving a conflict between au-
thorizations or by removing an authorization from the pol-
icy, we may change the set of authorizations that are re-
dundant. As a consequence, the sequence of decisions taken
during the redundancy-removal process in order to achieve a
redundancy-free equivalent policy, may lead to significantly
different results in terms of size of the final policy.

In the following we try to formalize the redundancy prob-
lem. The proof of all the theorems are given in the appendix.

We start by defining the concept of redundancy condition,
which refines the definition given above.

Definition 7. Redundancy Condition: An authoriza-
tion auth ∈ P satisfies the redundancy condition w.r.t. the
policy P =< ∆, ψ > iff ∀ < p, a, r >∈ Tauth :
sign(ψ(p, a, r,R∆

auth \ {auth})) = sign(ψ(p, a, r, R∆
auth)) ∧

ψ(p, a, r, R∆
auth \ {auth}) 6=⊥.

In other words, auth satisfies the redundancy condition
w.r.t. P iff its presence or absence does not influence the
access control decision for any possible target < p, a, r > on
which it can act.

Example 4. For instance, authorization A2 in Figure 2
satisfies the redundancy condition. The set TA2 contains
the targets T0, T1 and T6 and for each of these targets
the presence of A2 does not influence the behaviour of the
policy. Hence, we can safely remove A2.



Given a policy P , we can remove one by one all the au-
thorizations that satisfy the redundancy condition without
changing the behaviour of the policy. However, by removing
authorizations from P we may change the redundancy con-
dition for other authorizations. We model this phenomenon
with the concept of sequence of reductions.

Definition 8. Sequence of Reductions (SoR): let P0

be a policy, and let P1, . . . , Pn be a sequence of policies.
The sequence P0, P1, . . . , Pn is a sequence of reductions iff it
satisfies the following requirements:

• Pn ⊂ Pn−1 ⊂ . . . ⊂ P1 ⊂ P0,
• for each i ∈ {1, . . . , n}, Pi+1 = Pi \ {γi} and γi is an

authorization that satisfies the redundancy condition
w.r.t. Pi,

• there are no authorizations in Pn that satisfy the re-
dundancy condition w.r.t. Pn.

We say that P0 is the begin of the sequence, and that Pn is
the end of the sequence. We say that the reduction from Pi
to Pi+1 is a step in the sequence.

Due to the fact that the authorization removed at each
step satisfies the redundancy condition, the behaviour of the
policy does not change along the sequence of reduction, as
stated in Theorem 1.

Theorem 1. Let P0, . . . , Pn be a sequence of reductions.
All the policies in the sequence have the same behaviour,
i.e., they are equivalent.

An interesting property of SoRs is that once we reach a
point Pi in a sequence P0, . . . , Pn then all the authoriza-
tions that satisfy the redundancy condition at Pi satisfy the
redundancy condition also at the following steps of the se-
quence, as stated in Theorem 2. This means that, although
the choice of the authorization to remove may influence the
final outcome, the order in which we remove these autho-
rizations does not influence the result (i.e., what influences
the size of the final policy is only Γ = {γ0, . . . , γn−1} and
not the order in the SoR in which we remove authorizations
that satisfy the redundancy condition).

Theorem 2. Let P0, P1, . . . , Pn be a sequence of reduc-
tions. Let auth ∈ P0 be an authorization such that there
exists a value j ∈ {1, . . . , n} for which ∀j′ < j : auth ∈ Pj′

and auth satisfies the redundancy condition w.r.t. Pj . In
this case auth satisfies the redundancy condition w.r.t. all
Pi ∪ {auth} where j < i ≤ n.

Another important property of SoRs is stated in Theorem
3. The theorem says that whenever there are two equivalent
policies P and P ′ such that P ′ is a subset of P , then there
is always at least a sequence of reductions that starts from
P and passes through P ′. This means that we can reduce
the problem of finding a redundancy-free version of a policy
P to the one of finding an adequate SoR starting from P .

Theorem 3. Let P be a security policy and let P ′ ⊂ P
be another policy such that P and P ′ are equivalent. There
is always at least one sequence of reductions of the form
P, . . . , P ′, . . . , Pn.

We can now define the concept of redundancy-free policy,
called irreducible policy, in the following way:

Definition 9. Irreducible Policy (IP): A policy P is an
irreducible version of the policy P ′ iff it does not contain any
authorization that satisfies the redundancy condition w.r.t.
P , P ≡ P ′, and P ⊆ P ′. This is equivalent to say that there
is a sequence of reductions from P ′ to P , i.e., P ′, . . . , P .

From Theorem 3 follows that in case we reach a policy P
in a SoR such that there are no authorizations satisfying the
redundancy condition w.r.t. P , then we can soundly say that
an equivalent policy P ′ ⊂ P does not exist. Hence given a
policy P , we can compute an equivalent irreducible version
P ′ in a simple, although sometimes inefficient, way. Initially
let P ′ = P , then we iterate over all the authorizations in
P ′, and we check for each authorization a ∈ P ′ whether it
satisfies the redundancy condition w.r.t. P ′ or not, if this
is the case then we remove the authorization (i.e., P ′ =
P ′ \ {a}). We iterate the above procedure until no more
authorizations satisfy the redundancy condition. It is easy
to see that this algorithm is polynomial w.r.t. the number
of authorizations in P .

Checking whether a certain policy P is irreducible or not
is the Irreducible Policy Problem (IPP) and it can be solved
in P-TIME, as demonstrated by Theorem 4.

Definition 10. Irreducible Policy Problem: Given a
policy P , checking whether P is irreducible is called Irre-
ducible Policy Problem (IPP).

Theorem 4. The IPP is in P.

Example 5. Figure 3(a) shows an irreducible version of
the policy in Figure 2. The new policy was obtained by re-
moving the authorization A2 which satisfies the redundancy
condition, as shown in Example 4.

Given a policy P , several different irreducible versions of
it may exist. In order to improve the performance of ac-
cess control mechanisms, a possible solution is to compute
the irreducible version of P with the minimum number of
authorizations. We call this policy a Minimum Irreducible
Policy.

Definition 11. Minimum Irreducible Policy (MIP):
A policy P is a minimum irreducible version of the policy P ′

iff a policy P ′′ does not exist such that P ′′ is irreducible, P ′′

is equivalent to P ′, |P ′′| < |P |, P ⊆ P ′ and P ′′ ⊆ P ′. In an
equivalent way, we can say that P is a minimum irreducible
version of the policy P ′ iff P is the end of the longest SoR
that can be computed starting from P ′.

The problem of checking whether a certain policy P is
a minimum irreducible policy with respect to the original
policy P ′ is called Minimum Irreducible Policy Problem.

Definition 12. Minimum Irreducible Policy Problem:
Given two policies P and P ′, checking whether P is a mini-
mum irreducible policy with respect to P ′ is called Minimum
Irreducible Policy Problem (MIPP).

We are more interested in the the problem of finding a min-
imum irreducible version of a given policy P (which is the
search problem associated with the MIPP). Since the as-
sociated decision problem is coNP-complete, the search
problem is NP-hard.

Theorem 5. The MIPP is coNP-complete.



Example 6. Although in Example 4, we have shown a
redundancy-free version of the policy in Figure 2, the result-
ing policy (obtained by removing A2) was not the minimum
irreducible one. Indeed a smaller irreducible policy can be
computed by removing A3 and A4 instead of A2. This pol-
icy, shown in Figure 3(b), is the minimum irreducible one,
since no smaller irreducible policies exist.

Given the fact that the behaviour of an access control sys-
tem may be modeled by means of different equivalent poli-
cies, security administrators may be interested in computing
the policy with the minimum number of authorizations that
models the system, i.e., the minimum policy.

Definition 13. Minimum Policy (MP): A policy P is
said to be minimum iff an equivalent policy P ′ does not exist
such that |P ′| < |P |.

Given a policy P we can compute an irreducible policy P ′

equivalent to P by removing authorizations that satisfy the
redundancy condition. However, in order to compute the
minimum policy P ′′ we may have to define new authoriza-
tions that do not exist in P or remove authorizations in P
with the only constraint that the resulting policy P ′′ must
have the same behaviour as the original one. The problem of
checking whether a policy is minimum or not can be defined
in the following way:

Definition 14. MinimumPolicy Problem: Given a pol-
icy P , checking whether P is minimum is called Minimum
Policy Problem (MPP).

Theorem 6. The MPP is coNP-complete.

We are more interested in the the problem of computing a
minimum version P ′ of a given policy P (which is the search
problem associated with the MPP). Since the associated de-
cision problem is coNP-complete, the search problem is
NP-hard. It is worth pointing out that depending on the
given policy P , the search problems associated with MIPP
and MPP may do not have a unique solution, i.e., there
may be several different minimum irreducible and minimum
versions of the same policy P (all with the same size).

Example 7. Although the policy computed in Example 6,
is the minimum irreducible policy, a smaller policy exists
and it is shown in Figure 3(c)2. This policy is the minimum
policy.

4 Implementation

In this section, we present techniques for solving the MIPP
and MPP problems. We ignore the IPP because several al-
gorithms were proposed in the literature to solve this prob-
lem [5,9–11,16] (and also because any solution for MIPP is a
solution for IPP). In the following we show how MIPP and
MPP can be mapped on the Weighted SAT problem. The
Weighted SAT problem is an extension of the SAT problem,
and it is defined as follows:

Definition 15. Weighted SAT: Given a set of variables
U and a collection C of clauses over U , computing, in case it
exists, the truth assignment t : U → {0, 1} which satisfies C
and minimizes a certain cost function

∑

ui∈U
′ ki ∗ ui, where

U ′ ⊆ U and ki ∈ ℜ, is called the Weighted Satisfiability
Problem.
2We assume that the parent node is equal to the union of
its children.

Section 4.1 presents how the MIPP can be mapped to the
Weighted SAT problem, whereas in Section 4.2 we present
a heuristic technique for solving MIPP. In Section 4.3 we
present how the MPP can be mapped to the Weighted SAT
problem. In Section 4.4 we present an algorithm that uses a
heuristic approach to solve MPP. Section 4.5 presents some
experimental results.

(a) IP (b) MIP (c) MP

Figure 3 Redundancy-free policies

4.1 MIPP to Weighted SAT

We can map the MIPP to the Weighted SAT problem, and
we can use efficient SAT -solvers in order to identify the min-
imum irreducible version of the input policy. Let P =<
∆, ψ > be the input policy, we want to produce a policy
P ′ =< ∆′, ψ > such that ∆′ ⊆ ∆ and P ′ is a minimum
irreducible version of P . We denote with G the set privi-
leges(∆, ψ).

We define a variable ai for each authorization ai ∈ ∆.
Due to the fact that the correspondence between variables
and authorizations is clear, in the following we switch freely
between the two notations (e.g., sometimes ai may refer to
an authorization and sometimes it may refer to the variable
associated with that authorization). For simplicity’s sake,
we do not present formulae in CNF (this is not a problem
because it is always possible to translate a formula to an
equivalent one in CNF).

The cost function min
∑

ai∈∆ ai aims at minimizing the

number of authorizations in the resulting policy (and thus
it guarantees that the resulting policy is the minimal irre-
ducible one).

We still have to handle conflicts and the conflict reso-
lution strategy in our Weighted SAT instance. Our ap-
proach considers a general conflict resolution strategy ψ. Let
t =< p, a, r > be a target defined in our model, we denote
with Kt the set containing all the authorizations that act on
the target t (i.e., Kt = {ai ∈ ∆|t ∈ Tai}). Given a target
t =< p, a, r > and a privilege p =< s, p, a, r > we define
C(p) in following way:

C(p) =
∨

X∈P(Kt)∧sign(ψ(p,a,r,X))=sign(p)

(
∧

ai∈X

ai∧
∧

ai∈Kj\X

¬ai)

For each privilege pj ∈ G we add a constraint in the form
C(pj), this constraint enumerates all the possible combina-
tions of authorizations that effectively grant the privilege pj .
By enforcing these constraints we ensure that the behaviour
of the resulting policy is equivalent to the behaviour of P .
An authorization ai ∈ ∆ is in ∆′ iff the variable associated
with ai is set to one in the result of the Weighted SAT prob-
lem. It is easy to see that the result of the Weighted SAT
problem produces a Minimum Irreducible Policy.



4.2 Heuristic Algorithm for MIPP

As described above the MIPP is a coNP-complete prob-
lem. Hence, in this Section we propose a heuristic algorithm
that allows to find, in an efficient way, an irreducible policy
close to one of the exact solutions.

Algorithm 3: Heuristic Algorithm for MIPP

Input : Policy P , Conflict Resolution Strategy CRS
Output: MIP P
begin

bool removed;
repeat

removed = false;
for a ∈ P do

List region = computeRegion(a, P );
if isRemovable(a, region, CRS) then

P.removeAuthorization(a);
removed = true;

until removed;

Our approach, shown in Algorithm 3, is based on an itera-
tive process. Let P =< ∆, ψ > be the initial policy. At each
iteration, the algorithm iterates over the authorizations and
for each authorization a computes its region R∆

a by means of
the computeRegion procedure. Then the algorithm checks
whether the authorization satisfies the redundancy condi-
tion w.r.t. P by means of the isRemovable procedure, which
takes as input (a) the selected authorization, (b) the region,
and (c) the resolution strategy. If the authorization a satis-
fies the redundancy condition, then the algorithm removes
it from the policy. The algorithm ends when no more au-
thorizations satisfy the redundancy condition w.r.t. P ; this
means that the algorithm has reached a fixed point, and
from Theorem 3 further reductions are not possible.

In order to improve the performance of the algorithm, we
can optimize the computeRegion and the isRemovable pro-
cedures, by taking into account a specific conflict resolution
strategy. For instance, if we consider the conflict resolution
strategy presented in Section 2.1 we can tune both proce-
dures in the following way. Let a be an authorization and
P be the policy, the computeRegion procedure can produce
a restricted region R′

a = Aa ∪Da ∪ Ia where Aa is the set of
direct ancestors of a (i.e., Aa = {a′ ∈ ∆|a � a′ ∧
6 ∃a′′ ∈ ∆ \ {a, a′} : (a � a′′ ∧ a′′ � a′)}), Da is the set of
direct descendants of a (i.e., Da = {a′ ∈ ∆|a′ � a ∧
6 ∃a′′ ∈ ∆ \ {a, a′} : (a′′ � a ∧ a′ � a′′)}) and Ia is the set
of most specific authorizations that have an intersection (at
the target level) with a (i.e., Ia = {a′ ∈ ∆|a′ 6� a∧ a 6� a′ ∧
Ta∩Ta′ 6= ∅∧ 6 ∃a′′ ∈ P \{a, a′} : (a′′ � a′∧Ta∩Ta′′ 6= ∅)}).
The region R′

a is a subset of the region Ra and usually R′
a

is quite smaller than Ra. In the same way we can improve
the performance of the isRemovable procedure by leverag-
ing the characteristics of the conflict resolution strategy, e.g,
first we may check whether the Most Specific Wins criterion
can be applied; if this is the case, then we need only to find
the most specific authorization, otherwise we know that if
at least one negative authorization is in the region, then the
sign of the resulting authorization will be − otherwise +.

4.3 MPP to Weighted SAT

In order to obtain an exact solution to the MPP problem,
we can map it to the Weighted SAT problem, and we can
use efficient SAT -solvers in order to identify the minimum
version of the input policy. Let P =< ∆, ψ > be the input

Algorithm 4: Heuristic Algorithm for MPP

Input : Policy P =< ∆, ψ >
Output: Policy P ′ =< ∆′, ψ >

begin

∆′ = ∅;
Pr = privileges(∆, ψ);
List pList = new List(Pr);
while pList 6= ∅ do

p = pList[0];
pList = pList.remove(p);
added = false;

for a ∈ P ′ do

if isCompatible(p, a, Pr) then

added = true;
T = privileges(a);
if p 6∈ T then

principals(a) =
principals(a) ∪ principal(p);
actions(a) = actions(a) ∪ action(p);
resources(a) = resources(a)∪resource(p);
break;

if !added then
a =<
{principal(p)}, {action(p)}, {resource(p)} >;

∆′ = ∆′ ∪ {a};

policy, we want to produce a policy P ′ =< ∆′, ψ > where
P ′ is a minimum version of P . We denote with G the set
privileges(∆, ψ). Let k be |G| and n be |∆|.

We define the following variables:
• auth1, . . . , authn where each authi represents an au-

thorization,
• pi,j for each i ∈ [1, n], j ∈ [1, k]. Each variable pi,j

represents the fact that the privilege pj ∈ G is assigned
to the authorization ai,

The cost function min
∑

j∈[1,n] authj aims at minimizing
the number of authorizations in the resulting policy. We
define the following clauses that aim at ensuring that the
resulting policy is equivalent to the initial policy:

• For each privilege pj we define a clause in the form
∨

i∈[1,n] pi,j . The clause aims at enforcing the fact that
the privilege has to be assigned to at least one autho-
rization.

• For each authorization authi we define the clauses in
the form ¬pi,j ∨authi for each j ∈ [1, k], which enforce
the fact that if one of the privileges is assigned to an
authorization, then the variable associated with the
authorization is enabled.

• For each pair of privileges pl and pm such that pl 6= pm
and sign(pl) 6= sign(pm) and
privileges({<{principal(pl), principal(pm)} ,{action(pl),
action(pm)} ,{resource(pl),resource(pm)} >}) 6⊆ Z we
define the clauses in the form pi,l ∨ pi,m for each i ∈
[1, n] that enforce the fact that two incompatible priv-
ileges cannot be assigned to the same authorization.

The resulting policy P ′ is obtained by creating the autho-
rizations authi where i ∈ [1, n] to which at least one privilege
has been assigned to.

4.4 Heuristic Algorithm for MPP

We defined a heuristic algorithm, shown in Algorithm 4,
which iteratively tries to build the minimum policy by adding
a privilege at a time. First the algorithm computes the set of
privileges granted by the policy P given as input. The algo-
rithm tries to group together compatible privileges. In order



to do this it iterates over the privileges, and at each iteration
it tries to add the current privilege to the already existing
authorizations. If no compatible authorization exists, it cre-
ates a new authorization. The isCompatible procedure takes
as input a privilege p, an authorization a and the set of priv-
ileges Pr granted by the original policy and checks whether
a and p can be merged or not, i.e., isCompatible(p,a,Pr)
= privileges({<principal(p)∪ principals(a), action(p)∪ ac-
tions(a), resource(p)∪ resources(a) >}) ⊆ Pr∧sign(p) =
sign(a).

Figure 4 SAT MIPP Figure 5 Heuristic MIPP

Original Size Final Size Delta Time %

43 22 25.58%
70 29 10.19%
88 25 3.78%
151 47 60.74%
184 58 58.86%
219 76 83.08%
253 92 90.64%
295 98 96.88%
360 112 99.19%
451 149 99.49%

Table 1 Comparison between the two MIPP methods
4.5 Experimental Results

We implemented a prototype for the evaluation of the per-
formance of the techniques presented in this paper. The
prototype consists of a Java module that invokes the im-
plementation of the four approaches presented above. The
exact solutions use the SAT4J3 SAT solver. Since there are
no freely available large datasets of real security policies, we
chose to test our prototype against policies built according to
an interpretation of the data in bibliographic databases. We
used randomly selected subsets of PubMed Central4 (PMC)
which provides a rich set of attributes and relationships that
represent a real and extensive social network. It has rich in-
formation about journals, with a description of editorships
and the funding of papers.

Given a random sample of the PMC database, we built
an instance of our model in the following way: (a) for each
author or editor, we create a principal, (b) for each group of
authors that have written a paper together, we create a prin-
cipal containing the principals associated with the authors,
(c) for each group of editors of a conference or a journal, we
create a principal containing the principals associated with
the groups (d) we defined three different actions read, write
and review. We then created the following authorizations:
(a) for each paper author we create the authorizations to

3http://www.sat4j.org - Sat4j library for Java
4http://www.ncbi.nlm.nih.gov/pmc/

Figure 6 SAT MPP Figure 7 Heuristic MPP

Original Size Final Size Delta Time %

6 4 93.67%
12 4 83.94%
19 4 76.70%
23 8 99.86%
28 9 99.95%
32 10 99.98%
45 11 99.99%
62 13 99.99%

Table 2 Comparison between the two MPP methods

read and write the paper and the negative authorization to
review the paper, (b) for each editor of the issue of the jour-
nal containing the paper we add the authorizations to read
and review the paper and the negative authorization to write
the paper, (c) for each author that receives funding from the
same grant that funded the paper, we add a negative autho-
rization to review the paper and an authorization to read
the paper, (d) for each group representing the institution to
which the author is affiliated, we add the authorization to
read the paper, (e) for each group representing the editorial
board of the journal that published the paper we add the au-
thorizations to read and review the paper and the negative
authorization to write the paper. Experiments have been
run on a PC with two Intel Xeon 2.0GHz/L3-4MB proces-
sors, 12GB RAM, four 1-Tbyte disks and Linux operating
system. Each observation is the average of the execution of
ten runs.

The results of the exact approach for the MIPP prob-
lem are shown in Figure 4, whereas the performance of the
heuristic algorithm are shown in Figure 5. Table 1 shows
a detailed comparison between the results of the two ap-
proaches. The heuristic approach is always able to identify
the exact solution and the savings in execution time range
from 3.78% to 99.49%.

The results of the exact approach for the MPP prob-
lem are shown in Figure 6, whereas the performance of the
heuristic algorithm are shown in Figure 6. Table 2 shows
a detailed comparison between the results of the two ap-
proaches. Also in this case the heuristic approach is always
able to identify the exact solution and the savings in execu-
tion time range from 76.70% to 99.99%. However the MIPP
exact solution scales better than the MPP one.

Empirical results show that both heuristic algorithms could
be a good approximation of the exact ones. They allow
the analysis of real policies with a good precision and with
good response time. Figure 8 and Figure 9 compare the
performance of the two heuristic algorithms, both in terms
of execution time and reduction. The execution time of the
two algorithms is very similar with policy with a size lower



Figure 8 Time Comparison Figure 9 Size Comparison

than 5000 authorizations. After that threshold the MIPP
algorithm performs better. On the other hand, the MPP al-
gorithm allows to compute smaller policies than the MIPP.
The MPP allows to obtain a policy which is usually 20%
smaller than the policies resulting from the MIPP, but its
execution may take more time.

5 Related Work

Several works recognize that real security policies may con-
tain redundancy [13, 16], and that this fact may lead to an
increase in the total management costs of the policies. Re-
dundancy may also reduce the efficiency of the global access
control system.

The firewall community has shown a great interest in de-
tection and removal of redundancy from firewall policies
[1–3,5,11,16].

Basile et al. [5] present an approach to anomaly detection
which is based on the representation of policies by means
of hyper-rectangles. Their approach can be used to identify
redundant rules in firewall policies. Fireman [16] is a tool
that can be used also to detect redundant rules in firewall
policies by using Binary Decision Diagrams. Al-Shaer and
Hamed proposed Firewall Policy Advisor [1–3], a tool that
is able to detect several anomalies in firewall policies and
also redundancies. In [11] Liu and Gouda model policies by
means of Firewall Decision Trees, and present an algorithm
that can be used to detect redundant rules.

In our opinion the models used in these works are quite
simple, because they usually have only two actions, i.e. ac-
cept and deny, and they consider only the hierarchy of IP
addresses, and thus comparison with approaches that con-
sider more complex models may be difficult.

An interest in anomaly detection for access control policies
has grown also in the computer security community [4,8–10].

Kolovski et al. [10] tackle the fact that complex XACML
policies are hard to understand and evaluate manually, and,
thus, automated tools are needed. They propose to map
XACML to Description Logics (DL), to benefit from off-
the-shelf DL reasoners. They implement in DL a reasoning
service that can be used to identify redundant authoriza-
tions. Also Hu et al. [9] provide a way to detect redundant
authorizations in XACML policies. They model access con-
trol policies by means of boolean expressions, and then they
represent these expressions using BDDs.

Although our work does not consider explicitly a partic-
ular scenario, our model is general enough to be adapted
to represent both firewall policies (there is only one Princi-
pal which represents any incoming packet, Actions are only

deny and accept, and Resources represent IP addresses) and
XACML policies (the mapping from XACML to our model
is trivial in case of stateless XACML policies).

All the works presented above propose only solutions that
compute an irreducible version of the original policy given as
input, they do not try to compute the minimum irreducible
version nor the minimum version of the original policy. To
the best of our knowledge no algorithms for the Minimum
Irreducible Policy Problem and Minimum Policy Problem
exist.

Despite the fact that the Minimum Policy Problem may
have some aspects in common with Role Mining [7], i.e., it
tries to compute a minimum representation of the behaviour
of the access control mechanism, there are also several dif-
ferences, i.e. (a) MPP can be applied also to situations in
which no roles exist (e.g. in firewalls), (b) MPP does not
try to extract any meaningful information from the user-
permission assignments, (c) MPP can be applied also as an
optimization step just before the actual deployment of the
policy; in this way by obtaining a smaller equivalent policy
security administrators can implement a policy that achieves
better performance [11,16].

6 Conclusions

We analyzed the presence of redundancies in access con-
trol policies and we have shown that the interesting prob-
lems related with redundancy are NP-hard. Although exact
solutions can be found by means of SAT solvers, the em-
pirical evidence we reported confirms that the approaches
do not scale well. Thus, we proposed two heuristic algo-
rithms. For the Minimum Irreducible Policy Problem we
defined a heuristic approach that iteratively computes which
authorizations satisfy the redundancy condition by comput-
ing their regions. For the Minimum Policy Problem we de-
fined a heuristic approach that iteratively tries to identify
compatible privileges. We conducted a detailed performance
analysis, which shows that our heuristic solutions can com-
pute solutions very close to the optimal one, with a per-
formance that, as expected, significantly outperforms exact
solutions in terms of execution time and remains applicable
even with large policies.
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APPENDIX

Lemma 1. Let P =< ∆, ψ > be a policy and let auth
an authorization in ∆. If auth satisfies the redundancy
condition w.r.t. P then privileges(∆, ψ) =privileges(∆ \
{auth}, ψ).

Proof of Lemma 1 We prove the lemma by contradic-
tion. We assume that auth satisfies the redundancy con-
dition w.r.t. P , and that privileges(∆, ψ) 6=privileges(∆ \
{auth}, ψ). This means that there is at least a target <
p, a, r > that behaves in a different way under P and under
P \ {auth}. This fact implies that ∃s ∈ {+,−} :
< s, p, a, r >∈privileges(auth) such that one of the two fol-
lowing cases holds:

1. < s, p, a, r >∈privileges(∆, ψ) and does not exist any
sign s′ ∈ {+,−} such that < s′, p, a, r >∈ privileges(∆\
{auth}, ψ). This means that ψ(p, a, r,∆ \ {auth}) =⊥,
but this generates a contradiction due to the complete-
ness property of ψ and the definition of the redundancy
condition.

2. < s, p, a, r >∈privileges(∆, ψ) ∧
< s′, p, a, r >∈privileges(∆ \ {auth}, ψ) where s′ is the
opposite sign of s (i.e., if s = + then s′ = − and
viceversa), but this fact contradicts the definition of
the redundancy condition. �

Proof of Theorem 1 It follows trivially from Lemma 1. �

Proof of Theorem 2 We prove the theorem by contra-
diction. We assume that there is an auth that satisfies the
redundancy condition w.r.t. Pj but does not satisfies the
redundancy condition w.r.t. a Pi ∪ {auth} where j < i ≤ n.

Due to the fact that R
Pi∪{auth}
auth ⊆ R

Pj

auth, it follows that
there is at least a privilege < s, p, a, r >∈privileges(auth)
for which one of the following holds:

1. ψ(p, a, r,R
Pi∪{auth}
auth ) =⊥, but this is impossible be-

cause R
Pi∪{auth}
auth contains auth and ψ is complete.

2. sign(ψ(p, a, r, R
Pi∪{auth}
auth \ {auth})) 6=

sign(ψ(p, a, r, R
Pi∪{auth}
auth )) (we refer in the following to

this property as ◦). From the fact that all the autho-
rizations that are in Pj but not in Pi ∪ {auth} satisfies
the redundancy condition, it follows that also if we add
them to Pi∪{auth} they preserve the ◦ property. This
means that also Pi∪{auth}∪ (Pj \ (Pi∪{auth})) = Pj
satisfies the ◦ property, but this is a contradiction.

In both cases we have a contradiction, so we have proved
the theorem. �

Lemma 2. Let P be a security policy. There is a P ′ ⊂ P

equivalent to P iff there is at least an authorization auth ∈ P
that satisfies the redundancy condition w.r.t. P .

Proof of Lemma 2 ⇐) Suppose there is an authorization
auth ∈ P that satisfies the redundancy condition w.r.t. P .
This means that there is a sequence of reductions in which
P and P ′ = P \ {auth} appear, and thus from Theorem 1
we know that P and P ′ are equivalent (and P ′ ⊂ P holds).
⇒) We prove this part by contradiction. Let P ′ ⊂ P be
equivalent to P and let S ⊆ P be the set of authorizations
that satisfies the redundancy condition w.r.t. P . We assume
that S = ∅. From the fact that P ′ ⊂ P and P ′ is equivalent
to P , follows that all the authorizations in K = P \P ′ do not
influence the behaviour of P . Without loss of generality, we
consider only the case in which |K| = 1 (i.e., K = {auth′}).
The fact that auth′ does not influence the behaviour of P
means that for each privilege < s, p, a, r >∈privileges(auth′)
the following statements hold:

• sign(ψ(p, a, r, P \ {auth′})) = sign(ψ(p, a, r, P )) and
from the fact that ψ satisfies the monotonicity property
this is equivalent to sign(ψ(p, a, r, RPauth′ \ {auth

′})) =
sign(ψ(p, a, r, RPauth′)),

• ψ(p, a, r, P \{auth}) 6=⊥, but since ψ satisfies the com-
pleteness property this implies the fact that
ψ(p, a, r,RPauth′ \ {auth}) 6=⊥.

This means that auth′ is redundant w.r.t. P , and thus S 6= ∅
which lead to a contradiction. �
Proof of Theorem 3 It follows trivially from Lemma 2. �

Algorithm 5: irreduciblePolicy procedure

Input : Policy P =< ∆, ψ >
Output: Policy P ′ =< ∆′, ψ > whereP ′ ⊆ P
begin

∆′ = ∆;
bool continue =true;
while continue do

Γ = ∅;
continue =false;

for auth ∈ ∆′ do

if satisfies(auth,∆′) then

Γ = Γ ∪ {auth};
continue =true;
Break;

∆′ = ∆′ \ Γ;

Proof of Theorem 4 Algorithm 5 computes an irreducible
version of the policy P given as input, and it can be executed
in polynomial time (the procedure satisfies(auth,∆′) checks
whether the authorization auth satisfy the redundancy con-
dition w.r.t. ∆′ and it can be executed in time polynomial
in the size of the set ∆ and in the size of the Target Hierar-
chy). Given a policy P we can check if P is irreducible by
checking whether P = irreduciblePolicy(P). �



Proof of Theorem 5 A nondeterministic algorithm need
only to guess a sequence of reduction S starting from P ′.
If P is not an irreducible version of P ′, then the solution
of MIPP is trivial. Otherwise if |end(S)| < |P |, then we
have found an irreducible version of the policy P ′ with less
authorizations than P , and thus P is not a Minimum Irre-
ducible Policy and we have found a solution to the MIPP .
We have already shown that the MIPP is in NP. Now we
have to show that a NP-complete problem can be reduced
in polynomial time to MIPP . We consider the Set Cov-
ering Problem (SCP).The SCP is defined in the following
way: given a set X, a collection of subsets of X called C,
such that X =

⋃

Ci∈C
Ci, and an integer value k < |C|, does

exist a C′ ⊂ C such that X =
⋃

C′

i
∈C′ C

′
i and |C′| ≤ k?

We can map SCP to MIPP in the following way:

• we define an action a and a resource r,
• for each element xi ∈ X we define a principal pi and a

privilege < +, pi, a, r >,
• for each element Ci ∈ C we define an authorization
< +, Pi, a, r > where Pi is the set containing all the
principals associated with the elements xj ∈ Ci,

• we define the original policy P ′ composed by all the
authorizations associated with each Ci ∈ C. The policy
P ′ has |C| authorizations,

• we define the policy P composed by k+1 authorizations
in the following way: it contains the k authorizations
associated with C1, . . . , Ck, it contains an authorization
< +, Pall, a, r > where Pall contains all the principals
associated with the elements in Ck+1, . . . , C|C|.

The algorithm presented above is obviously polynomial, and
it produces a pair of policies. The original policy P ′ is
composed by |C| authorizations, each one with the form
authi =< +, {p1, . . . , pj}, a, r > where p1, . . . , pj are the
principals associated with the elements of X which belong
to Ci. The policy P which has to be checked for minimum
irreducibility is composed by k + 1 authorizations.

We have only to show that SCP⇐⇒MIPP . On the one
hand we assume that there exists a C′ ⊂ C such that X =
⋃

C′

i
∈C′ C

′
i and |C′| ≤ k < |C|. This means that we can

create a policy P ′′ composed by |C′| authorizations (we gen-
erate an authorization authi that contains all the privileges
associated with the elements of C′

i for each element C′
i ∈ C)

that is equivalent to P ′, because the privileges in P ′′ and P ′

are the same given the fact that C′ is a cover for X. In ad-
dition, P ′′ is smaller than P (|P ′′| ≤ k ≤ |P |) and P ′′ ⊂ P ′,
and thus we have found an equivalent policy smaller than P .
Also the MIPP evaluates to yes because P is not a mini-
mum irreducible policy. Conversely, we assume that MIPP
evaluates to yes and thus the policy P is not a minimum irre-
ducible version of P ′. This means that there exists a policy
P ′′, equivalent to P ′, such that |P ′′| < |P | = k + 1 and
P ′′ ⊆ P ′ and this means that there exists a cover C′ ⊂ C
with the same cardinality of P ′′ and thus |C′| ≤ k. �

Given a set of authorizations A and an authorization auth,
we can compute whether auth implies all the authorizations
in the set A by means of the function implies(auth, A) shown
in Algorithm 6 (the functions principals+, actions+ and re-
sources+ are the transitive closures of principals, actions
and resources over the respective hierarchies).

Proof of Theorem 6 A nondeterministic algorithm need
only to guess a set of authorizations A, and an authorization
auth such that |A| ≥ 2, A ⊆ P and auth 6∈ A, and then

Algorithm 6: implies procedure

Input : auth, A
Output: True or False
begin

for auth′ ∈ A do

if sign(auth) = sign(auth′) then
if principals+(auth’) 6⊆
principals+(auth) ∨ actions+(auth’) 6⊆
actions+(auth) ∨ resources+(auth’) 6⊆
resources+(auth) then

return False;

else

return False;

return True;

we can check in polynomial time, using the Algorithm 6,
whether the policy is not minimum. If the implies procedure
returns True, this means that an equivalent policy P ′ with
a size of |P | − |A| + 1 exists (this policy is the one that
we can obtain by removing from P all the authorizations
in A and adding auth) and thus we have found a solution
to the MPP (i.e., given a policy P checking whether P is
not minimum). We have already shown that theMPP is in
NP. Now we have to show that an NP-complete problem
can be reduced in polynomial time to MPP . We consider
the Set Covering Problem (SCP).The SCP is defined in the
following way: given a set X, a collection of subsets of X
called C, such that X =

⋃

Ci∈C
Ci, and an integer value

k < |C|, does exist a C′ ⊂ C such that X =
⋃

C′

i
∈C′ C

′
i and

|C′| ≤ k?
We can map SCP to MPP in the following way:
• we define an action a and a resource r,
• for each element xi ∈ X we define a principal pi and a

privilege < +, pi, a, r >,
• we define a policy composed by k + 1 authorizations
auth0, . . . , authk,

• for each element Ci ∈ C we add the privileges associ-
ated with all the elements in Ci to the authorization
authi mod(k+1).

The algorithm presented above is obviously polynomial, and
it produces a policy composed by k+1 authorizations, each
one with the form authi =< +, {p1, . . . , pli}, a, r > where li
is the number of principals in the authorization authi.

We have only to show that SCP⇐⇒MPP . On the one
hand we assume that there exists a C′ ⊂ C such that X =
⋃

C′

i
∈C′ C

′
i and |C′| ≤ k. This means that we can create a

policy P ′ composed by |C′| authorizations (we generate an
authorization authi for each element C′

i ∈ C that contains
all the privileges associated with the elements of C′

i) that is
equivalent to P , because the privileges in P and P ′ are the
same given the fact that C′ is a cover for X. In addition, the
size of P is at most k that is smaller than P , and thus also the
MPP evaluates to yes. Conversely, we assume that MPP
evaluates to yes and thus the policy P is not minimum. This
means that there exists a policy P ′, equivalent to P , such
that |P ′| < |P | = k + 1 and thus this means that there
exists a cover C′ ⊂ C with the same cardinality of P ′ and
thus |C′| ≤ k. �


