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Abstract

Databases often store and manage sensitive data. Regulating the access to databases is, therefore,
essential. To this end, database security researchers have developed both access control and inference
control mechanisms. The former limit direct access to sensitive data, whereas the latter prevent
leaks caused by combining query results with external information such as prior knowledge or data
dependencies. Ideally, all these mechanisms should come with security proofs clearly stating what
attacks they are designed to thwart, as with security mechanisms in other domains. Unfortunately,
this is far from reality. Existing protection mechanisms are implemented in an ad hoc fashion, with
neither precise security guarantees nor the means to verify them. This has immediate consequences
as existing mechanisms are inadequate to secure modern databases and are susceptible to attacks.

In this thesis, we develop theoretical foundations for access and inference control in databases.
We leverage these foundations to design provably secure and practical protection mechanisms for
modern database systems. In more detail, our thesis makes the following contributions.

First, we formalize Security-Aware Query Processing, the task of computing answers to SELECT
queries in the presence of access control policies, and we study the existence of optimal Security-Aware
Query Processing algorithms, i.e., those algorithms that provide both confidentiality and maximal
data availability. We prove that there are no optimal algorithms for the relational calculus, whereas
optimal algorithms exist for some of its fragments. We also investigate the connections between two
different semantics for database access control that have been previously presented in the literature.
In this respect, we show that, for optimal algorithms, these semantics are distinct for non-boolean
SELECT queries, but they coincide for boolean queries.

Second, we develop foundations for database inference control in the presence of probabilistic
data dependencies. Our foundations are based on ProbLog, a state-of-the-art probabilistic logic
programming language. We leverage these foundations to develop Angerona, a database infer-
ence control mechanism that secures databases against attackers exploiting probabilistic dependen-
cies. Angerona provides precise security, completeness, and tractability guarantees by exploiting
a tractable inference algorithm for a practically relevant fragment of ProbLog. We empirically
evaluate Angerona’s performance and show that it scales to relevant security-critical problems.

Third, we develop a formal framework for reasoning about the security of database access control
mechanisms. Our framework consists of (1) a formal operational semantics of databases supporting
advanced features, such as triggers and views, (2) an attacker model formalizing how attackers infer
information from the database system’s behavior, and (3) precise security conditions accounting
for dynamic security policies. Our attacker model and security conditions subsume the standard,
limited attacker models and conditions considered in previous works, where both the database state
and the policy are fixed and attackers are restricted to SELECT queries. Guided by our operational
semantics and attacker model, we develop a provably secure enforcement mechanism that thwarts
confidentiality and integrity attacks that existing mechanisms fail to prevent.

Finally, we reconcile database access control and information-flow control, two seemingly disparate
research areas that share the same goal: protecting the confidentiality and integrity of sensitive in-
formation. We develop WhileSql, an imperative language with querying capabilities that relies on
our database operational semantics, and we provide a framework for reasoning about the security
of WhileSql programs. We reduce database access control to determining whether WhileSql pro-
grams leak information, thereby providing a way of applying existing information-flow techniques to
database access control. We also develop a provably secure enforcement mechanism for WhileSql
programs, which secures programs that existing mechanisms fail to secure. Our mechanism combines
dynamic information-flow tracking with concepts from database theory, such as disclosure lattices and
query determinacy, to provide end-to-end security guarantees for programs interacting with modern
databases.
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Riassunto

I moderni sistemi informativi spesso processano informazioni sensibili, che vengono memorizzate
all’interno di basi di dati (database). Prevenire possibili attacchi aventi come obiettivo tali infor-
mazioni richiede quindi di controllare e limitare l’accesso alle basi di dati. Per questo motivo, sono
stati proposti e implementati vari meccanismi che permettono il controllo degli accessi (access con-
trol) e delle inferenze (inference control). I primi limitano l’accesso diretto alle informazioni sensibili.
I secondi, invece, regolano l’accesso indiretto a tali informazioni, essi cioè limitano le informazioni che
possono essere ottenute combinando i risultati estratti dalle basi di dati tramite interrogazioni con in-
formazioni aggiuntive come, per esempio, informazioni pregresse or dipendenze tra i dati. Idealmente,
tutti questi meccanismi dovrebbero essere accompagnati da dimostrazioni formali che specificano e
certificano quali attacchi vengono bloccati. Sfortunatamente, la realtà è diversa. I meccanismi di
sicurezza esistenti sono stati sviluppati senza precise garanzie di sicurezza. Questo ha conseguenze
immediate: i meccanismi esistenti non sono adeguati per proteggere le moderne basi di dati e sono
vulnerabili a vari attacchi.

In questa tesi presentiamo i fondamenti teorici per il controllo degli accessi e delle inferenze.
Basandoci su questi fondamenti teorici, abbiamo progettato e implementato nuovi meccanismi per
controllare gli accessi e le inferenze all’interno delle moderne basi di dati. Questi meccanismi for-
niscono precise garanzie di sicurezza (certificate da dimostrazioni formali) e sono al contempo utiliz-
zabili in pratica.

Il nostro primo contributo studia come eseguire interrogazioni di tipo SELECT in presenza di
politiche di controllo degli accessi. Tale problema è anche chiamato Security-Aware Query Process-
ing. In particolare, studiamo l’esistenza di algoritmi ottimali per effettuare Security-Aware Query
Processing, cioè quegli algoritmi che garantiscono allo stesso tempo confidenzialità e disponibilità
dei dati. In questa tesi, dimostriamo che non ci sono algoritmi ottimali in caso si utilizzi il calcolo
relazionale come linguaggio di interrogazione, mentre tali algoritmi esistono per vari frammenti del
calcolo relazionale. In aggiunta, investighiamo anche le relazioni tra due differenti semantiche per
il controllo degli accessi nelle basi di dati. A questo proposito, dimostriamo che, per gli algoritmi
ottimali, queste due semantiche sono distinte per le interrogazioni non booleane, mentre coincidono
per le interrogazioni booleane.

Il nostro secondo contributo, invece, analizza il controllo delle inferenze in presenza di dipendenze
probabilistiche tra i dati memorizzati nella base di dati. A questo proposito, sviluppiamo i fondamenti
teorici per il controllo delle inferenze utilizzando ProbLog, un linguaggio di programmazione logica
con aspetti probabilistici. Basandoci su tali fondamenti, sviluppiamo Angerona, un meccanismo per
il controllo delle inferenze che protegge le basi di dati da attaccanti aventi accesso alle dipendenze
probabilistiche tra i dati stessi. Angerona fornisce precise garanzie di sicurezza, completezza, e
trattabilitá utilizzando un nuovo algoritmo per effettuare inferenze probabilistiche per un sottoinsieme
praticamente rilevante dei programmi esprimibili in ProbLog. Infine, valutiamo empiricamente le
prestazioni di Angerona e mostriamo che scalano a vari problemi d’interesse.

Il nostro terzo contributo consiste nello sviluppare i fondamenti teorici per il controllo degli accessi
nelle basi di dati. A questo proposito, presentiamo (1) una semantica operazionale delle basi di dati
che supporta funzionalità avanzate come viste e trigger, (2) un modello dell’attaccante che formalizza
come un attaccante estrae informazioni sul contenuto della base di dati osservando il comportamento
del sistema, e (3) precise definizioni di sicurezza che tengono conto di politiche del controllo degli
accessi dinamiche. Sia il nostro modello dell’attaccante che le nostre definizioni di sicurezza sono
più generali di quelle considerate in lavori precedenti, dove sia il contenuto della base di dati che la
politica di controllo degli accessi sono fissi e gli attaccanti possono utilizzare solo interrogazioni di
tipo SELECT. Utilizzando questi fondamenti teorici, infine, sviluppiamo un nuovo meccanismo per il
controllo degli accessi che previene una serie di attacchi all’integrità e confidenzialità dei dati che non
sono bloccati dai meccanismi esistenti.

L’ultimo nostro contributo consiste nel riconciliare il controllo degli accessi all’interno delle basi
di dati con il controllo del flusso delle informazioni (information-flow control) all’interno dei pro-
grammi. Queste due aree di ricerca sembrano distinte, ma hanno lo stesso obiettivo: proteggere la
confidenzialità e l’integrità di informazioni sensibili. In questa tesi, sviluppiamo WhileSql, un lin-
guaggio di programmazione imperativo che permette anche di interrogare delle basi di dati, insieme
con adeguate definizioni di sicurezza per i programmi espressi utilizzando WhileSql. Riduciamo il
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controllo degli accessi per le basi di dati al problema di determinare se un programma WhileSql di-
vulga informazioni sensibili. Questo permette di applicare varie tecniche già esistenti per il controllo
del flusso delle informazioni al problema del controllo degli accessi nelle basi di dati. In aggiunta,
sviluppiamo un meccanismo per controllare il flusso delle informazioni in programmi WhileSql e
dimostriamo la sua sicurezza. Il nostro meccanismo combina il tracciamento dinamico del flusso
delle informazioni con concetti derivati dalla teoria delle basi di dati per fornire precise garanzie di
sicurezza per programmi che interagiscono con le moderne basi di dati.
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Chapter 1

Introduction

Our society is interconnected and data-driven. According to a recent study [75], the digital
universe, i.e., the amount of data generated, processed, and replicated, in the year 2020 will be about
40 zettabytes, which is 1021 bytes (this is equivalent approximately to 5,200 gigabytes for every
human being on the planet). These data range from seemingly non-sensitive information, like public
posts on social networks, to extremely sensitive ones, such as financial transactions or health-related
information.

Protecting and regulating the access to this growing collection of data is one of the main chal-
lenges faced by information systems. On the one hand, many companies consider the data they
process and collect as a critical asset. They are therefore interested in protecting data and prevent-
ing undesired leaks of sensitive information. On the other hand, these data can be used to infer
sensitive information about individuals, and our society is therefore growing increasingly aware of
the associated security and privacy risks. A recent survey [156] shows that security is one of the
main concerns of European citizens. In particular, 88% of the interviewees say that data security is
an important factor when choosing a company, and about 50% of them are willing to pay for better
data protection. This increased interest in security is reflected, for example, by the recent European
data protection regulation [130], which requires IT companies to properly secure customer data. For
instance, “Personal data should be processed in a manner that ensures appropriate security and con-
fidentiality of the personal data, including for preventing unauthorised access to or use of personal
data and the equipment used for the processing” [130]. Satisfying such a requirement necessitates
protection mechanisms that provide precise security guarantees and are secure against attacks.

Databases are one of the main components of information systems. Regulating the access to
databases is, therefore, of utmost importance to prevent leaks of sensitive information. To this
end, researchers have developed protection mechanisms offering access control and inference control
capabilities. Existing mechanisms, however, are inadequate to secure modern systems. They are de-
veloped in ad hoc fashion, ignore many security-relevant database features, and do not provide precise
security guarantees. It is, therefore, unclear what classes of attacks they prevent and in which sense
they secure the database system. This has immediate consequences: attackers can exploit advanced
database features to subvert protection mechanisms implemented in commercial databases and infer
sensitive information. These mechanisms, therefore, cannot be used to fulfill the strict requirements,
such as ensuring data confidentiality, imposed by recent regulations [130].

To address all these limitations, we propose the use of provably secure protection mechanisms.
These mechanisms come with precise security guarantees and proofs specifying which classes of
attacks they are designed to thwart. With provably secure mechanisms, securing a system amounts
to (1) identifying the precise attacker model and the desired security guarantees, and (2) deploying
and configuring the mechanisms that provide these guarantees. The accompanying proofs then certify
that the desired guarantees are met and that the system is protected against specific classes of attacks.

In this thesis, we design provably secure mechanisms for access control and inference control. We
first develop formal foundations for access and inference control in databases. We then leverage these
foundations to construct provably secure and practical protection mechanisms for modern databases.
The protection mechanisms we present in this thesis provide precise security guarantees, support
advanced database features, and prevent attacks that existing mechanisms fail to stop. Observe that,
in the context of this thesis, “provably secure” means that a protection mechanism’s specification
provably provides the desired security guarantees. However, we do not cover the verification of
protection mechanisms’ implementations, i.e., whether the implementation actually complies with
the mechanism’s specification.

In the following, we first introduce access control and inference control for database systems.
Afterwards, we illustrate the limitations of existing approaches. We then present our contributions
and, finally, we discuss this thesis’ organization.
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User Protection Mechanism Database System

(1) Query (2) Query

(3) Result(4) Result/Denied

Figure 1.1: System model for DBAC and DBIC.

1.1 Regulating Access to Databases

It is essential to control the access to databases that store sensitive information. To this end,
researchers have developed both database access control (DBAC) and database inference control
(DBIC) mechanisms. We now summarize the key features of these approaches.
System Model. DBAC and DBIC share a common system model, depicted in Figure 1.1. Users in-
teract with two components: a database system, which stores and manages the data, and a protection
mechanism (be it a DBAC or DBIC mechanism), which intercepts the commands issued by the users
and determines whether these commands are secure. The protection mechanism is parametrized by a
security policy, which is designed by the security engineers and specifies which operations are secure.
For simplicity, we assume that all communication between users and the components and between
the components themselves is over secure channels.

When a user issues a command, the protection mechanism first checks whether the command is
secure. If this is the case, it forwards the command to the database system. The database, then,
executes the command and returns the command’s result to the mechanism, which forwards it to
the user. If instead the command is not secure, the protection mechanism blocks the command’s
execution, often returning an error message to the user.
Database Access Control. The main goal of DBAC is restricting the operations that each user
can perform on the database. In general, a DBAC mechanism restricts both read and write access
to the database. The former happens when a user acquires information about a portion of the data-
base’s content, for instance using a SELECT query. The latter instead happens when a user modifies
the database content, e.g., using INSERT and DELETE commands, or the database configuration, for
instance by modifying the policy or the database schema.

A DBAC mechanism is parametrized by a security policy, which expresses, often using a formal
language, the operations each user is authorized to perform on the database. In the case of commercial
databases, the policy is formalized using SQL, and it specifies (1) the database’s content each user
can read, and (2) the write operations each user can execute. A DBAC mechanism then intercepts all
commands issued by the users and blocks all those commands that are not authorized, i.e., that do
not comply with the given policy. Observe that in terms of read access, DBAC mechanisms mostly
focus on restricting direct access [72]. Direct access to information stored in a database happens
whenever a user issues a query, the database answers the query, and the user finally observes this
query’s result.
Database Inference Control. In contrast to DBAC, inference control restricts indirect read access
to the database [72]. Indirect access happens whenever users infer sensitive information by combining
the observed query results with external information, such as data dependencies or prior knowledge.
Note that DBIC mechanisms usually ignore write access to the database.

In this setting, a DBIC mechanism is usually parametrized by (1) a security policy specifying
the sensitive information, and (2) a description of the source of external information. Similarly to
DBAC mechanisms, an inference control mechanism intercepts all user queries and authorizes only
those that do not violate the security policy. DBIC has attracted considerable attention in recent
years, and current research considers different sources of external information, such as the data-
base schema [45, 91, 95, 128, 151, 152], statistical information [11, 47, 62, 65, 67], error messages [101],
user-defined functions [101], and data dependencies [36,40,120,121,157,158,168].
Securing databases. Protecting the confidentiality of the data stored in databases requires pro-
tection from both direct and indirect access. As a result, it is essential to deploy both DBAC and
DBIC protection mechanisms. Observe that the distinction between direct and indirect access is not
always clear-cut. For instance, a leak through an exception caused by an INSERT command could be
interpreted as direct access, as a user may learn information by directly observing the exception’s
result. However, it could also be classified as an indirect access since to infer information from the
message a user would have to know which integrity constraint has been violated. Hence, some DBAC
mechanisms may also include inference control aspects.
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1.2 Provable Security for Databases – Challenges and Gaps

To secure a database system, security engineers first have to identify the attacker model and the
desired security guarantees. Afterwards, they have to deploy some enforcement mechanisms that
can provide these guarantees. Finally, they have to properly configure the deployed mechanisms to
ensure that the guarantees are met.

Securing database systems is difficult. The aforementioned process may fail at any step, leading
to insecure and vulnerable systems. For example, overseeing some aspects of the security analysis
may lead to underestimating the attacker’s capabilities and settling for security guarantees that are
weaker than those needed in practice. Similarly, a misconfigured enforcement mechanism may grant
too many permissions to users, thereby giving them access to sensitive information. These kinds of
failures are well understood and researchers have been studying how to prevent them for decades.
In particular, methodologies [119, 147, 159] exist to help security engineers in eliciting the attacker
model and the security requirements, thereby reducing the likelihood of mistakes during the first
step. Similarly, access control researchers have been developing techniques and tools [74, 100] for
verifying the correctness of a given security policy with respect to a set of requirements, making it
easier to identify misconfigured systems.

A third, subtler, way in which the above process may fail is in case the enforcement mechanisms
do not offer the desired guarantees. This is particularly critical since security engineers often just
re-use existing enforcement mechanisms; they do not design them. Hence, a mechanism that fails
in delivering the desired guarantees would affect the security of all systems relying on it. Despite
this, developing provably secure enforcement mechanisms is extremely hard, and even enforcement
mechanisms implemented in commercial database systems fail in providing basic security guarantees,
such as confidentiality. This is due to a lack of adequate and solid foundations for access and inference
control in databases. In particular, existing formal models for DBAC and DBIC fail in meeting the
following requirements, which are essential for reasoning about security of modern databases.

• Realistic attacker models. An attacker model specifies an attacker’s capabilities, how he
interacts with the database system, how he infers information from the system’s behavior, and
how he reasons about the acquired information. Reasoning about the security of an enforcement
mechanism, therefore, requires an attacker model. In particular, the attacker model should be
precise and formal to allow for security proofs, and it should capture the attacker’s capabilities.
However, existing DBAC and DBIC mechanisms, such as [13, 40, 131, 165], do not explicitly
formalize their attacker models, thereby making it more difficult to understand the provided
security guarantees. Attacker models should be first-class citizens in database security. The
relevant models must be made explicit, just like when analyzing security in other domains.
Solid foundations for DBAC and DBIC, therefore, must come with a family of precise and
realistic attacker models.

• Support for advanced, security-critical, database features. Modern database systems
provide users with much more than just SELECT queries to retrieve information. Indeed, users
can modify the database content using INSERT and DELETE commands. They can also modify
the database configuration or the security policy, for instance using GRANT commands to delegate
permissions. Additionally, databases support advanced features like views, which allows the
creation of virtual tables, or triggers, which automatically execute operations in response to
user commands. All these features can be exploited by attackers to leak sensitive information.
Reasoning about the security of modern database systems, therefore, requires formal models
that account for all these advanced features. Unfortunately, existing formal models [131, 165]
mostly consider only SELECT commands, thereby ignoring more advanced features.

• Adequate security conditions. Reasoning about the security of enforcement mechanisms
requires one to first understand and formalize what it means to be secure with respect to a
given attacker model. Existing research [131,165] propose security conditions for SELECT queries
based on well-known database theory problems. These conditions are, however, not adequate
for a realistic setting involving modern databases, as they ignore attackers that interact with
the database using more than just SELECT queries. As a result, existing conditions do not
consider leaks involving features like INSERT and DELETE commands or triggers. They also
ignore changes to the database and the security policy. All these features must be accounted
for in any reasonable formal definition of security for modern databases.
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Challenges

We identify four key challenges for DBAC and DBIC:

• Developing foundations for DBAC and DBIC. As explained above, existing formal mod-
els for DBAC and DBIC are not adequate for reasoning about the security of modern databases.
Developing provably secure enforcement mechanisms, however, requires solid foundations. In
more detail, we need (1) a formal operational semantics of database systems that accounts for
advanced security-critical features, (2) precise attacker models capturing how malicious users
may interact with the database, and (3) adequate security conditions.

• Theoretical limitations. A thorough understanding of DBAC and DBIC requires studying
the theoretical limitations of these two tasks. This is important to drive the practical develop-
ment of enforcement mechanisms. For instance, answering questions like “What can and cannot
be done in terms of DBAC and DBIC?” or “What is the trade-off between security and data
availability?” could clarify our understanding of these tasks as well as shed new light on settings
where provably secure algorithms can be used efficiently without losing data availability.

• Provably-secure enforcement mechanisms. As mentioned before, existing protection
mechanisms for databases fail in securing database systems. Attackers can infer sensitive infor-
mation and modify the database’s content in unauthorized ways. An open problem for DBAC
and DBIC is, therefore, developing novel enforcement mechanisms that are tractable and pro-
vide precise security guarantees. Observe that tractability is a critical feature for an interactive
setting like databases, where hundreds or thousands of queries per second are processed at run-
time. Providing precise guarantees is essential to ensure that the developed mechanisms work as
expected and thwart attacks. In this respect, enforcement mechanisms should be accompanied
with precise attacker models and proofs certifying what security guarantees are met.

• Security beyond the database. In addition to databases, information systems consist of
applications that process the data stored in databases. To prevent leaks, one also has to reason
about how these applications process the data and how they interact with the databases. To
this end, security researchers have developed information-flow control (IFC) techniques which
track how the data flows inside programs and detect possible leaks of sensitive information.
Existing IFC techniques, such as [141, 167], however, have severe limitations when it comes to
dealing with databases. In particular, they consider only simplistic database models that ignore
advanced security-critical features. They also ignore advances in DBAC and DBIC. Effectively
securing modern information systems, however, requires combining information-flow control
with DBAC and DBIC.

1.3 Contributions

This thesis makes the following contributions.
Limitations of Database Access Control. We characterize the limitations of database access
control. In this respect, we formalize Security-Aware Query Processing, the task of computing an-
swers to SELECT queries in the presence of access control policies, and we investigate the existence of
optimal Security-Aware Query Processing algorithms, i.e., those algorithms that provide both confi-
dentiality and maximal data availability. We present general impossibility results for the existence of
optimal algorithms for Security-Aware Query Processing and classify query languages for which such
algorithms exist. In particular, we show that for the relational calculus there are no optimal algo-
rithms, whereas optimal algorithms exist for some of its fragments, such as the existential fragment.
These results clarify the trade-offs between security and data availability and identify fragments of
the relational calculus where it is possible to secure databases without reducing data availability due
to false positives, i.e., without rejecting as insecure queries that are actually secure.

We also establish relationships between two different semantics for database access control, called
Truman and Non-Truman models. These two models have different, and seemingly contradictory,
goals, and their relationship was previously unclear. In the past, they were sometimes considered
as distinct [131, 165]. For optimal Security-Aware Query Processing, we show that the Non-Truman
model is a special case of the Truman model for boolean queries in the relational calculus. Moreover,
the two models coincide for sufficiently powerful query languages, such as the relational calculus with
aggregation operators. In contrast, for non-boolean queries, we prove that the two models are distinct.
Protecting databases from probabilistic inference. We study DBIC in the presence of prob-
abilistic data dependencies, such as those arising in genomics [97, 105, 109], social networks [92],
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and location tracking [117]. Attackers can exploit these dependencies to infer sensitive informa-
tion with high confidence. Existing DBIC mechanisms, however, are inadequate to secure data-
base systems in this settings. They either support very limited classes of probabilistic dependen-
cies [44,45,91,102,120,121,166] or rely on intractable enforcement algorithms [116].

To address this, we develop foundations for DBIC in the presence of probabilistic data depen-
dencies. We then use these foundations to build a tractable and practically useful DBIC mechanism
based on probabilistic logic programming.

• We develop AtkLog, a language for formalizing attackers’ beliefs and how they evolve while
interacting with the system. AtkLog builds on ProbLog [60, 61, 73], a state-of-the-art prob-
abilistic extension of Datalog, and extends its semantics by building on three key ideas
from [52, 103, 116]: (1) users’ beliefs can be represented as probability distributions, (2) be-
lief revision can be performed by conditioning the probability distribution based on the users’
observations, and (3) rejecting queries as insecure may leak information. By combining Data-
log with probabilistic models and belief revision based on users’ knowledge, AtkLog provides
a natural and expressive language to model users’ beliefs and thereby serves as a foundation
for DBIC in the presence of probabilistic inferences.

• We identify acyclic ProbLog programs, a class of programs where the data complexity of
probabilistic inference is PTime. We precisely characterize this class and develop a dedicated
inference engine. Since ProbLog’s inference is intractable in general, we see acyclic programs
as an essential building block to effectively use AtkLog for DBIC.

• We present Angerona, a novel DBIC mechanism that secures databases against probabilistic
inferences. We prove that Angerona is secure with respect to any AtkLog-attacker. In
contrast to existing mechanisms, Angerona provides precise tractability and completeness
guarantees for a practically relevant class of attackers. We empirically show that Angerona
scales to relevant problems of interest.

Protecting modern database systems. We study the problem of protecting modern database
systems that support advanced features like triggers and dynamic policies. We show that popular
database systems are susceptible to two types of attacks. Integrity attacks allow an attacker to
perform non-authorized changes to the database. Confidentiality attacks instead allow an attacker
to learn sensitive data. These attacks exploit advanced SQL features, such as triggers, views, and
integrity constraints, and they are easy to carry out.

Motivated by these attacks, we develop a comprehensive formal framework for the design and
analysis of database access control. Our framework consists of a formal operational semantics of data-
base systems and an attacker model formalizing how attackers infer information from the system’s
behavior, complemented with adequate security conditions. We use this framework to design and
verify an access control mechanism that prevents confidentiality and integrity attacks that existing
mechanisms fail to stop.

• Our operational semantics supports SQL’s core features, as well as triggers, views, and integrity
constraints. It models both the security-critical aspects of these features and the database’s
dynamic behavior at the level needed to capture realistic attacks. Our semantics is substantially
more detailed than those used in previous works [131,165], which ignore the database’s dynamics
and advanced database features.

• In addition to SQL’s core features, our attacker model incorporates advanced features such
as triggers, views, and integrity constraints. It also accounts for how an attacker can infer
information based on the semantics of these features. Our attacker model subsumes those
considered in previous works [131,165].

• Our security definitions—database integrity and data confidentiality—reflect two important
security requirements for database access control. There is a natural and intuitive relationship
between these definitions and the types of attacks that we identify. We thus argue that these
definitions provide a strong measure of whether a given access control mechanism prevents
attackers from exploiting modern SQL databases.

Guided by our operational semantics and attacker model, we build a database access control mecha-
nism that is provably secure with respect to our attacker model and security definitions. In contrast
to existing mechanisms, our solution prevents all the attacks that we identified.
Reconciling Database Access Control and Information-flow Control. Database access con-
trol and information-flow control (IFC) have the same objective: to protect the confidentiality and
integrity of sensitive information. However, they have different foundations, security notions, and
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enforcement mechanisms. We develop common foundations for IFC and DBAC. We leverage these
foundations to (1) integrate advanced DBAC concepts into IFC, and (2) provide ways to re-use IFC
techniques as building blocks for developing provably secure DBAC mechanisms.

• We develop common foundations for IFC and DBAC using WhileSql, a simple imperative
language extended with querying capabilities. WhileSql is built on top of our database oper-
ational semantics and supports advanced database features like triggers and views. We propose
two security conditions, one capturing internal attackers that directly interact with the data-
base and the other capturing external attackers that interact with the database through an
application. We use these conditions to clarify the differences between IFC and DBAC.

• We bridge IFC and DBAC. In particular, we reduce the latter to checking whether WhileSql
programs leak information. We prove that sound IFC mechanisms for internal attackers can
be used to construct provably secure DBAC mechanisms. Our reduction enables the direct
application of existing IFC techniques to DBAC.

• We develop a novel dynamic security monitor for WhileSql programs and prove it sound with
respect to our security condition for external attackers. Our monitor combines information-
flow tracking with advanced DBAC concepts such as disclosure lattices [26] and query determi-
nacy [124]. As a result, it can track fine-grained dependencies at the tuple-level. Additionally,
our monitor supports advanced database features, such as triggers and policy changes, which
are not supported by existing mechanisms [57,59,111,141,143,167].

1.4 Publications

Much of the work presented in this thesis is based on the following co-authored articles:

• Marco Guarnieri and David Basin, “Optimal Security-Aware Query Processing”, in Proceedings
of the 40th International Conference on Very Large Data Bases (VLDB 2014)

• Marco Guarnieri, Srdjan Marinovic, and David Basin, “Strong and Provably Secure Database
Access Control”, in Proceedings of the 1st IEEE European Symposium on Security and Privacy
(EuroS&P 2016)

• Marco Guarnieri, Srdjan Marinovic, and David Basin, “Securing Databases from Probabilistic
Inferences”, in Proceedings of 30th IEEE Computer Security Foundations Symposium (CSF
2017)

• Marco Guarnieri, Daniel Schoepe, Musard Balliu, David Basin, and Andrei Sabelfeld, “Recon-
ciling Database Access Control and Information-flow Control” (technical report)

1.5 Organization and Structure

The thesis is organized in 5 parts, 8 chapters, and 4 appendices.
Part I consists of this introduction and Chapter 2, which presents background about databases,

query languages, logic programming, and Bayesian Networks. Chapter 2 also introduces relevant
problems from database theory, such as query containment and determinacy, and disclosure lattices.

Part II focuses on protecting databases against attackers that can execute only SELECT-queries,
i.e., those attackers that can just retrieve information from a database, but cannot modify the
database’s content or configuration.

• Chapter 3 covers DBAC in the presence of SELECT-only attackers, i.e., those that can only exe-
cute SELECT queries. The chapter introduces Security-Aware Query Processing and investigates
the existence of optimal Security-Aware Query Processing algorithms. It also investigates the
connections between the Truman model and Non-Truman model semantics.

• Chapter 4 targets DBIC for SELECT-only attackers that, additionally, have access to the proba-
bilistic dependencies among the database’s data. It introduces AtkLog as well as a dedicated
inference engine for a fragment of ProbLog. It also presents Angerona, a tractable and
provably secure DBIC mechanism.

Part III focuses on securing databases against more powerful attacker models, which can exploit
the advanced features provided by modern databases.

• Chapter 5 introduces our operational semantics for database systems supporting advanced
features like triggers and views.
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• Chapter 6 focuses on DBAC in the presence of attackers that can exploit advanced database
features. The chapter presents the formal foundations for DBAC, which consist of a formal
attacker model complemented with adequate security conditions, together with a provably
secure enforcement mechanism.

• Chapter 7 moves beyond DBAC by focusing on end-to-end security for applications interacting
with databases. It presents WhileSql’s syntax and semantics. Additionally, it presents a
construction for building DBAC mechanisms using IFC solutions as building blocks, as well as
a dynamic IFC monitor that exploits advanced DBAC concepts.

Part IV, which consists only of Chapter 8, draws our conclusions and discusses future work.
Finally, Part V contains the proofs of all our results.

• Appendix A contains proofs of the results in Chapter 3.

• Appendix B contains proofs of the results in Chapter 4.

• Appendix C contains proofs of the results in Chapter 6.

• Appendix D contains proofs of the results in Chapter 7.
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Chapter 2

Notation and Background

In this chapter, we introduce background about the main topics covered in the thesis. We first
introduce some notation that we use throughout this thesis. Afterwards, we provide an overview of
databases, query languages, logic programming, and Bayesian Networks.
Organization. We present notation in Section 2.1. We overview database theory concepts in
Section 2.2. In more detail, we formalize database theory in Section 2.2.1 and we introduce the
relational calculus query language in Section 2.2.2. Furthermore, we introduce relevant database
theory decision problems in Section 2.2.3, and in Section 2.2.4 we present Disclosure Lattices, which
we use in Chapter 7. In Section 2.3, we introduce logic programs and we present an introduction to
Bayesian Networks in Section 2.4, both of which are relevant for our treatment of probabilistic logic
programs in Chapter 4.

2.1 Notation

Here, we introduce some notation used throughout the thesis.
Sets. Given a set S, we denote by 2S its power-set, i.e., the set of all subsets of S. As is standard,
x ∈ S denotes that x belongs to the set S and S′ ⊆ S denotes that S′ is a subset of S. Furthermore,
we write x1, . . . , xn ∈ S as a short-hand for x1 ∈ S, . . . , xn ∈ S. Finally, we use standard notation for
set comprehension. We write {x ∈ S | φ} to denote the set of all x in S that satisfies the predicate
φ. Furthermore, given x, y ∈ N such that x ≤ y, {x, . . . , y} denotes the set {z ∈ N | x ≤ z ∧ z ≤ y}.
Finally, given two real numbers x and y such that x ≤ y, [x, y] denotes the set {z ∈ R | x ≤ z∧z ≤ y}.
Sequences. Let S be a set. We denote by Sk is the set of sequences over S of length k ∈ N.
Furthermore, S∗ =

⋃
k∈N S

k is the set of all finite sequences over S, Sω is the set of all infinite
sequences over S, and, finally, S∞ = S∗ ∪ Sω is the set of all finite and infinite sequences over S.
Given a sequence s, we denote by |s| the number of elements in it (note that |s| =∞ if s ∈ Sω), by
sj , where j ∈ N, its prefix of length j, and by s(j) its j-th element (if it exists). We also denote by
ε the empty sequence, by s1·s2, where s1 ∈ S∗ and s2 ∈ S∞, the concatenation of s1 and s2, and by
s1 � s2 that s1 is a prefix of s2.
Tuples. Let n ∈ N and S1, . . . , Sn be sets. A n-tuple with domains S1, . . . , Sn is of the form 〈v1, . . . ,
vn〉, where vi ∈ Si for 1 ≤ i ≤ n. We often overline an identifier to stress that it represents a tuple,
e.g., we write t instead of t to stress that t represents a tuple.

Given an n-tuple t, we denote by t(i), where 1 ≤ i ≤ n, the i-th element in t and by |t| the
number of elements in t. Namely, 〈v1, . . . , vn〉(i) = vi and |〈v1, . . . , vn〉| = n. Moreover, given a
tuple t without repetitions and a value v in t, we denote by pos(t, v) the position of v in t, i.e.,
pos(t, v) = j iff t(j) = y. Finally, given two tuples 〈x1, . . . , xn〉 and 〈y1, . . . , ym〉, we denote by
〈x1, . . . , xn〉 ◦ 〈y1, . . . , ym〉 the tuple 〈x1, . . . , xn, y1, . . . , ym〉.

The cartesian product of S1, . . . , Sn is the set S1 × . . . × Sn = {〈v1, . . . , vn〉 |
∧

1≤i≤n vi ∈ Si}
containing all tuples with domains S1, . . . , Sn. Note that, given a set D, we denote by Dn the
cartesian product of D by itself n times, e.g., D3 is D ×D ×D.
Substitutions. Let A and B be two sets. A substitution from A to B is a (possibly partial)
function θ : A → B. Given a tuple 〈v1, . . . , vn〉 and a substitution θ, we denote by 〈v1, . . . , vn〉θ,
denoted also by θ(〈v1, . . . , vn〉), the tuple 〈v′1, . . . , v′n〉 obtained by applying θ, i.e., for each 1 ≤ i ≤ n,
v′i = θ(vi) if this is defined and v′i = vi otherwise. Furthermore, given a n-tuple without repetitions
〈a1, . . . , an〉 ∈ An and an n-tuple 〈b1, . . . , bn〉 ∈ Bn, we denote by [〈a1, . . . , an〉 7→ 〈b1, . . . , bn〉] the
substitution A→ B assigning to each ai the corresponding bi. Finally, we denote by θ[a 7→ b], where
a ∈ A and b ∈ B, the assignment θ′ obtained as follows: θ′(a′) = θ(a′) for all a′ 6= a, and θ′(a) = b.
Functions. Given a function f : A→ B, we denote by dom(f) its domain and by img(f) its image.
Given two functions f : A → B and g : B → C, we denote by g ◦ f their composition, namely the
function g ◦ f : A → C such that g ◦ f(x) = g(f(x)). Finally, given two functions f : A → B and
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g : C → D such that dom(f) ∩ dom(g) = ∅, we denote by f ] g the following function:

f ] g(x) =
{
f(x) if x ∈ dom(f)
g(x) if x ∈ dom(g)

We sometimes adopt a notation inspired by functional programming for defining functions via
λ-terms. For instance, we may write λx ∈ N. x+ 3 for the function f : N→ N such that f(x) = x+ 3
for all x ∈ N. Note that we often omit the typing information in case the latter is clear from the
context, e.g., we write λx. x+ 3 instead of λx ∈ N. x+ 3.

We also use standard (higher-order) functions from functional programming. Given a function
f : N → M and a sequence x1· . . . ·xn ∈ N∗ of elements in N , we denote by map(f, x1· . . . ·xn) the
sequence f(x1)· . . . ·f(xn) ∈M∗. Given a function ⊕ : (N×M)→ O, a sequence x1· . . . ·xn ∈ N∗, and
a sequence y1· . . . ·yn ∈M∗, zipWith(⊕, x1· . . . ·xn, y1· . . . ·yn) denotes the sequence (x1⊕y1)· . . . ·(xn⊕
yn) ∈ O∗.
Binary relations. Let A be a set. A binary relation over A is a set R ⊆ A × A. Given a binary
relation R, we denote by Rn the binary relation {〈a, b〉 | ∃c ∈ A. 〈a, c〉 ∈ Rn−1 ∧ 〈c, b〉 ∈ R}. Observe
that R0 is the reflexive relation {〈a, a〉 | a ∈ A} and R1 is the relation R itself. Furthermore, we
denote by R∗ the reflexive and transitive closure of R, i.e., R∗ =

⋃
n∈NR

n.

2.2 Databases

We now present background about databases, query languages, and database theory. We refer
the reader to [10] for a detailed introduction to databases.

2.2.1 Modeling Databases
Here, we formalize databases. Instead of relying on definitions based on the relational model,

such as [10], we present a formulation based on standard concepts from first-order logic (over finite
structures). While both approaches are equivalent for the purposes of this thesis, our formulation
allows us to simplify various aspects, such as many-sorted tuples, that are not interesting from a
security point of view.

Let R be a countably infinite set representing identifiers of predicate symbols. A database schema
D is a pair 〈Σ,dom〉, where Σ is a first-order signature and dom is a fixed domain. For simplicity,
we consider just a single domain. Extensions to the many-sorted case are straightforward [10]. The
signature Σ consists of a set of predicate symbols R ∈ R (also called relation schemas), each symbol
with arity |R|, and one constant symbol for each constant in dom. We interpret constants by
themselves in the semantics.

A database state db of D, also called a state, is a finite Σ-structure with domain dom that
interprets each predicate symbol R by a finite |R|-ary relation over dom, called relation instance or
table. We denote by ΩD the set of all states. Given a relation schema R in D, db(R) denotes the set
of tuples that belong to (the interpretation of) R in the state db. Observe that if the domain dom
is a finite set, then the set of all possible states ΩD is finite as well.

Given a database state db, a relation schema R, and a tuple t ∈ dom|R|, we denote by db[R⊕ t]
the database db′ obtained by adding t to the relation defined by R, i.e., db′(R) = db(R) ∪ {t} and
db′(R′) = db(R′) for all R′ 6= R. Similarly, db[R	 t] denotes the database db′ obtained by removing
t from the relation defined by R, i.e., db′(R) = db(R) \ {t} and db′(R′) = db(R′) for all R′ 6= R.

2.2.2 Relational calculus
The domain relational calculus, or simply the relational calculus (RC ), is a query language defined

by Codd [55] built on top of function-free first-order logic (FOL). The relational calculus is, histor-
ically, one of the classical query languages studied in database theory, together with the relational
algebra and languages based on logic programming. We first introduce the relational calculus’ syntax
and semantics. Afterwards, we formalize boolean and non-boolean relational calculus queries.
Syntax. We now formalize the relational calculus’ syntax.

Definition 2.1. Let D = 〈Σ,dom〉 be a database schema and Vars be a countably infinite set of
variables. An RC -formula over D is inductively defined as follows:

• R(x1, . . . , xn) is an RC -formula over D, where R is a relation schema in D and x1, . . . , xn are
variables in Vars.

• x = y is an RC -formula over D, where x and y are variables in Vars or constants in dom.
• Q x. φ is an RC -formula over D, where φ is an RC -formula over D, x ∈ Vars, and Q ∈ {∃,∀}.
• ¬φ is an RC -formula over D, where φ is an RC -formula over D.
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• φ op ψ is an RC -formula over D, where φ and ψ are RC -formulae over D and op ∈ {∧,∨}. �

As is standard, x 6= y stands for ¬(x = y), φ → ψ denotes ¬φ ∨ ψ, and φ ↔ ψ stands for
φ → ψ ∧ ψ → φ. Furthermore, we support formulae of the form > and ⊥ in the standard way.
We also allow using constant symbols inside formulae of the form R(x1, . . . , xn) with the standard
meaning. For instance, R(1, 2, x) is equivalent to ∃x1, x2. (R(x1, x2, x) ∧ x1 = 1 ∧ x2 = 2). Finally,
given two tuples x and y of variables and constants such that |x| = |y|, we write x = y to denote∧

1≤i≤|x| x(i) = y(i) and x 6= y to denote
∨

1≤i≤|x| x(i) 6= y(i).
Let φ be a relational calculus formula over D. We denote by free(φ) the set of free variables in φ,

and we say that φ is a sentence if free(φ) = ∅. We write φ(x), where x is a tuple of variables without
repetitions, to denote that the free variables in φ are exactly those in x, i.e., free(φ) = {x(i) | 1 ≤ i ≤
|x|}. Finally, given a tuple t = 〈t1, . . . , tn〉 ∈ (Vars∪dom)n and a relational calculus formula φ(x, y)
with free variables x and y, where x = 〈x1, . . . , xn〉, we denote by φ[x 7→ t] the formula obtained by
replacing all the free occurrences of xi with ti for each i ∈ {1, . . . , n}.
Semantics. The semantics of the relational calculus is similar to that of first-order logic.

Definition 2.2. Let D = 〈Σ,dom〉 be a database schema, db be a D-database state in ΩD, and φ
be an RC -sentence. The satisfiability relation |= is inductively defined as follows:

• db |= R(v1, . . . , vn), where R is a relation schema in D and v1, . . . , vn ∈ dom, holds iff 〈v1, . . . ,
vn〉 ∈ db(R).

• db |= k1 = k2, where k1, k2 ∈ dom, iff k1 = k2.
• db |= ∀x. φ iff db |= φ[x 7→ v] for all v ∈ dom.
• db |= ∃x. φ iff db |= φ[x 7→ v] for some v ∈ dom.
• db |= ¬φ iff db 6|= φ.
• db |= φ ∧ ψ iff db |= φ and db |= ψ.
• db |= φ ∨ ψ iff db |= φ or db |= ψ. �

Note that in the above definition we interpret the constant symbols by themselves. Similarly, we
interpret the equality relation in the standard way. As a result, we do not need to explicitly keep
track of the interpretation of constant symbols and of equality in the satisfiability relation, as it is
usually done for first-order logic.
Queries. We are now ready to introduce boolean and non-boolean queries.

Definition 2.3. Let D be a database schema. A non-boolean query over D is of the form {x | φ},
where φ is a relational calculus sentence overD, x is a tuple of variables, free(φ) = {x(i) | 1 ≤ i ≤ |x|},
and free(φ) 6= ∅. A boolean query over D is a query {| φ}, where φ is a relational calculus sentence. �

For simplicity, we only consider non-boolean queries {x | φ} where the tuple x does not contain
repeated variables. The extension to the general case is straightforward.

We now define the result of a query over a database state.

Definition 2.4. Let D = 〈Σ,dom〉 be a database schema, db ∈ ΩD be a database state, and q be a
query over D. We denote the evaluation of q on the state db by [q]db. For a boolean query q = {| φ},
[q]db = > if φ is satisfied on the state db, i.e., db |= φ, and otherwise [q]db = ⊥. For a non-boolean
query q = {x |φ(x)}, [q]db is the largest set T ⊆ dom|x| such that [{| φ[x 7→ t]}]db = > for all t ∈ T ,
i.e., [q]db = {t ∈ dom|x| | db |= φ[x 7→ t]}. �

With a slight abuse of notation, we refer to boolean queries {| φ} using only the sentence φ. We
therefore write [φ]db instead of [{| φ}]db.

In the following, we denote by RC the set of all relational calculus queries and by RC bool the set
of all relational calculus boolean queries (i.e., all RC -sentences).
Integrity Constraints. An integrity constraint is an invariant that must be satisfied for a database
state to be considered valid. Formally, an integrity constraint over D is a relational calculus sentence
γ over D. Given a database state db, we say that db satisfies the constraint γ iff [γ]db = >. Given
a set of constraints Γ, ΩΓ

D denotes the set of all database states satisfying the constraints in Γ, i.e.,
ΩΓ
D = {db ∈ ΩD |

∧
γ∈Γ[γ]db = >}. Note that if Γ = ∅ (or if all sentences in Γ are valid), then

ΩΓ
D = ΩD, namely all database states comply with the integrity constraints.
Functional and inclusion dependencies are two well-known classes of integrity constraints [10].

The former capture primary-key constraints, whereas the latter capture foreign-key constraints. A
functional dependency is a sentence of the form ∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) → y = y′).
An inclusion dependency, instead, is a sentence of the form ∀x, y. (R(x, y)→ ∃z. S(x, z)).
Restrictions. As is standard, we consider only domain independent queries, which are queries that
yield the same result on all possible underlying domains. Domain independent relational calculus
is as expressive as relational algebra [10]. Although checking whether a query is domain indepen-
dent is undecidable, there are various ways to obtain domain independent queries through syntactic
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restrictions, such as safe-range queries and range-restricted queries [10]. Note that these syntactic
approaches necessarily characterize proper subsets of the domain independent queries.
Assignments. An assignment is a substitution from the set of variables Vars to the domain dom.
Given a relational calculus formula φ and an assignment ν, we say that ν is well-formed for φ iff
ν is defined for all variables in free(φ). Furthermore, given a formula φ with free variables free(φ)
and an assignment ν, we denote by φν the formula φ′ obtained by replacing, for each free variable
x ∈ free(φ) such that ν(x) is defined, all the free occurrences of x with ν(x).

2.2.3 Relevant Database Theory Problems
We now review some relevant problems from database theory. These problems have a wide range

of applications, such as query optimization and rewriting. They are relevant for this thesis as they
are closely related to existing security conditions for DBAC and DBIC [131,165].
Finite satisfiability and validity. Finite satisfiability and finite validity are the variants of the
usual satisfiability and validity problems for first-order logic but restricted to finite structures. These
problems have been studied in finite model theory [113]. Formally, given a database schema D, we
say that a sentence φ is finitely satisfiable iff there is a database state db ∈ ΩD such that [φ]db = >.
Similarly, we say that a sentence φ is finitely valid iff for all database states db ∈ ΩD, [φ]db = >.
Hence, the finite satisfiability (respectively validity) problem is the task of checking whether a given
sentence is finitely satisfiable (respectively valid).
Query Containment. Query containment [10] is the task of determining, given two queries q and
q′, whether the result of q′ is always contained in the result of q in any possible database state.
Query containment is a fundamental problem in query evaluation and optimization. In particular,
it can be used to check whether different rewritings of the same query are equivalent, and this can
be done efficiently for a practically relevant fragment of the relational calculus (called Conjunctive
Queries) [48]. Formally, given a database schema D and a set of integrity constraints Γ, the non-
boolean query q contains the non-boolean query q′ iff [q′]db ⊆ [q]db for all db ∈ ΩΓ

D.
Certain and Possible Answers. The certain answer problem is the task of determining, given a
query q, a database state db, and a tuple t, whether t belongs to q’s results in all database states db′
that agree with db on a certain criterion. The possible answer problem, instead, is its dual, i.e., it is
the task of determining, given a query q, a database state db, and a tuple t, whether there exists a
database state db′ that agrees with db on a certain criterion such that t belongs to q’s results. These
two problems have been thoroughly studied in the context of answering queries in the presence of
incomplete information, for instance for incomplete databases [112] or for determining answers given
a set of views [9].

We formalize here a general version of these problems inspired by [9]. Let D be a database
schema, Γ be a set of integrity constraints over D, Q be a set of queries over D, q = {x | φ} be a
non-boolean query over D, t ∈ dom|x| be a tuple, and db ∈ ΩΓ

D be a database state. We say that
t is a certain answer for q given db and Q iff for all database states db′ in ΩΓ

D, if [q′]db = [q′]db′ for
all q′ ∈ Q, then t ∈ [q]db. Similarly, we say that t is a possible answer for q given db and Q iff there
exists a database state db′ in ΩΓ

D such that [q′]db = [q′]db′ for all q′ ∈ Q and t ∈ [q]db.
Query Determinacy. Query determinacy [124] is the task of determining, given two sets of queries
Q and Q′, if the results of the queries in Q are always sufficient to determine the result of the queries
in Q′. This, therefore, means that the queries in Q contain more information than those in Q′. Note
that query determinacy has many applications to query rewriting [124].

Let D be a database schema, Γ be a set of integrity constraints over D, and Q and Q′ be sets
of queries over D. We say that Q determines Q′, written D,Γ ` Q � Q′, iff for all database states
db, db′ in ΩΓ

D, if [q]db = [q]db′ for all q ∈ Q, then [q′]db = [q′]db′ for all q′ ∈ Q′. For instance, the set
Q = {T (1), R(2)} determines the query T (1) ∨R(2).
Instance-based Determinacy. Instance-based determinacy is a variant of the determinacy prob-
lem restricted to a fixed database state. Namely, the instance-based determinacy problem [107]
consists of checking whether, given a database state db, a set of queries Q, and a query q, the results
of the queries in Q in the state db fully determine q’s result in db.

Let D be a database schema, Γ be a set of integrity constraints over D, Q be a set of queries
over D, q be a query over D, and db be a database state in ΩΓ

D. We say that Q determines q in the
instance db, written D,Γ, db ` Q � q, iff for all database states db′ in ΩΓ

D, if [q′]db = [q′]db′ for all
q′ ∈ Q, then [q]db = [q]db′ . Observe that if D,Γ, db ` Q� q holds for all db ∈ ΩΓ

D, then D,Γ ` Q� q
holds as well. Observe also that instance-based determinacy can be easily extended to sets of queries.
To illustrate, the set Q = {T (1)} determines the query T (1) ∨ R(2) in any database state db where
T (1) is satisfied. Note, however, that Q = {T (1)} does not determine the query T (1) ∨R(2).
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cl({T (1), R(2)})

cl({T (1)}) cl({R(2)})cl({T (1) ∧R(2)}) cl({T (1) ∨R(2)})

cl(∅)

Figure 2.1: Portion of the disclosure lattice involving the queries T (1) ∧R(2),
T (1) ∨R(2), T (1), and R(2).

2.2.4 Disclosure Lattices
Disclosure lattices have been introduced by Bender et al. [26,27] to reason about the information

disclosed by queries. Given two sets of queries Q1 and Q2, disclosure lattices provide a precise model
for answering the following questions: (i) Does Q1 reveal more information than Q2? (ii) What
combined information is revealed by Q1 and Q2? (iii) What common information is revealed by Q1
alone and Q2 alone?
Disclosure Orders. A disclosure order [26] is a binary relation � over 2RC such that: (1) for all
Q,Q′ ∈ 2RC , if Q ⊆ Q′, then Q � Q′, (2) for all Q,Q′, Q′′ ∈ 2RC , if Q � Q′ and Q′ � Q′′, then
Q � Q′′, and (3) for all Q,Q′, Q′′ ∈ 2RC , if Q � Q′′ and Q′ � Q′′, then Q ∪Q′ � Q′′.
Disclosure Lattices. Given a set of queries Q and a disclosure order �, the closure of Q, written
cl(Q), is {q ∈ RC | {q} � Q}. The �-disclosure lattice [26] is a tuple 〈L,v,t,u,⊥,>〉 where (1)
L = {cl(Q) | Q ∈ 2RC}, (2) cl(Q) v cl(Q′) iff Q � Q′, (3) cl(Q) u cl(Q′) = cl(Q) ∩ cl(Q′), (4)
cl(Q) t cl(Q′) = cl(Q ∪Q′), (5) ⊥ = cl(∅), and (6) > = cl(RC ). Observe that 〈L,v,t,u,⊥,>〉 is a
complete lattice [26].
Disclosure Lattices based on determinacy. Determinacy induces an ordering on the information
content of queries. Hence, it is a good candidate for defining disclosure lattices. Bender et al. [26]
present also other disclosure lattices, such as those based on query containment.

We are ready to define the relation ��D,Γ: given Q,Q′ ∈ 2RC , Q ��D,Γ Q′ iff D,Γ ` Q′ � Q.
Observe that Q ��D,Γ Q′ means that Q is less informative than Q′ (since the results of the queries in
Q can be derived from the results of the queries in Q′). As shown in [26], ��D,Γ is a disclosure order.
As a result, the disclosure lattice defined by ��D,Γ is a complete lattice [26].

To illustrate, consider the queries T (1) ∧ R(2), T (1) ∨ R(2), T (1), and R(2). Figure 2.1 il-
lustrates the portion of the lattice involving these queries, where arrows represent the relation
v. We can see that cl({T (1)}) v cl({T (1), R(2)}), cl({T (1)}) t cl({R(2)}) = cl({T (1), R(2)}),
cl({T (1)})u cl({R(2)}) = ⊥. Observe also that cl({T (1)∧R(2)}) v cl({T (1), R(2)}) and cl({T (1)∨
R(2)}) v cl({T (1), R(2)}).

2.3 Logic Programming

We now introduce background on logic programs. In particular, we present Datalog (extended
with stratified negation), a declarative rule-based query language [10]. The key feature of Datalog
is that it supports the definition of recursive predicates.

Even though Datalog is only a subset of more complex logic programming languages like Pro-
log [43], with a slight abuse of notation in this thesis we use the term “logic programming” to refer
to Datalog with stratified negation. Note that Datalog is relevant for our treatment of probabilis-
tic logic programs in Chapter 4. Our treatment of logic programs follows [10]. We refer the reader
to [10,43] for more details about Datalog and Prolog.
Syntax. Conventional Datalog programs are constructed from atoms, literals, and rules. Let
D = 〈Σ,dom〉 be a database schema and Vars be a countably infinite set of variable identifiers. A
(Σ,dom)-atom R(v1, . . . , vn) consists of a predicate symbol R in Σ and arguments v1, . . . , vn such
that n is the arity of R and each vi, for 1 ≤ i ≤ n, is either a variable identifier in Vars or a constant
in dom. We denote by AΣ,dom the set {R(v1, . . . , v|R|) | R ∈ Σ∧v1, . . . , v|R| ∈ dom∪Vars} of all (Σ,
dom)-atoms. A (Σ,dom)-literal l is either a (Σ,dom)-atom a or its negation ¬a, where a ∈ AΣ,dom.
We denote by LΣ,dom the set AΣ,dom ∪ {¬a | a ∈ AΣ,dom} of all (Σ,dom)-literals. Given a literal
l, vars(l) denotes the set of its variables, args(l) the tuple containing its arguments, and pred(l) the
predicate symbol (i.e., the relation schema) used in l. As is standard, we say that a literal l is positive
if it is an atom in AΣ,dom and negative if it is the negation of an atom. Furthermore, we say that
a literal l is ground iff vars(l) = ∅. Finally, we denote by atom(l) the atom used in l, i.e., given
a ∈ AΣ,dom, atom(a) = a and atom(¬a) = a.

A (Σ,dom)-rule is of the form h← l1, . . . , ln, e1, . . . , em, where h ∈ AΣ,dom is a (Σ,dom)-atom,
l1, . . . , ln ∈ LΣ,dom are (Σ,dom)-literals, and e1, . . . , em are equality and inequality constraints
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over the variables in h, l1, . . . , lm.1 Given a rule r, we denote by head(r) the atom h, by body(r)
the literals l1, . . . , ln, by cstr(r) the constraints e1, . . . , em, and by body(r, i) the i-th literal in r’s
body, i.e., body(r, i) = li. Furthermore, we denote by body+(r) (respectively body−(r)) all positive
(respectively negative) literals in body(r). As is standard, we assume that the free variables in a rule’s
head are a subset of the free variables of the positive literals in the rule’s body, i.e., vars(head(r)) ⊆⋃
l∈body+(r) vars(l) ∪

⋃
(x=c)∈cstr(r)∧c∈dom{x}. Finally, observe that a ground atom can be seen as a

rule with an empty body.
We are now ready to define logic programs. Formally, a (Σ,dom)-logic program is a set of (Σ,

dom)-ground atoms and (Σ,dom)-rules. Given a program p, we denote by facts(p) the set of ground
atoms in p and by rules(p) all the rules that are not ground atoms, i.e., rules(p) = p \ facts(p). Note
that we ignore the distinction between extensional relation schemas (also called edbs), which are used
only in ground atoms, and intensional relation schemas (also called ibds), which are used in the head
of the rules.

We consider only programs p that do not contain negative cycles in the rules as is standard for
stratified Datalog with negation [10]. Namely, we consider only those programs p that admit a
stratification. Following [10], we now formalize stratifications.

Definition 2.5. Let D = 〈Σ,dom〉 be a database schema and p be a (Σ,dom)-logic program. A
stratification of p is a sequence of (Σ,dom)-logic programs p1, . . . , pn such that for some mapping µ
from the relation schemas in Σ to {0, . . . , n} the following conditions hold:

1. The programs p1, . . . , pn are a partition of rules(p) (i.e.,
⋃

1≤i≤n pi = p and pi ∩ pj = ∅ for all
distinct i, j ∈ {1, . . . , n}).

2. For all rules r ∈ rules(p) and all positive literals l ∈ body+(r), µ(pred(l)) ≤ µ(pred(head(r))).
3. For all rules r ∈ rules(p) and all negative literals l ∈ body−(r), µ(pred(l)) < µ(pred(head(r))).
4. For all rules r ∈ rules(p), r ∈ pµ(pred(head(r))) and 1 ≤ µ(pred(head(r))) ≤ n. �

A logic program p is stratified iff there is a stratification p1, . . . , pn for it, and we call each pi a
stratum.
Semantics. Let D = 〈Σ,dom〉 be a database schema and r be a (Σ,dom)-rule. We denote by
ASGN (r) the set of all assignments from the free variables in r to values in dom that satisfy the
equality and inequality constraints in r. Furthermore, given a mapping θ from variables in Vars to
values in dom and a literal l, we denote by lΘ the literal obtained by replacing all free variables in
l with the corresponding values in θ.

One of the key concepts of the Datalog’s semantics is the immediate consequence operator.

Definition 2.6. Let D = 〈Σ,dom〉 be a database schema. The immediate consequence operator T
takes as input a (Σ,dom)-logic program and returns another (Σ,dom)-logic program. The operator
is defined as follows: T(p) = p ∪ {head(r)θ | r ∈ p ∧ θ ∈ ASGN (r) ∧ ∀l ∈ body+(r). lθ ∈ p ∧ ∀l ∈
body−(r). atom(l)θ 6∈ p}. �

The semantics of a Datalog program is the database state, which can be seen as a set of
ground atoms, produced by executing the program. We first define the semantics of semi-positive
programs [10], i.e., programs whose stratification contains just one stratum. The semantics of a
semi-positive program is the least fixpoint of the immediate consequence operator. Note that such a
fixpoint always exists [10]. Hence, the semantics is well-defined.

Definition 2.7. Let D = 〈Σ,dom〉 be a database schema and p be a semi-positive (Σ,dom)-logic
program. The semantics of p is as follows: JpK = facts

(⋃
i∈N T

i(p)
)
. �

We are now ready to introduce the semantics of stratified Datalog with negation.

Definition 2.8. Let D = 〈Σ,dom〉 be a database schema, p be a stratified (Σ,dom)-logic program
with stratification p1, . . . , pn, and p0 = facts(p). The semantics of p up to the i-th stratum is
JpKi = facts(Jpi ∪ JpKi−1K). The semantics of the program p is JpK = JpKn. �

The stratified semantics simply executes the programs in the stratification sequentially, using the
result of a stratum to derive additional facts for the next one. Note that the above semantics is
well-defined since pi ∪ JpKi−1, for each 1 ≤ i ≤ n, is a semi-positive program.

2.4 Bayesian Networks

A Bayesian Network (BN) is a graphical way of compactly representing a probability distribution
by specifying a set of random variables and their dependencies as a directed acyclic graph. We now
present an overview of BNs, which we use in Chapter 4. We refer the interested reader to [77,105] for

1Without loss of generality, we assume that equality constraints involving a variable x ∈ Vars and a constant
c ∈ dom are of the form x = c.
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additional information on BNs and other probabilistic graphical models. Our treatment of Bayesian
Networks follows [105]. Here we focus only on BNs where each random variable has finitely many
outcomes.

We first introduce probability distributions and random variables.

Definition 2.9. Let V, V1, . . . , Vn be finite sets of possible outcomes. A probability distribution over
V is a function P : V → [0, 1] such that Σv∈V P (v) = 1. A conditional probability table over V indexed
by V1, . . . , Vn is a function CPT : V1 × . . . × Vn → (V → [0, 1]) such that for all v ∈ V1 × . . . × Vn,
CPT(v) is a probability distribution over V . A random variable X is a pair 〈V,P〉, where V is a
finite domain and P is a probability distribution over V . �

Given a random variable X = 〈V,P〉, the probability that v ∈ V is X’s outcome, denoted
P(X = v), is P(v).

Joint probability distributions specify the probabilities of multiple random variables.

Definition 2.10. Let X1 = 〈V1,P1〉, . . . , Xn = 〈Vn,Pn〉 be random variables. A joint probability
distribution over X1, . . . , Xn is a probability distribution P over V1 × . . . × Vn such that for each
1 ≤ i ≤ n and each vi ∈ Vi,

∑
v1∈V1

. . .
∑

vi−1∈Vi−1

∑
vi+1∈Vi+1

. . .
∑

vn∈Vn
P(〈v1, . . . , vi−1, vi, vi+1,

. . . vn〉) = Pi(vi). �

Let P be a joint probability distribution over X1 = 〈V1,P1〉, . . . , Xn = 〈Vn,Pn〉. The probability
that 〈v1, . . . , vn〉 ∈ V1 × . . . × Vn is the outcome of X1, . . . , Xn, written P(X1 = v1, . . . , Xn = vn),
is P(〈v1, . . . , vn〉). One can derive joint distributions over subsets of X1, . . . , Xn by just summing
out some of the variables. Let X = {X1, . . . , Xn} and Z1 = {X1

1 , . . . , X
1
k}, Z2 = {X2

1 , . . . , X
2
j }

be two sets defining a partition of X, where each X1
i is of the form 〈V 1

i , P
1
i 〉 and each X2

h is of
the form 〈V 2

h , P
2
h 〉 for 1 ≤ i ≤ k and 1 ≤ h ≤ j. The probability distribution λv1

1 ∈ V 1
1 , . . . ,

v1
k ∈ V 1

k .
∑

v2
1∈V

2
1
. . .
∑

v2
j
∈V 2

j
P(X1

1 = v1
1 , . . . , X

1
k = v1

k, X
2
1 = v2

1 , . . . , X
2
j = v2

j ) is a joint probability
distribution over X1

1 , . . . , X
1
k . We denote the above probability distribution as PX1

1 ,...,X
1
k
.

A conditional probability distribution specifies the probability distribution of a random variable
given a fixed outcome for other variables.

Definition 2.11. Let P be a joint probability distribution over X1 = 〈V1,P1〉, . . . , Xn = 〈Vn,Pn〉.
The conditional probability of Xi given outcomes v1, . . . , vi−1, vi+1, . . . , vn for X1, . . . , Xi−1, Xi+1,
. . . , Xn, written P(Xi | X1 = v1, . . . , Xi−1 = vi−1, Xi+1 = vi+1, . . . , Xn = vn), is the function
λvi ∈ Vi. P(X1 = v1, . . . , Xn = vn) ·

(∑
vi∈Vi

P(X1 = v1, . . . , Xn = vn)
)−1

. �

With a slight abuse of notation, we write P(Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) to denote the CPT
assigning to each outcome of X1, . . . , Xi−1, Xi+1, . . . , Xn the conditional probability of Xi, i.e., the
function λv1 ∈ V1, . . . , vi−1 ∈ Vi−1, vi+1 ∈ Vi+1, . . . , vn ∈ Vn. P(Xi | X1 = v1, . . . , Xi−1 = vi−1,
Xi+1 = vi+1, . . . , Xn = vn). We call P(Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) the CPT of Xi indexed by
X1, . . . , Xi−1, Xi+1, . . . , Xn.

Conditional probability distributions (and tables) can be simplified by exploiting the independence
and conditional independence between random variables.

Definition 2.12. Let P be a joint probability distribution over X1 = 〈V1,P1〉, . . . , Xn = 〈Vn,Pn〉.
Furthermore, let Xi = 〈Vi,Pi〉, Xj = 〈Vj ,Pj〉, and X ′1 = 〈V ′1 ,P ′1〉, . . . , X ′k = 〈V ′k ,P ′k〉 be random
variables in {X1, . . . , Xn}. Two random variables Xi and Xj are independent iff for all vi ∈ Vi and
vj ∈ Vj , PXi,Xj (Xi = vi, Xj = vj) = PXi(Xi = vi)PXj (Xj = vj). Two random variables Xi and
Xj are conditionally independent given X ′1, . . . , X

′
k iff for all vi ∈ Vi, vj ∈ Vj , v′1 ∈ V ′1 , . . . , v′k ∈ V ′k ,

PXi,Xj ,X′1,...,X′k (Xi = vi, Xj = vj | X ′1 = v′1, . . . , X
′
k = v′k) = PXi,X′1,...,X′k (Xi = vi | X ′1 = v′1, . . . ,

X ′k = v′k)PXj ,X′1,...,X′k (Xj = vj | X ′1 = v′1, . . . , X
′
k = v′k). �

We can, therefore, represent a joint probability distribution over X1, . . . , Xn as a sequence of con-
ditional probability tables. Furthermore, we can exploit independence and conditional independence
among random variables to simplify these tables.

We are now finally ready to define Bayesian Networks.

Definition 2.13. A Bayesian Network bn is a tuple 〈N,E,D,CPT ,�〉, where N is the set of
nodes, E is the set of directed edges, D is a function associating to each node n ∈ N its domain,
CPT is a function associating to each node n ∈ N its conditional probability distribution, and
� is a total ordering of the nodes in N . We denote by parents(n) the set of n’s parents, i.e.,
parents(n) = {n′ | n′ → n ∈ E}. Furthermore, we denote by ancestors(n) the set of n’s ancestors,
i.e., ancestors(n) = parents(n) ∪

⋃
n′∈parents(n) ancestors(n′).

A Bayesian Network 〈N,E,D,CPT ,�〉 must satisfy the following constraints:
• 〈N,E〉 is a directed acyclic graph.
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• For each node n ∈ N such that parents(n) = ∅, CPT(n) is a probability distribution over D(n).
• For each node n ∈ N such that parents(n) 6= ∅, CPT(n) is a conditional probability table

over D(n) indexed by D(n1), . . . , D(nk), where 〈n1, . . . , nk〉 is the tuple obtained by sorting
parents(n) according to �. �

Finally, we formalize the BN’s semantics, i.e., the probability distribution represented by the
Bayesian Network.

Definition 2.14. Let bn = 〈N,E,D,CPT ,�〉 be a Bayesian Network, where N = {n1, . . . , nk}.
Furthermore, let toTpl be a function that takes as input a subset S of N and returns the tuple
obtained by sorting the nodes in S according to �. Finally, let CPT∗ be the function defined as
follows: CPT∗(n) = CPT(n) if parents(n) = ∅ and otherwise CPT∗(n) is

λv ∈ D(n).
∑

vp1∈D(p1)

. . .
∑

vpk∈D(pk)

CPT(n)(〈vp1 , . . . , vpk 〉)(v) ·
∏

pi∈parents(n)

CPT∗(pi)(vpi),

where 〈p1, . . . , pk〉 = toTpl(parents(n)). Note that CPT∗(n) is a probability distribution over D(n).
The BN bn defines a joint probability distribution JbnK over the random variables X1 = 〈D(n1),

CPT∗(n1)〉, . . . , Xk = 〈D(nk),CPT∗(nk)〉, where

JbnK = λv1 ∈ D(n1), . . . , vk ∈ D(nk).
∏
ni∈N′

CPT(ni)(vi)·∏
ni∈N′′

CPT(ni)(toTpl(parents(ni))[〈n1, . . . , nk〉 7→ 〈v1, . . . , vk〉])(vi),

where N ′ = {n ∈ N | parents(n) = ∅}, N ′′ = {n ∈ N | parents(n) 6= ∅}. �

When D and � are clear from the context, we refer to a Bayesian Network as a triple 〈N,E,CPT〉
instead of a 5-tuple 〈N,E,CPT , D,�〉.

Before concluding, we introduce some notation to query Bayesian Networks. Let bn = 〈N,E,
D,CPT ,�〉 be a Bayesian Network. A bn-total assignment is a total function ν that associates
to each n ∈ N a value in v ∈ D(n), whereas a bn-partial assignment is a partial function ν that
associates to each n ∈ N ′, where N ′ ⊆ N , a value in v ∈ D(n). We now lift the semantics of a
BN to assignments. The probability defined by bn given a partial assignment ν, written JbnK(ν) is∑

w1∈D(m1) . . .
∑

wl∈D(ml)
JbnK(toTpl(N)(ν ] [〈m1, . . . ,ml〉 7→ 〈w1, . . . , wl〉])) , where dom(ν) = {n1,

. . . , nk} and N \ dom(ν) = {m1, . . . ,ml}. Namely, JbnK(ν) returns the probability that the random
variables associated with the nodes for which ν is defined have the outcome indicated by ν.
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Part II

Protecting databases against SELECT-only
attackers
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Chapter 3

Database Access Control for SELECT-only
attackers

Mike Michaelson: Christof, let me ask
you, why do you think that Truman has
never come close to discovering the true
nature of his world until now?
Christof : We accept the reality of the
world with which we’re presented. It’s as
simple as that.

The Truman Show (1998)

Retrieving data from a database is usually done via SELECT queries, which allow one to retrieve
all tuples matching a given criterion. SELECT queries are one of the most common ways of interacting
with a database. For this reason, many DBAC approaches target the so-called SELECT-only attacker
model, where attackers can interact with the database only through SELECT queries. In this setting,
therefore, both the database’s content and the security policy are fixed.

In this chapter, we formalize and study Security-Aware Query Processing, the problem of com-
puting answers to SELECT queries in the presence of security policies. Observe that Security-Aware
Query Processing models DBAC in the SELECT-only setting. In the following, we present general
impossibility results for the existence of optimal algorithms for Security-Aware Query Processing
and classify query languages for which such algorithms exist. In particular, we show that for the
relational calculus there are no optimal algorithms, whereas optimal algorithms exist for some of its
fragments, such as the existential fragment.

We also establish relationships between two different models of Fine-Grained Access Control,
called Truman and Non-Truman models, which have been previously presented in the literature as
distinct. For optimal Security-Aware Query Processing, we show that the Non-Truman model is a
special case of the Truman model for boolean queries in the relational calculus, moreover the two
models coincide for more powerful query languages, such as the relational calculus with aggregation
operators. In contrast, these two models are distinct for non-boolean queries. Note that this chapter
is largely based on [84].
Organization. In Section 3.1, we introduce the Truman and Non-Truman models for database
access control and the concept of optimal algorithms. In Section 3.2, we present the fragments of
the relational calculus used in the rest of the chapter. In Section 3.3 we introduce our security
policies, and in Section 3.4 we introduce Security-Aware Query Processing. We present our results in
Section 3.5 for boolean queries and in Section 3.6 for non-boolean queries. In Section 3.7, we review
related work and we draw conclusions in Section 3.8. Most of the proofs of our results are directly
given in this chapter. For the sake of readability, some proofs are given in Appendix A.

3.1 Introduction

Computing answers to SELECT queries given a security policy is the main task of DBAC mech-
anisms in the SELECT-only attacker model. There is, however, no common terminology to refer to
this problem. For example, “secure querying” [58], “enforcing data confidentiality” [125], and “Fine-
Grained Access Control” [13, 131, 165] have all been used in this context. In the following, we refer
to this problem as Security-Aware Query Processing (SAQP). This differs from Secure Query Pro-
cessing since the latter usually refers to querying encrypted data. Security-Aware Query Processing
algorithms are implemented in commercial databases [8, 41, 150], and solutions have been proposed
for other settings like XML files [58] or RDF graphs [125].

Rizvi et al. [131] identified two distinct models, called Truman and Non-Truman models, that
capture different approaches to the SAQP problem. The term Truman model comes from the protag-
onist of the movie The Truman Show who is unaware that he lives in an artificial environment where
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Queries SAQP Truman Model Non-Truman Model

Boolean
¬∃optimal undecidable fragments

(Theorem 3.2)
∃optimal sufficient conditions (Lemma 3.1)

ERC (Theorem 3.3)

Non-Boolean
¬∃optimal undecidable fragments undecidable fragments

(Theorem 3.6) (Theorem 3.9)
∃optimal sufficient conditions (Lemma 3.3) sufficient conditions (Lemma 3.4)

ERC (Theorem 3.7) ERC (Theorem 3.10)

Table 3.1: Summary of results. Additionally, Theorem 3.4 proves that the Non-
Truman model is a special case of the Truman model for boolean queries, whereas
Corollary 3.1 proves that the two models are distinct for non-boolean queries.

everything he experiences is externally controlled. Algorithms in the Truman model transparently
modify all user queries to restrict the user’s access to only the data authorized by the security policy.
The query’s result may differ from the unrestricted one to preserve confidentiality. For example,
suppose we issue a query q asking for the names of all employees, but we are authorized only to read
some of their records. If the company has 1000 employees and we have access to just 800 of them,
the original query is modified, and we get just the names of the 800 employees we are authorized
to read. However, such modifications may cause inconsistencies between user’s expectations and the
query’s result. For instance, if we have access to the total number of employees and we know that
there are actually 1000 employees, then the modified result is inconsistent with our knowledge.

In contrast to the above, the Non-Truman model solves the problem of inconsistencies. Algorithms
in this model execute a query iff it can be answered using only information the user is authorized
to read under the given policy (these queries are called conditionally valid) and otherwise the query
is rejected. In our example, in the Non-Truman model the query q is rejected because it cannot
be answered using only authorized information. In contrast, a query q′ asking the names of the 800
employees we are authorized to read is executed. The two models target different needs. The Truman
model ensures higher data availability at the price of partial results and inconsistencies, whereas the
Non-Truman model ensures consistency at the expense of lower data availability.

Wang et al. [165] analyzed query processing algorithms in the Truman model and proposed three
correctness criteria: security, soundness, and maximality. Security requires that a query’s result
does not depend on sensitive information, soundness requires that an algorithm returns only correct
information, and maximality requires that an algorithm returns as much information as possible
without violating the given policy. In the Truman model, we say that an algorithm is optimal iff
it satisfies all three of these criteria, whereas in the Non-Truman model, an algorithm is optimal iff
it executes exactly the conditionally valid queries. In both models, optimal algorithms are what we
ideally want as they are the only algorithms that guarantee security, correctness, and data availability.
For instance, in the Non-Truman model, an algorithm that rejects all queries is secure but useless,
whereas an algorithm that executes all queries is useful but insecure. Similarly, in the Truman
model, an algorithm that always returns ∅ as a query’s result is secure and sound, an algorithm that
always returns the original query’s result is sound and maximal, and an algorithm that systematically
introduces noise in the result can be secure and maximal.

Unfortunately, a thorough analysis of optimal Security-Aware Query Processing has been missing
until now. For the Non-Truman model, Rizvi et al. [131] left open the decidability of the conditional
validity problem. Although Zhang et al. [170] proved that it is decidable for conjunctive queries
and Koutris et al. [107] extended this result to unions of conjunctive queries, there is no general
characterization of the problem. For the Truman model, Wang et al. [165] claimed that “while the
maximality property is desirable, it is difficult to achieve” for algorithms that are secure and sound.
They presented an informal example supporting this claim but they did not give a proof.

In the following, we study the decidability of optimal Security-Aware Query Processing for boolean
and non-boolean queries in both models and we provide answers to all the above open problems. We
prove possibility and impossibility results for the relational calculus (RC ) and for the existential
fragment of RC (ERC ). We also establish connections between Truman and Non-Truman models.
Table 3.1 summarizes our main results and the associated theorems.

3.2 Fragments of the relational calculus

We now introduce the fragments of the relational calculus that we study in this chapter.
A fragment F of the relational calculus is a subset F ⊆ RC of the relational calculus formulae.

To stress that a formula φ belongs to a fragment F , we call it an F -formula. We say that a boolean
query φ (respectively a non-boolean query {x | φ}) is in a fragment F iff φ ∈ F .



3.3. Security Policies 23

Language FINSATF FINVALF
RC Undecidable Undecidable

BSRRC Decidable Undecidable
ERC Decidable Decidable

Table 3.2: Decidability of the FINSATF and FINVALF decision problems
(taken from [37]).

We now introduce the existential fragment ERC of the relational calculus. Note that the ERC
fragment strictly contains conjunctive queries (CRC ).
Definition 3.1. Let D be a database schema. The formula φ(y) = ∃x. ψ(x, y) is a ERC -formula
over D iff ψ is a quantifier-free RC-formula over D. �

For technical reasons, we also consider the Bernays-Schönfinkel-Ramsey fragment BSRRC .
Definition 3.2. Let D be a database schema. The formula φ(z) = ∃x.∀y. ψ(x, y, z) is a BSRRC -
formula over D iff ψ is a quantifier-free RC-formula over D. �

In the following, we use the term query language to refer to the relational calculus and its frag-
ments, such as ERC . We assume that there is a unique encoding of formulae as natural numbers,
and in our proofs we switch freely between formulae and their encodings.

3.2.1 Decision Problems
Here we define the finite satisfiability and finite validity decision problems for (fragments of) the

relational calculus.
Definition 3.3. Given a query language F , FINSATF denotes the following decision problem:

Input: A database schema D and a sentence φ ∈ F .
Question: Is there a state db ∈ ΩD such that [φ]db = >? �

Definition 3.4. Given a query language F , FINVALF denotes the following decision problem:
Input: A database schema D and a sentence φ ∈ F .
Question: For all states db ∈ ΩD, is [φ]db = >? �

Table 3.2 presents decidability results from [37] for these two problems for the query languages
used in this chapter.

3.3 Security Policies

Various Fine-Grained Access Control models for databases have been proposed in the literature [8,
41,110,150]. Although each has its own features, the models share common characteristics: (1) they
support access control constraints at the row or column level, and (2) access control constraints
are given by formulae, e.g., expressed in SQL [110], referring to the database’s current state or to
the user’s credentials. We now describe a security policy model that captures the main features of
existing fine-grained access control models.

Let F be a query language. An F -constraint is a pair 〈{x | ψ}, φ〉, where {x | ψ} is a non-boolean
F -query and φ is an F -formula such that free(φ) ⊆ free(ψ). A row-level F -constraint is just an
F -constraint 〈{x | ψ}, φ〉 that specifies the conditions φ under which we are authorized to read a
tuple in the result of the query {x | ψ}. A column-level F -constraint is a triple 〈{x | ψ}, φ, i〉 that
specifies the conditions φ under which we are authorized to read the i-th value of a tuple in the result
of the query {x | ψ}, where 〈{x | ψ}, φ〉 is an F -constraint and i ∈ {1, . . . , |x|}. Note that given an
F -constraint 〈{x | ψ}, φ〉, a free variable z in φ refers to the i-th value of the tuple on which the
constraint φ is evaluated, where i = pos(x, z). In the following, we consider only domain independent
F -constraints, i.e., constraints 〈{x | ψ}, φ〉 such that {x | ψ ∧ φ} is domain-independent. As a result,
the access control decision does not depend on the underlying domain.

The constraints are expressed using formulae that can refer to the current state and to the values
of the tuple being accessed. Note that the constraints can be defined over arbitrary non-boolean
queries. We can therefore restrict access not only to the data in the relation schemas but also to
derived information, such as tuples in views.

A security policy in our model is defined as follows.
Definition 3.5. Let F be a query language and D be a database schema. An F -security policy S
over D is a pair 〈ROW ,COL〉, where ROW is a set of row-level F -constraints and COL is a set of
column-level F -constraints, such that for any non-boolean query q: (1) there is at most one constraint
in ROW associated with q, and (2) there is at most one constraint in COL associated with the i-th
value of the tuples in the result of q. �
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Employee
John 25 Clerk
Frank 17 Admin
Jack 36 SecretAgent

db1

Employee
John 25 Clerk
Frank 16 Admin
Jack 36 SecretAgent
Carl 26 SecretAgent

db2

Employee
John 25 Clerk
Frank 19 Admin
Jack 36 SecretAgent
Carl 26 SecretAgent

db3

Employee
John 25 Clerk
Frank 17 Admin

db4

Figure 3.1: Some states.

Let D be a database schema, S = 〈ROW ,COL〉 be a security policy over D, {x | ψ} be a non-
boolean query, and db ∈ ΩD be a state. We say that S discloses the tuple t ∈ [{x | ψ}]db, denoted
by DiscS(t, {x | ψ}, db), iff there is a constraint 〈{x | ψ}, φ〉 ∈ ROW such that [φ[x 7→ t]]db = >.
Similarly, we say that S discloses the i-th value of the tuple t ∈ [{x | ψ}]db, denoted by DiscS(t,
{x | ψ}, db, i), iff DiscS(t, {x | ψ}, db) and there is a constraint 〈{x | ψ}, φ, i〉 ∈ COL such that [φ[x 7→
t]]db = >, where i ∈ {1, . . . , |x|}. Note that the authorization to read a tuple does not imply the
authorization to read any of its values. Given a constraint 〈q, φ〉 ∈ ROW , we denote by AuthS,q(db)
the set of tuples in [q]db disclosed by S in the state db, i.e., AuthS,q(db) := {t ∈ [q]db | DiscS(t, q, db)}.

Example 3.1. Let D be a database schema containing only one relation schema Employee with arity
3. We assume that the first column in the schema stores employees’ names, the second column stores
their ages, and the last one stores their jobs. We want to prevent the access to tuples representing
secret agents. Although name is not protected, we want to disclose only the age of employees over
18, and only the job of the Clerks. We also want to disclose the set of the jobs in the database.
Let q be the query {x, y, z | Employee(x, y, z)}, and r be the query {z | ∃x, y.Employee(x, y, z)}.
The security policy S = 〈ROW ,COL〉 is as follows: ROW = {〈q, z 6= SecretAgent〉, 〈r,>〉}, and
COL = {〈q,>, 1〉, 〈q,

∧
i∈{1,...,17} y 6= i, 2〉, 〈q, z = Clerk, 3〉, 〈r,>, 1〉}. �

Note that a policy specifies which tuples and values we are authorized to read; it does not
directly specify the result of a given query. The semantics of Security-Aware Query Processing will
be introduced in the following sections.

We now introduce the concept of masked tuple from [165]. A masked tuple is a tuple where some
values are replaced by the distinguished value †. This value prevents the disclosure of data that
may be sensitive. A tuple v is subsumed by another tuple t, written v v t, iff |v| = |t|, and for all
i ∈ {1, . . . , |t|}, v(i) = t(i) or v(i) = †.

Example 3.2. Let q be the query {x, y, z | Employee(x, y, z)} from Example 3.1. The result of q
in the state db1 in Figure 3.1 contains three tuples: t = 〈John, 25, Clerk〉, v = 〈Frank, 17, Admin〉,
and u = 〈Jack, 36, SecretAgent〉. The policy S discloses t and v but not u because Jack is a secret
agent. Moreover, the tuple v is only partially disclosed. Indeed, we are authorized to read Frank’s
name, but not his age or his job. The policy S also fully discloses the result of the query r, i.e.,
the set {〈Clerk〉, 〈Admin〉, 〈SecretAgent〉}. Note that the tuple z = 〈Frank, †, †〉 is subsumed by the
tuple v, i.e., z v v. �

Note that our security policy model uses a set semantics derived from the relational calculus,
whereas related approaches use a multi-set semantics derived from SQL. The models in [8,150] support
only row-level constraints, those in [41, 110] support only column-level constraints, and the model
in [13] supports both. Our security policy model subsumes all these approaches as well as approaches
where the security policy is expressed using views. Note that our security policies can represent, by
combining column-level and row-level constraints, cell-level disclosure policies [13, 110,165].

For simplicity, we ignore users and their credentials. This neither restricts nor limits our theo-
retical results. Users’ credentials can be modeled as a mapping cred from the set U of users to the
set S of security policies that assigns to each user u ∈ U a security policy S ∈ S where the users’
credentials are hard-coded in S using constant values.
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3.4 Security-Aware Query Processing

In this section, we introduce security-aware query processors, indistinguishable states, and cor-
rectness criteria for boolean queries in the Truman model.

Definition 3.6. Let D be a database schema, F be a query language, U be the set of all possible
results, and S be the set of F -policies. An F -Security-Aware Query Processor (F -SAQP) is a function
M : F × S × ΩD → U . �

Note that the set U depends on the type of query, i.e., boolean or non-boolean. Although boolean
queries can be only true (>) or false (⊥) in a given state, a security-aware query processor may also
return the third value †, i.e., U = {>,⊥, †}. This value is used to prevent the leakage of sensitive
information, which is in contrast to [165] where † is used only to mask tuples in the query’s result.

We now define indistinguishability, adapted from [165] to our setting.

Definition 3.7. Let D be a database schema, F be a query language, and S = 〈ROW ,COL〉
be an F -policy over D. We say that two database states db1 and db2 in ΩD are indistinguishable
according to S, written db1 ∼=S db2, iff for all 〈q, φ〉 ∈ ROW , there is a bijection f from AuthS,q(db1)
to AuthS,q(db2) such that for all t ∈ AuthS,q(db1) and all i ∈ {1, . . . , |t|}, (1) DiscS(t, q, db1, i) iff
DiscS(f(t), q, db2, i), and (2) if DiscS(t, q, db1, i), then t(i) = f(t)(i). �

Example 3.3. The database states db1 and db2 in Figure 3.1 are indistinguishable according to the
policy S given in Example 3.1. In contrast, db1 6∼=S db3 because the value of the attribute age for
Frank is protected in state db1 but not in state db3, and db1 6∼=S db4 because the result of the query
r is different in the two states. �

Note that all the states are indistinguishable according to the empty policy S = 〈∅, ∅〉. As stated
in Proposition 3.1, given a database schema D and a policy S, the indistinguishability relation ∼=S

is an equivalence relation over ΩD. Given a state s ∈ ΩD, the equivalence class of s defined by ∼=S

is denoted by JsK∼=S .

Proposition 3.1. Let D be a database schema and S be a security policy over D. The indistinguish-
ability relation ∼=S is an equivalence relation over ΩD.

Proof. Let D be a database schema and S = 〈ROW ,COL〉 be a security policy over D. We now
show that ∼=S is reflexive, symmetric, and transitive.
Reflexivity: Let db ∈ ΩD. For each 〈{x | ψ}, φ〉 ∈ ROW , the identity function i : AuthS,{x|ψ}(db)→
AuthS,{x|ψ}(db) is a bijection on the set AuthS,{x|ψ}(db) to itself such that for all t ∈ AuthS,{x|ψ}(db)
and all j ∈ {1, . . . , |x|}, (1) DiscS(t, {x | ψ}, db, j) iff DiscS(i(t), {x | ψ}, db, j), and (2) if DiscS(t,
{x | ψ}, s, j), then t(j) = i(t)(j). Therefore db ∼=S db.
Symmetry: Let db1, db2 ∈ ΩD be two database states such that db1 ∼=S db2. From the indistin-
guishability definition, it follows that for each 〈{x | ψ}, φ〉 ∈ ROW , there is a bijection f{x|ψ} from
AuthS,{x|ψ}(db1) to AuthS,{x|ψ}(db2) such that for all t ∈ AuthS,{x|ψ}(db1) and all i ∈ {1, . . . , |x|},
(1) DiscS(t, {x | ψ}, db1, i) iff DiscS(f{x|ψ}(t), {x | ψ}, db2, i), and (2) if DiscS(t, {x | ψ}, db1, i),
then t(i) = f{x|ψ}(t)(i). Therefore, for each 〈{x | ψ}, φ〉 ∈ ROW , there is a bijection f−1

{x|ψ} from
AuthS,{x|ψ}(db2) to AuthS,{x|ψ}(db1) such that for all t ∈ AuthS,{x|ψ}(db2) and all i ∈ {1, . . . , |x|},
(1) DiscS(t, {x | ψ}, db2, i) iff DiscS(f−1

{x|ψ}(t), {x | ψ}, db1, i), and (2) if DiscS(t, {x | ψ}, db2, i), then
t(i) = f−1

{x|ψ}(t)(i). Hence, db2 ∼=S db1.
Transitivity: Let db1, db2, db3 ∈ ΩD be three states such that db1 ∼=S db2 and db2 ∼=S db3.
From db1 ∼=S db2, it follows that for each 〈{x | ψ}, φ〉 ∈ ROW , there is a bijection f1→2

{x|ψ} from
AuthS,{x|ψ}(db1) to AuthS,{x|ψ}(db2) such that for all t ∈ AuthS,{x|ψ}(db1) and all i ∈ {1, . . . , |x|},
(1) DiscS(t, {x | ψ}, db1, i) iff DiscS(f1→2

{x|ψ}(t), {x | ψ}, db2, i), and (2) if DiscS(t, {x | ψ}, db1, i) holds,
then t(i) = f1→2

{x|ψ}(t)(i). From db2 ∼=S db3, it follows that for each 〈{x | ψ}, φ〉 ∈ ROW , there is
a bijection f2→3

{x|ψ} from AuthS,{x|ψ}(db2) to AuthS,{x|ψ}(db3) such that for all t ∈ AuthS,{x|ψ}(db2)
and all i ∈ {1, . . . , |x|}, (1) DiscS(t, {x | ψ}, db2, i) iff DiscS(f2→3

{x|ψ}(t), {x | ψ}, db3, i), and (2) if
DiscS(t, {x | ψ}, db2, i) holds, then t(i) = f2→3

{x|ψ}(t)(i). Therefore, for each 〈{x | ψ}, φ〉 ∈ ROW , there
is a bijection f1→3

{x|ψ} := f2→3
{x|ψ} ◦ f

1→2
{x|ψ} from AuthS,{x|ψ}(db1) to AuthS,{x|ψ}(db3) such that for all

t ∈ AuthS,{x|ψ}(db1) and all i ∈ {1, . . . , |x|}, (1) DiscS(t, {x | ψ}, db1, i) iff DiscS(f1→3
{x|ψ}(t), {x | ψ},

db3, i), and (2) if DiscS(t, {x | ψ}, db1, i) holds, then t(i) = f1→3
{x|ψ}(t)(i). Hence, db1 ∼=S db3.

We now adapt the correctness criteria given in [165] to boolean queries. Informally, a secure
SAQP M is not influenced by data protected by a given security policy, i.e., M’s result does not
depend on undisclosed data.
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Mopt(φ, S, db) =

 > if ∀db′ ∈ JdbK∼=S . [φ]db′ = >
⊥ if ∀db′ ∈ JdbK∼=S . [φ]db′ = ⊥
† otherwise

Figure 3.2: An optimal SAQP for boolean queries.

Definition 3.8. Let D be a database schema and F be a query language. An F -security-aware
query processor M is secure iff for all F -policies S over D, all F -queries q, and all db, db′ ∈ ΩD, if
db ∼=S db′, thenM(q, S, db) =M(q, S, db′). �

A sound SAQPM returns only correct information, i.e., information already returned by the orig-
inal query. Note thatM(q, S, db) may return less information than [q]db, but never more information.
For boolean queries,M(q, S, db) can return either [q]db or †.

Definition 3.9. Let D be a database schema and F be a query language. An F -security-aware
query processor M is sound iff for all queries q ∈ F , all F -policies S over D, and all db ∈ ΩD,
M(q, S, db) = [q]db orM(q, S, db) = †. �

Finally, maximality formalizes that M returns as much information as possible. For boolean
queries, a maximal SAQP, given a query q, returns [q]db for all states db where it is secure to do so.

Definition 3.10. Let D be a database schema and F be a query language. An F -security-aware
query processorM is maximal iff for all F -security policies S over D, all F -queries q, and all db ∈ ΩD,
if [q]db = [q]db′ for all db′ ∈ JdbK∼=S , thenM(q, S, db) = [q]db. �

We are now ready to define optimal algorithms for boolean queries in the Truman model.

Definition 3.11. Let F be a query language. An F -SAQP for boolean queries is optimal in the
Truman model iff it satisfies the Definitions 3.8–3.10. �

Optimal algorithms are those algorithms that return as much information as possible without
returning incorrect information or violating the security policy. Figure 3.2 describes an optimal
SAQP for boolean queries. Observe that, depending on the query language, Mopt may not be
computable.

Studying optimal algorithms is important as they are the best one can do in terms of SAQP. In
particular, considering only two out of three correctness criteria is usually not enough. Indeed, a
functionM1(q, S, db) = † for all q, S, and db is secure and sound but is completely useless. Similarly, a
functionM2(q, S, db) = [q]db for all q, S, and db is sound and maximal but leaks sensitive information.
Finally, a functionM3 that satisfies the security and maximality criteria can systematically return
arbitrary results without violating security and maximality. Indeed, let E be one of the partitions
of ΩD defined by ∼=S such that [q]db 6= [q]db′ for some db, db′ ∈ E, thenM3 can return an arbitrary
value for all states in E.

3.5 Boolean Queries

In this section, we study the existence of optimal Security-Aware Query Processing algorithms
for boolean queries.

3.5.1 Preliminaries
We first define the query agreement decision problem. Afterwards, we show how this problem is

related to optimal Security-Aware Query Processing.

Definition 3.12. Given a language F , AGREEF denotes the following decision problem:
Input: A database schema D, an F -security policy S over D, a boolean query q ∈ F , and a state
db ∈ ΩD.
Question: For all states db′ ∈ JdbK∼=S , is [q]db′ = [q]db? �

Theorem 3.1 establishes that the decidability of AGREEF is related to the existence of optimal
SAQP algorithms for the query language F .

Theorem 3.1. Let F be a query language. There is a computable optimal F -SAQP algorithm M
for boolean queries iff AGREEF is decidable.

Proof. (⇒) LetM be a computable optimal F -SAQP algorithm for boolean queries. We useM as
a subroutine in a decision procedure for AGREEF . AGREEF takes as input a database schema D,
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a policy S over D, a boolean F -query q, and a state db. IfM(q, S, db) = †, then AGREEF (D,S, q,
db) = ⊥, otherwise AGREEF (D,S, q, db) = >.

(⇐) We use AGREEF to build an optimal F -SAQPM. Let D be a database schema. M takes
as input an F -policy S over D, a boolean F -query q, and a state db ∈ ΩD. If AGREEF (D,S, q,
db) = >, thenM(q, S, db) = [q]db, otherwiseM(q, S, db) = †. It easy to see thatM is optimal and
computable.

We next study the decidability of AGREEF for RC and ERC , and we extend the results to the
existence of optimal algorithms for these query languages. In our theorem statements and proofs, we
will ignore sub-recursive complexity bounds and all reductions will be Turing reductions.

3.5.2 Impossibility Results
We now show that there are no optimal SAQP algorithms for boolean RC queries. Since all query

languages used in practice, such as SQL, are Codd-complete [10], i.e., they are at least as expressive
as RC, it follows from our impossibility result that there are no optimal SAQP algorithms for the
boolean query languages currently in use.

Theorem 3.2. AGREERC is undecidable.

Proof. Let S be the empty policy 〈∅, ∅〉 and D be a database schema. Then, ∼=S defines just one
equivalence class containing every state. An RC-sentence φ is finitely satisfiable iff AGREERC (D,S,
φ, db) = ⊥ or [φ]db = >, where db is the empty state. The reduction can be implemented by a total
Turing machine. Since FINSATRC is undecidable, so is AGREERC .

We now show the reduction’s correctness. Assume that φ is finitely satisfiable. If [φ]db = >, then
AGREERC (D,S, φ, db) = ⊥ or [φ]db = > trivially holds. Assume, then, that [φ]db = ⊥. From this and
φ is satisfiable, it follows that there exists a database state db′ ∈ ΩD such that [φ]db 6= [φ]db′ . From
this and S = 〈∅, ∅〉, db′ ∈ JdbK∼=S . From this, there is a state db′ ∈ JdbK∼=S such that [φ]db 6= [φ]db′ .
Hence, AGREERC (D,S, φ, db) = ⊥. For the other direction, assume that AGREERC (D,S, φ, db) = ⊥
or [φ]db = >. If [φ]db = >, φ is trivially finitely satisfiable. In contrast, if AGREERC (D,S, φ, db) = ⊥,
there is a database state db′ ∈ JdbK∼=S such that [φ]db′ 6= [φ]db. Therefore, φ is satisfied in db or db′.

From Theorem 3.2, it follows that there are no optimal SAQP algorithms for boolean RC-queries.
Similarly to Theorem 3.2, we can prove an even stronger result: for any fragment F of RC such that
FINSATF (or FINVALF ) is undecidable, then AGREEF is also undecidable. Therefore, from well-
known undecidability results for fragments of RC, one can identify fragments for which there are no
optimal SAQP algorithms. Note also that considering functional dependencies and other integrity
constraints in a particular fragment of RC might cause the undecidability of the AGREE problem,
and therefore the impossibility of optimal SAQP.

3.5.3 Possibility Results
Although AGREERC is undecidable, there are fragments of RC for which the problem is decid-

able. In this section, we present sufficient conditions for the decidability of AGREEF , and we use
these conditions to prove the decidability of AGREEERC. Note that we do not provide a complete
classification of the fragments of RC for which AGREEF is decidable and there are fragments that
meet neither the conditions for undecidability stated above nor the conditions of Lemma 3.1 below.
Moreover, although we prove decidability, we do not derive complexity bounds for optimal SAQP
algorithms.

We first introduce the notion of encoding the indistinguishability relation in a formula. Let D
be a database schema, S be a security policy over D, and db be a state in ΩD. We say that a
sentence φINDIST(S,db) encodes the indistinguishability relation defined by the policy S on the state
db iff φINDIST(S,db) is domain independent and for all db′ ∈ ΩD, [φINDIST(S,db)]db′ = > iff db ∼=S db′.

We now present sufficient conditions for the decidability of the AGREEF decision problem.

Lemma 3.1. Let F be a query language. AGREEF is decidable if there is a query language F ′ such
that:

1. FINSATF ′ is decidable.
2. For any db ∈ ΩD and any F -policy S, we can compute a sentence φINDIST(S,db) that encodes

the indistinguishability relation.
3. We can compute sentences γ, γ′ ∈ F ′ equivalent to φINDIST(S,db) ∧ ψ and φINDIST(S,db) ∧ ¬ψ

respectively, for any db ∈ ΩD, any F -policy S, and any sentence ψ ∈ F .
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Proof. Let F be a query language and F ′ be another query language satisfying the conditions (1)–(3).
We prove the theorem by reducing AGREEF to FINSATF ′ . The inputs to the AGREEF problem are:
a database schema D, an F -security policy S, an F -sentence φ, and a state db ∈ ΩD. From (2) and
(3), we can compute two F ′-formulae γ>(S, db, ψ) and γ⊥(S, db, ψ) that are respectively equivalent
to φINDIST(S,db) ∧ ¬ψ and φINDIST(S,db) ∧ ψ for any state db ∈ ΩD, any ψ ∈ F , and any F -policy S
over D. The algorithm for AGREEF first computes k = [ψ]db. Then, AGREEF (D,S, ψ, db) = >
iff FINSATF ′(γk(S, db, φ)) = ⊥. This procedure can be implemented by a total Turing machine.
Moreover, from (1) and (3), it follows that γk(S, db, φ) ∈ F ′ and FINSATF ′ is decidable. Hence,
AGREEF is decidable.

To show this reduction’s correctness, we prove both directions.
(⇐). Assume that FINSATF ′(γk(S, db, φ)) = ⊥. Without loss of generality, we assume that [ψ]db =
⊥. Therefore, γk(S, db, φ) is φINDIST(S,db) ∧ψ. From this and FINSATF ′(γk(S, db, φ)) = ⊥, it follows
that there is no database state db′ such that [φINDIST(S,db) ∧ψ]db′ = >. From this, it follows that for
all database states db′ such that [φINDIST(S,db)]db′ = >, [ψ]db′ = ⊥. From this and (2), it follows that
for all database states db′ ∈ JdbK∼=S , [ψ]db′ = ⊥. Hence, AGREEF (D,S, ψ, db) = >.
(⇒). Assume that AGREEF (D,S, ψ, db) = >. Without loss of generality, we assume [ψ]db = >.
The proof for the other case is analogous. From AGREEF (D,S, ψ, db) = > and [ψ]db = >, it
follows that [ψ]db′ = > for all db′ ∈ JdbK∼=S . From this and (2), [ψ]db′ = > for all db′ such that
[φINDIST(S,db)]db′ = >. From this, the formula γ>(S, db, ψ) = φINDIST(S,db) ∧ ¬ψ is unsatisfiable and,
therefore, FINSATF ′(γk(S, db, φ)) = ⊥.

There are fragments of RC that are not expressive enough to encode the indistinguishability
relation. For this reason, in Lemma 3.1, we introduced another fragment F ′ that is more expres-
sive and allows such an encoding. For instance, in the ERC fragment there is no encoding of the
indistinguishability relation, but it can be encoded in the more expressive BSRRC fragment.

There is a similar set of preconditions for solving AGREEF using FINVALF ′ ; we just need to con-
sider the formulae φINDIST(S,db) → ψ and φINDIST(S,db) → ¬ψ instead of the formulae φINDIST(S,db)∧ψ
and φINDIST(S,db) ∧ ¬ψ.

Before proving the decidability of AGREEERC, we introduce some notation. Given a policy
S = 〈ROW ,COL〉, a state db, a constraint 〈q, φ〉 ∈ ROW , and a tuple t ∈ AuthS,q(db), we denote by
maskS,db,q(t) the masked tuple v obtained from t by replacing all the undisclosed values with †, i.e.,
|v| = |t| and for all i ∈ {1, . . . , |t|}, if DiscS(t, q, db, i), then v(i) = t(i), otherwise v(i) = †.

Let D be a database schema, S = 〈ROW ,COL〉 be a security policy over D, 〈q, φ〉 be a constraint
in ROW , and db be a database state in ΩD. The set IndS,q(db) contains all the masked tuples t
that can be obtained from tuples in AuthS,q(db) using the function maskS,db,q(t), i.e., IndS,q(db) :=
{maskS,db,q(t) | t ∈ AuthS,q(db)}. Given a tuple t ∈ IndS,q(db), we denote by cardS,db,q(t) the number
of tuples t′ ∈ AuthS,q(db) that cannot be distinguished from t according to the security policy S, i.e.,
cardS,db,q(t) := |{t′ ∈ AuthS,q(db) | maskS,db,q(t′) = t}|.

Let S = 〈ROW ,COL〉 be a security policy, i ∈ N, and q = {x|φ} be a non-boolean query. We
denote by ψSq the condition in the constraint associated with q, i.e., 〈q, ψSq 〉 ∈ ROW . Similarly, we
denote by ψSq,i the condition associated with the i-th value of q, i.e., 〈q, ψSq,i, i〉 ∈ COL. If there is no
such a constraint, then ψSq = ⊥ (respectively ψSq,i = ⊥).

We now use Lemma 3.1 to prove that AGREEERC is decidable. Due to the limited expressiveness
of the ERC fragment, we cannot encode the indistinguishability relation in it. However, we can prove
the decidability of AGREEERC using the more expressive BSRRC fragment. The full proof of this
result is given in Appendix A.

Theorem 3.3. AGREEERC is decidable.

Proof Sketch. Let S = 〈ROW ,COL〉 be an ERC -policy, db be a state, and q = {x | ψ} be a
non-boolean ERC -query such that there is a constraint for q in S. The formula θq,S(y, t), where y
is a tuple of variables and t is a possibly masked tuple of values in dom such that |y| = |t|, is as
follows:

θ{x|ψ},S(y, t) :=
∧

i∈{1,...,|t|}
∧t(i)6=†

(ψSq,i[x 7→ y] ∧ y(i) = t(i)) ∧
∧

i∈{1,...,|t|}
∧t(i)=†

¬ψSq,i[x 7→ y].

The formula θ{x|ψ},S(y, t) forces the masked version of the tuple associated with the values of the
variables y to be t.

In our encoding φ′INDIST(S,db), we use counting quantifiers. A counting quantifier ∃op mx. φ(x),
where op ∈ {=,≤,≥, <,>} and m ∈ N, is a quantifier that specifies the number of tuples that can be
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mapped to x and satisfy φ(x). For instance, the formula ∃=2x1. φ(x1) is true iff there are exactly two
distinct elements x1 satisfying φ(x1). Note that counting quantifiers do not add expressive power to
RC.

Given a tuple of variables x, we denote by yx the tuple of variables y1, . . . , y|x|. The encoding
φ′INDIST(S,db) is:

ψS,{x|ψ},db := ∃=|AuthS,{x|ψ}(db)|yx. (ψ[x 7→ yx] ∧ ψS{x|ψ}[x 7→ yx])

γ{x|ψ},S,db,t := ∃≥cardS,db,{x|ψ}(t)yx. (ψ[x 7→ yx] ∧ ψS{x|ψ}[x 7→ yx] ∧ θ{x|ψ},S(yx, t))

φ′INDIST(S,db) :=
∧

〈q,φ〉∈ROW

ψS,q,db ∧
∧

t∈IndS,q(db)

γq,S,db,t

 .

The sentence ψS,{x|ψ},db states that, for any state db′ such that [ψS,{x|ψ},db]db′ = >, the sets
AuthS,{x|ψ}(db′) and AuthS,{x|ψ}(db) have the same cardinality. The sentence γ{x|ψ},S,db,t states
that, for any state db′ such that [γ{x|ψ},S,db,t]

db′ = >, there are at least cardS,db,{x|ψ}(t) tuples v in
AuthS,{x|ψ}(db′) such that maskS,s′,{x|ψ}(v) = t. The sentence φ′INDIST(S,db) encodes the indistin-
guishability relation for the ERC -policy S and the state db.

Although φ′INDIST(S,db) is not in BSRRC , it can be rewritten as a BSRRC -sentence. Furthermore,
there are BSRRC -sentences equivalent to φ′INDIST(S,db) ∧ ψ and φ′INDIST(S,db) ∧ ¬ψ for any ERC -
sentence ψ and any ERC -policy S. Therefore, AGREERC is decidable by Lemma 3.1. �

From Theorem 3.3 and the fact that conjunctive queries (CRC ) are a strict subset of ERC , it also
follows that AGREECRC is decidable. Therefore, there are optimal SAQP algorithms for boolean
conjunctive queries.

3.5.4 Truman and Non-Truman models
In this section, we study the connections between Truman and Non-Truman models as defined

in [131]. In the Non-Truman model, the security policy is expressed using a set of authorization
views. Authorization views are standard database views extended with parameters referring to users’
credentials. They can be used to specify the data a user is authorized to read. Authorization views
in [131] are expressed in SQL, whereas here we study authorization views in the relational calculus.
In the following, we ignore users’ credentials, which does not limit our results.

Definition 3.13. Let D be a database schema and F be a query language. An F -authorization view
is defined by assigning a relation identifier V not in D to a non-boolean F -query {x | φ(x)}, i.e.,
V = {x | φ(x)}. �

Let s ∈ ΩD be a state and V = {x | φ(x)} be a view. The materialization of V in db, denoted
by db(V ), is [{x | φ(x)}]db. Views can be used in RC-formulae in the same way as relation schemas,
but in this case we consider the materialized views instead of the relation instances.

We now introduce the notion of equivalence with respect to a set of authorization views AV
(AV -equivalence) defined in [131]. Two states are AV -equivalent iff their views’ materializations are
the same.

Definition 3.14. Let D be a database schema, AV be a set of authorization views over D, and
db, db′ ∈ ΩD be two states. Then, db and db′ are AV -equivalent, written db ∼=AV db′, iff for all
V ∈ AV , db(V ) = db′(V ). �

For any database schema D and any set of views AV , the relation ∼=AV is an equivalence relation
over ΩD.

We now introduce row-level policies. Intuitively, a row-level policy does not disclose partial tuples.

Definition 3.15. Let D be a database schema and S = 〈ROW ,COL〉 be a security policy over D.
S is a row-level policy iff for all 〈q, φ〉 ∈ ROW , all db ∈ ΩD, and all t ∈ [q]db, if DiscS(t, q, db), then
DiscS(t, q, db, i) for all i ∈ {1, . . . , |t|}. �

We say that a security policy S and a set of views AV are equivalent iff ∼=AV = ∼=S . We prove
below that RC -authorization views are as expressive as row-level RC -policies. It is easy to see that
row-level RC -policies are strictly less expressive than RC -policies, and therefore RC -authorization
views are strictly less expressive than RC -policies.

Proposition 3.2. Let D be a database schema. For each set of RC-authorization views over D,
there is an equivalent row-level RC-security policy over D and vice versa.
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Proof. (⇒). Let AV be a set of RC-authorization views. We now show how to construct the
row-level security policy S. The security policy S = 〈ROW ,COL〉 is as follows:

• For each view V = {x | φ} in AV , we define a constraint 〈{x | φ},>〉 ∈ ROW .
• For each view V = {x | φ} in AV and each i ∈ {1, . . . , |x|}, we define a constraint 〈{x | φ},>,
i〉 ∈ ROW .

It is easy to see that S is equivalent to AV , i.e., any two states AV -equivalent are also indistinguishable
according to S and vice versa. Indeed, the data disclosed by S are exactly the materialization of the
views in AV . It is also easy to check that S is row-level by construction. Finally, observe that if AV
is a set of F -authorization views for some query language F , then S is an F -security policy.
(⇐). Let S = 〈ROW ,COL〉 be a row-level RC-security policy. We can define a set of authorization
views AV as follows. For each 〈{x | ψ}, φ〉 ∈ ROW , we define the authorization view V{x|ψ} as
follows:

V{x|ψ} = {x | ψ ∧ φ}.
Given a state db and a constraint 〈q, φ〉 ∈ ROW , the set AuthS,q(db) is exactly the materialization of
the view Vq in the state db. Note also that given a row-level policy S, then AuthS,q(db) = IndS,q(db)
for all queries q and all states db. We now prove that S is equivalent to AV . Let db1 and db2 be
two indistinguishable states according to S. Since the views in AV disclose only values that we are
authorized to read according to S, then db1 and db2 are AV -equivalent. Similarly, let db1 and db2
be two AV -equivalent states. Given a constraint 〈{x | ψ}, φ〉 ∈ ROW and a state db, then the set
AuthS,{x|ψ}(s) is exactly the materialization of the view V{x|ψ} in the state db. Therefore, since
db1 and db2 are AV -equivalent, i.e., the materialization of the views in AV are the same, then they
are also indistinguishable. Note that if F is closed under conjunction, then given any F -policy, the
resulting equivalent set of authorization views is in F .

Example 3.4. Let AV be the set of views {q1, q2}, where q1 is the query {z | ∃x, y.Employee(x, y, z)}
and q2 is the query {y | ∃x, z.Employee(x, y, z)}. The equivalent row-level policy is S = 〈{〈q1,>〉,
〈q2,>〉}, {〈q1,>, 1〉, 〈q2,>, 1〉}〉.

Let S be the row-level policy 〈{〈q1, φ〉, 〈q2, ψ〉}, {〈q1,>, 1〉, 〈q2,>, 1〉}〉, where φ and ψ are RC-
formulae. The equivalent set of views is {q′1, q′2}, where q′1 = {z | ∃x, y.Employee(x, y, z) ∧ φ} and
q′2 = {y | ∃x, z.Employee(x, y, z) ∧ ψ}. �

From Proposition 3.2, it follows that, given a set of authorization views AV , two states are AV -
equivalent iff they are indistinguishable according to the equivalent security policy and vice versa.

In the relational calculus, authorization views are strictly less expressive than security policies.
This is no longer the case for sufficiently powerful query languages. For instance, in the relational
calculus extended with the count aggregation operator, authorization views are as expressive as
security policies, as shown in Example 3.5. This also implies that, in contrast to the case of RC ,
for sufficiently powerful languages, row-level policies are as expressive as policies that combine both
row-level and column-level constraints.

Example 3.5. In this example, we use the aggregation operator count [10]. Informally, count[x |
ψ(x)] returns the number of tuples in the result of the query {x | ψ(x)}.

Let q be the query {x, z | α}, where α is the RC-formula ∃y.Employee(x, y, z), and let S be the
policy 〈{〈q, φ〉}, {〈q, ψ, 1〉, 〈q, γ, 2〉}〉, where φ, ψ, and γ are RC-formulae. The set of authorization
views AV that is equivalent to S is:

{x, z, s |α ∧ φ ∧ ψ ∧ γ ∧ s = 1},
{x, s |∃z. (α ∧ φ ∧ ψ ∧ ¬γ) ∧ s = count[z|α ∧ φ ∧ ψ ∧ ¬γ]},
{z, s |∃x. (α ∧ φ ∧ γ ∧ ¬ψ) ∧ s = count[x|α ∧ φ ∧ γ ∧ ¬ψ]},
{s |∃x, z. (α ∧ φ ∧ ¬ψ ∧ ¬γ) ∧ s = count[x, z|α ∧ φ ∧ ¬ψ ∧ ¬γ]}.

Let db be a state. The materialization of the views in AV in the state db discloses, for each t ∈
IndS,q(db), the values in t different from † and the value of cardS,db,q(t), which is stored in the
variable s. Therefore, ∼=AV = ∼=S . �

The intuition behind Example 3.5 is formalized in Proposition 3.3. Note that we denote by RC+

the relational calculus extended with the count aggregation operator [10].

Proposition 3.3. Let D be a database schema. For each set of RC+-authorization views over D,
there is an equivalent RC+-security policy over D, and vice versa.

Proof. (⇒). The proof in this direction is exactly the same as the proof (in the same direction) of
Proposition 3.2.
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(⇐). Let S = 〈ROW ,COL〉 be a RC+-security policy. We define a set of RC+-authorization views
AV as follows. We denote by QS the set containing all the non-boolean queries on which there are
constraints in ROW . Given a tuple of variables x and a finite set of variables A such that all y ∈ A
occur in x, we denote by varx(A) the tuple of variables y that contains exactly the variables in A
ordered according to their position in x. We also denote by remx(A) the result of varx(x \ A). For
each q = {x | ψ} in QS , and each set A ∈ 2free(ψ), we define the authorization view V{x|ψ},A:

Vq,A := {varx(A), s |∃remx(A). (ψ ∧ ψSq ∧
∧
y∈A

ψSq,pos(x,y) ∧
∧

y∈free(ψ)\A

¬ψSq,pos(x,y))∧

s = count[remx(A) | ψ ∧ ψSq ∧
∧
y∈A

ψSq,pos(x,y) ∧
∧

y∈free(ψ)\A

¬ψSq,pos(x,y)]}.

Note that if |remx(A)| = 0, then we replace the count operator with 1, i.e., s = 1 in this case. Note
that we assume, without loss of generality, that s 6∈ free(ψ).

Given a constraint 〈{x | ψ}, φ〉 ∈ ROW , a state db, and a set of variables A ⊆ free(ψ), the
materialization of the view V{x|ψ},A in the state db contains a tuple v ◦ 〈m〉, where ◦ indicates
the concatenation between two tuples and m ∈ N, iff there is a tuple t ∈ IndS,q(db) such that
cardS,db,q(t) = m and for all y ∈ free(ψ), if y ∈ A, then v(pos(varx(A), y)) = t(pos(x, y)) and
otherwise t(pos(x, y)) = †. From this, it follows that S is equivalent to AV . Indeed, let db1 and db2
be two indistinguishable states according to S. For all 〈q, φ〉 ∈ ROW , IndS,q(db1) = IndS,q(db2)
and cardS,db1,q(t) = cardS,db2,q(t) for all t ∈ IndS,q(db1). Therefore, the materializations of the
views in AV are the same in both states, and thus db1 ∼=AV db2. Similarly, let db1 and db2 be two
AV -equivalent states. Then, for all 〈q, φ〉 ∈ ROW , we have that IndS,q(db1) = IndS,q(db2) and also
that cardS,db1,q(t) = cardS,db2,q(t) for all t ∈ IndS,q(db1). Therefore, db1 ∼=S db2.

We now introduce the concept of conditional validity [131], which is different from validity in
FOL and RC . Afterwards, we define optimal algorithms in the Non-Truman model.
Definition 3.16. Let D be a database schema, db ∈ ΩD be a state, and AV be a set of authorization
views over D. An RC-query q is conditionally valid in db iff there is another RC-query q′ written
only in terms of the views in AV that is equivalent to q on all states db′ such that db ∼=AV db′. �

Definition 3.17. Let F be a query language. An F -SAQPM is optimal in the Non-Truman model
iff it executes exactly the conditionally valid queries. �

Before reconciling Truman and Non-Truman models, we state the following lemma.
Lemma 3.2. Let D be a database schema, F be a query language, AV be a set of F -authorization
views, db ∈ ΩD be a state, and φ be a boolean F -query. Moreover, let S be the F -security policy
equivalent to AV . The query φ is conditionally valid in the state db with respect to AV iff AGREEF (D,
S, φ, db) = >.

Proof. (⇒). Let φ be a query that is conditionally valid in the state db with respect to AV . Since
φ is conditionally valid, then there is another query φ′ expressed only in terms of AV such that
[φ]db′ = [φ′]db′ for all states db′ AV -equivalent to db. Note that two states are AV -equivalent iff
they have the same views’ materializations. Since φ′ is expressed only in terms of AV , it is domain
independent, the query language is deterministic, and the views’ materializations are fixed, then
φ′ returns always the same result k ∈ {>,⊥} on all states db′ AV -equivalent to db. Therefore,
[φ]db′ = [φ′]db′ = k for all states db′ such that db ∼=AV db′. Since AV and S are equivalent, it follows
that db ∼=AV db′ iff db ∼=S db′. It follows that [φ]db = k for all states db′ such that db ∼=S db′, and
therefore AGREEF (D,S, φ, db) = >.
(⇐). Let φ be a query such that AGREEF (D,S, φ, db) = >. Moreover, let k ∈ {>,⊥} be the value
[φ]db. Let S be the F -security policy equivalent to AV . Since AGREEF (D,S, φ, db) = >, we know
that the result of φ is k for all states indistinguishable from db according to S. Since S and AV
are equivalent, it follows that the result of φ is k for all states AV -equivalent to db. Therefore, the
query φ′ = k is equivalent to φ for all states AV -equivalent to db. Thus, φ is conditionally valid in
db according to AV .

Finally, we can connect optimal SAQP in the Truman and Non-Truman model.
Theorem 3.4. Let F be a query language. An optimal F -SAQP for boolean queries in the Truman
model is an optimal F -SAQP for boolean queries in the Non-Truman model when † is interpreted as
rejecting the query.

Proof. The theorem follows from Theorem 3.1, Proposition 3.2, Lemma 3.2, and the definition of
optimal SAQP in the Non-Truman model.



32 Chapter 3. Database Access Control for SELECT-only attackers

In the past, Truman and Non-Truman models have been presented as two distinct and alternative
approaches: the former concerned with returning as much information as possible and the latter
concerned with avoiding inconsistencies. For boolean RC-queries, Theorem 3.4 shows that an optimal
SAQP in the Truman model can be used as an optimal SAQP in the Non-Truman model. The reason
is that, for boolean queries, the only way to protect sensitive information is to return † and there
is no way to return partial results. Therefore, for boolean RC-queries, the Non-Truman model is a
special case of the Truman model. Indeed, RC-authorization views are strictly less expressive than
RC-policies. For sufficiently powerful query languages, such as the relational calculus extended with
the count operator, the two models coincide for boolean queries because authorization views are as
expressive as security policies.

The practical consequence of Theorem 3.4 is that we can straightforwardly use an optimal al-
gorithm in the Truman model to compute the answer to a query in the Non-Truman model. It
also follows that the results in Sections 3.5.2 and 3.5.3 apply to the Non-Truman model and to the
conditional validity problem.

3.6 Non-boolean queries

In this section, we study the existence of optimal SAQP algorithms for non-boolean queries and
the connections between optimal SAQP algorithms in the Truman and Non-Truman models.

3.6.1 Correctness Criteria
The answer to a non-boolean query under a given security policy is a multi-set of masked tuples

and not a set of tuples as is standard in database theory. Indeed, some values may be set to † because
we are not authorized to read them. However, not all multi-sets of tuples are valid results for SAQP
algorithms. We are interested only in those multi-sets that can be obtained from a set of unmasked
tuples by replacing values with †. The set M is the set of all multi-sets of tuples V such that there
is a set of unmasked tuples T and a bijection f from V to T such that t v f(t) for all t ∈ V . In the
following, we always refer just to multi-sets in M .

Following [165], we define a subsumption relation � on multi-sets, which is a partial order on
M . A multi-set K ∈ M is subsumed by another multi-set K′ ∈ M , written K � K′, iff there is an
injective mapping f : K → K′ such that for all t ∈ K, t v f(t).

Example 3.6. Let t and z be the tuples 〈John, 25, Clerk〉 and 〈Frank, †, †〉 respectively. The multi-
set {t, t, z} is not in M because there are two occurrences of the unmasked tuple t. In contrast, the
multi-set J = {z, z, t} is in M . Let T be the set {〈Frank, 46, Clerk〉, 〈Frank, 27, SecretAgent〉,
〈John, 25, Clerk〉}. Then, J � T . �

We now introduce the correctness criteria for non-boolean queries. Security is the same as in
Definition 3.8 and we state here only soundness and maximality. Wang et al. [165] studied only secure
and sound algorithms and considered only algorithms that return a unique multi-set of masked tuples
as a query’s result. However, there are cases in which the optimal answer is not unique, i.e., there
are finitely many different multi-sets of masked tuples that are all optimal and incomparable. In the
following, we consider algorithms that might return as a query’s result a set of multi-sets. Therefore,
for non-boolean queries, the set U , which contains all possible results of optimal SAQPs, is 2M . For
this reason, we must modify the criteria given in [165].

For non-boolean queries, a sound algorithm must return a result subsumed by the original query’s
result.

Definition 3.18. Let D be a database schema and F be a query language. An F -security-aware
query processorM is sound iff for all non-boolean queries q ∈ F , all F -policies S over D, all db ∈ ΩD,
and all V ∈M(q, S, db), V � [q]db. �

A maximal algorithm must return a result that subsumes any multi-set T ∈M that is subsumed
by the original query’s result in all indistinguishable states.

Definition 3.19. Let D be a database schema and F be a query language. An F -security-aware
query processor M is maximal iff for all F -policies S over D, all non-boolean queries q ∈ F , all
db ∈ ΩD, and all T ∈M , if T � [q]db′ for all db′ ∈ JdbK∼=S , then there is a V ∈M(q, S, db) such that
T � V . �

We now define optimal algorithms for non-boolean queries in the Truman model.

Definition 3.20. Let F be a query language. An F -SAQP for non-boolean queries is optimal in the
Truman model iff it satisfies the Definitions 3.8, 3.18, and 3.19. �
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Mopt(q, S, db) = {V ∈M | ∀db′ ∈ JdbK∼=S . (V � [q]db′)}

Figure 3.3: An optimal SAQP for non-boolean queries

Figure 3.3 describes an optimal SAQP for non-boolean queries. Depending on the query language,
this function may not be computable.

Example 3.7. LetD be a database schema with only one relation schema R of arity 2. For simplicity,
we call a and b the two attributes in R, and we assume that dom is N. Moreover, let φ(n,m) be
the formula x = n ∧ y = m ∧ ∀y. (R(n, y) → y = m) ∧ ∀x. (R(x,m) → x = n). Let q be the query
{x, y | R(x, y)} and S be the security policy 〈{〈q,>〉}, {〈q, ψ, 1〉, 〈q, ψ, 2〉}〉, where ψ is the formula
¬φ(1, 3)∧¬φ(1, 4)∧¬φ(2, 3)∧¬φ(2, 4). One of the equivalence classes defined by S contains exactly
the two states db and db′ such that db(R) = {〈1, 3〉, 〈2, 4〉} and db′(R) = {〈1, 4〉, 〈2, 3〉}. In this case,
Mopt(q, S, db) = Mopt(q, S, db′) = K and K = {V ∈ M | V � {〈1, †〉, 〈2, †〉} ∨ V � {〈†, 3〉, 〈†, 4〉}}.
Therefore, in db and db′, we are authorized to read the values of the attributes a and b separately,
but not together. �

In the Truman model, boolean queries are not a special case of non-boolean queries. For fragments
that are not closed under negation, we cannot use an optimal SAQPM for non-boolean queries to
distinguish whether a sentence returns ⊥ or † becauseM returns {∅} in both cases.

We now define a decision problem, denoted as SUBSUMEF , that will be used in a way similar to
AGREEF .

Definition 3.21. Given a query language F , SUBSUMEF denotes the problem:
Input: A database schema D, an F -security policy S, a non-boolean F -query q = {x | φ(x)}, a
multi-set T ∈M such that |t| = |x| for all t ∈ T , and a state db ∈ ΩD.
Question: For all states db′ ∈ JdbK∼=S , is T � [q]db′? �

The SUBSUMEF decision problem is related to the existence of optimal SAQP algorithms.

Theorem 3.5. Let F be a query language. There is a computable optimal F -SAQP algorithm M
for non-boolean queries iff SUBSUMEF is decidable.

Proof. (⇒). LetM be a computable optimal F -SAQP algorithm for non-boolean queries. We use
M as a subroutine in a decision procedure for SUBSUMEF . Let D, S, q, T , and db be the inputs of
the SUBSUMEF problem. Then, SUBSUMEF (D,S, q, T, db) = > iff there is a V ∈M(q, S, db) such
that T � V .
(⇐). We use SUBSUMEF to build an optimal F -SAQP M. Let D be a database schema, S be
an F -security policy over D, db ∈ ΩD be a state, and q be a non-boolean F -query. M(q, S, db) is
{T ∈ M | T � [q]db ∧ SUBSUMEF (D,S, q, T, db) = >}. It is easy to see that M is optimal and
computable.

The SUBSUMEF decision problem plays the same role for optimal algorithms for non-boolean
queries as AGREEF does for boolean queries. We now analyze the decidability of SUBSUMEF .

3.6.2 Impossibility Results
In this section, we extend the impossibility results in Section 3.5.2 from boolean RC-queries to

non-boolean RC-queries.

Theorem 3.6. SUBSUMERC is undecidable.

Proof. Let D be a database schema. We define a new schema D′ obtained from D by adding a
new relation schema T with arity 1. Let v be a value in dom, db be the state in ΩD′ such that
db(T ) = {〈v〉} and db(R) = ∅ for all relation schemas R in D, and S be the RC-policy 〈{〈{x | T (x)},
>〉}, {〈{x | T (x)},>, 1〉}〉. Then, an RC-sentence φ over D is finitely valid iff SUBSUMERC(D′,
S, {x | T (x) ∧ φ}, {〈v〉}, db) = >. To show the correctness of this reduction, consider that the
equivalence class JdbK∼=S defined by the policy S contains a database state db′ for each database state
db′′ ∈ ΩD such that db′ and db′′ agree on all relation schemas in S, i.e., JdbK∼=S = {db′ ∈ ΩD′ |
∃db′′ ∈ ΩD. db′(T ) = {〈v〉} ∧

∧
R∈D db′(R) = db′′(R)}. Then, SUBSUMERC(D′, S, {x | T (x) ∧ φ},

{〈v〉}, db) = > iff φ holds in all database states in JdbK∼=S , i.e., iff φ is finitely valid. This reduction
can be implemented by a total Turing machine. Therefore, since FINVALRC is undecidable, so is
SUBSUMERC .



34 Chapter 3. Database Access Control for SELECT-only attackers

From Theorem 3.6, it follows that, for non-boolean queries, there are no computable optimal
SAQP algorithms in the Truman model for the relational calculus. Therefore, it is impossible to
securely process queries without either violating the security policy, losing some information, or
returning incorrect results.

Note that, following the proof of Theorem 3.6, we can prove an even stronger result: for any
fragment F of RC such that (1) F is closed under conjunction, and (2) FINVALF is undecidable, then
SUBSUMEF is also undecidable. Therefore, from well-known undecidability results for fragments
of first-order logic, we can identify fragments of RC for which there are no optimal algorithms for
non-boolean queries, such as the BSRRC fragment.

3.6.3 Possibility Results
We now present a general criterion for identifying fragments of RC where SUBSUMEF is decid-

able. We first introduce the notion of encoding the subsumption relation � in a formula. Let D be
a database schema, ψ(x) be a formula with free variables x, and T ∈ M be a multi-set such that
|t| = |x| for all t ∈ T . We say that a sentence φT,ψ(x) encodes the subsumption relation between T

and ψ(x) iff φT,ψ(x) is domain independent and for all db ∈ ΩD, [φT,ψ(x)]db = > iff T � [{x|ψ(x)}]db.
Lemma 3.3 presents sufficient conditions for the decidability of the SUBSUMEF decision problem.

Lemma 3.3. Let F be a query language. SUBSUMEF is decidable if there is a query language F ′
such that:

1. F ⊆ F ′,
2. AGREEF ′ is decidable for all F -policies, and
3. for any multi-set T ∈ M and any F -formula ψ(x) such that |t| = |x| for all t ∈ T , we can

compute a sentence φT,ψ(x) ∈ F ′ that encodes the subsumption relation between T and ψ(x).

Proof. Let D be a database schema, db ∈ ΩD be a state, {x | ψ} be an F -query, S be an F -policy,
and T ∈ M be a multi-set of tuples such that |t| = |x| for all t ∈ T . Let φT,ψ be the F ′-sentence
encoding the subsumption relation. Then, SUBSUMEF (D,S, {x | ψ}, T, db) = > iff [φT,ψ]db = >
and AGREEF ′(D,S, φT,ψ, db) = >. This reduction can be implemented by a Turing machine. The
decidability of SUBSUMEF directly follows from (1)–(3).

We now prove the correctness of the above reduction. If [φT,ψ(x)]db = > and AGREEF ′(D,S,
φT,ψ(x), db) = >, then for all states db′ indistinguishable from db, we have that T � [{x | ψ(x)}]db′ .
Hence, SUBSUMEF (D,S, {x | ψ(x)}, T, db) = >. If [φT,ψ(x)]s = ⊥, then T � [{x | ψ(x)}]db and thus
SUBSUMEF (D,S, {x | ψ(x)}, T, db) = ⊥. Similarly, if AGREEF ′(D,S, φT,ψ(x), db) = ⊥, then there
is at least a state db′ indistinguishable from db such that T � [{x | ψ(x)}]db′ . Therefore, also in this
case SUBSUMEF (D,S, {x | ψ(x)}, T, db) = ⊥.

We now use Theorem 3.3 and Lemma 3.3 to prove the decidability of SUBSUMEERC. From
Theorem 3.7, whose full proof is given in Appendix A, it follows that there are optimal SAQP
algorithms for the existential fragment of the relational calculus.

Theorem 3.7. SUBSUMEERC is decidable.

Proof Sketch. Given a multi-set of tuples T in M and a tuple t ∈ T , let Kt,T be the multi-set
{t′ | t′ ∈ T ∧ t v t′}. The encoding is given by:

φT,ψ(x) :=
∧
t∈T

∃≥|Kt,T |x. (ψ(x) ∧
∧

i∈{1,...,|x|}∧t(i) 6=†

x(i) = t(i)).

φT,ψ(x) can be equivalently rewritten as an ERC-sentence. �

Since ERC strictly contains conjunctive queries, also SUBSUMECRC is decidable.

3.6.4 Truman and Non-Truman models
We now study the connections between Truman and Non-Truman models for non-boolean queries.

We first introduce the notion of a strongly-optimal security-aware query processor. Using strongly-
optimal SAQPs, we generalize the Non-Truman model approach for non-boolean queries [131] to
our security policies, which are more expressive than authorization views. Afterwards, we study the
relationships between strongly-optimal SAQPs and optimal SAQPs in the Non-Truman model and
extend our decidability results.

A strongly-optimal SAQP for non-boolean queries returns the original query’s result whenever it
is secure to do so, and otherwise returns †. Let L be the set of all finite sets of unmasked tuples.
A security-aware query processor for non-boolean queries is called strongly-optimal if it satisfies the
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Ms-opt(q, S, db) =
{

[q]db if ∀db′ ∈ JdbK∼=S . [q]db′ = [q]db

† otherwise

Figure 3.4: A strongly-optimal SAQP for non-boolean queries

Definitions 3.8–3.10 and the set U , containing all the possible results, is L∪{†}. Figure 3.4 describes
a strongly optimal SAQP for non-boolean queries. Depending on the query language, this function
may not be computable.

Optimal SAQPs and strongly-optimal SAQPs are distinct. For instance, optimal SAQPs can
return partial results while strongly-optimal SAQPs cannot. This holds even if we consider just
row-level policies. Note too that, in the Non-Truman model, boolean queries are a special case of
non-boolean queries.

We first define a new decision problem corresponding to SUBSUMEF .

Definition 3.22. Given a query language F , EQUALF denotes the problem:
Input: A database schema D, an F -security policy S, a non-boolean F -query q = {x | φ(x)}, a set
of tuples T ∈ L such that |t| = |x| for all t ∈ T , and a state db ∈ ΩD.
Question: For all states db′ ∈ JdbK∼=S , is T = [q]db′? �

Similarly to Theorems 3.1 and 3.5, we can prove:

Theorem 3.8. Let F be a query language. There is a computable strongly-optimal F -SAQP algorithm
M for non-boolean queries iff EQUALF is decidable.

Proof. (⇒). LetM be a computable strongly-optimal F -SAQPM for non-boolean queries. We use
M as a subroutine in a decision procedure for EQUALF , which takes as input a database schema D,
a policy S, a set of tuples T , a non-boolean F -query q, and a database state db. Then, EQUALF (D,
S, q, T, db) = > iff T =M(q, S, db).
(⇐). We use EQUALF to construct a strongly-optimal F -SAQPM. Let D be a database schema.
M takes as input a security policy S over D, a non-boolean query q ∈ F , and a state db ∈ ΩD. We
first compute the value T = [q]db. If EQUALF (D,S, q, T, db) = >, thenM(q, S, db) = T , otherwise
M(q, S, db) = †. It is easy to see thatM is strongly-optimal and computable.

We can easily adapt the proof in Section 3.6.2 to obtain the following undecidability result:

Theorem 3.9. EQUALRC is undecidable.

Proof. To prove the theorem, we reduce AGREERC to EQUALRC . The undecidability of EQUALRC

then directly follows from Theorem 3.2.
Let D be a database schema, φ be a boolean formula, S be a security policy over D, and db ∈ ΩD

be a state. We define a database schema D′ from D by adding a new relation schema T with arity
1. Let v be a value in dom and db′ ∈ ΩD′ be the database state such that db′(T ) = {〈v〉} and
db′(R) = db(R) for all relation schemas R in D. Finally, we extend the security policy S = 〈ROW ,
COL〉 on D to a new security policy S′ = 〈ROW ′,COL′〉 on D′, where ROW ′ = ROW ∪{〈{x | T (x)},
>〉} and COL′ = COL ∪ {〈{x | T (x)},>, 1〉}. The equivalence class Jdb′K∼=S′ contains a state db1 for
each state db2 ∈ JdbK∼=S such that the relation instances in db1 and db2 are identical for all relation
schema in D. Note that there is a bijection from the set JdbK∼=S to the set Jdb′K∼=S′ . We define the
query q′ as {x | T (x) ∧ φ}. The set K′ is {〈v〉}, whereas K′′ = ∅. Then, AGREEF (D,S, φ, db) = >
iff EQUALF (D′, S′, q′, {〈v〉}, db′) = > or EQUALF (D′, S′, q′, ∅, db′) = >. The reduction described
above can be implemented by a total Turing machine. We now prove its correctness. If EQUALF (D′,
S′, q′, {〈v〉}, db′) = >, then [φ]db′′ = > for all db′′ ∈ JdbK∼=S and thus AGREEF (D,S, φ, db) = >.
Similarly, if EQUALF (D′, S′, q′, ∅, db′) = >, then [φ]db′′ = ⊥ for all db′′ ∈ JdbK∼=S and therefore
AGREEF (D,S, φ, db) = >. Otherwise, if EQUALF (D′, S′, q′, {〈v〉}, db′) = ⊥ and EQUALF (D′, S′,
q′, ∅, db′) = ⊥ then there are two states db1, db2 ∈ JdbK∼=S such that [φ]db1 6= [φ]db2 and therefore
AGREEF (D,S, φ, db) = ⊥.

Therefore, even strongly-optimal Security-Aware Query Processing is impossible for the relational
calculus. Furthermore, EQUALF is undecidable for any fragment F (closed under conjunction) where
FINVALF , FINSATF , or AGREEF are undecidable.

We can also provide some decidability results. We first define a new encoding. Let D be a
database schema, ψ(x) be a formula with free variables x, and T ∈ L be a finite set of tuples such
that |t| = |x| for all t ∈ T . We say that a sentence φT,ψ(x) encodes the property ψ(x) satisfied by the
set T iff φT,ψ(x) is domain independent and for all db ∈ ΩD, [φT,ψ(x)]db = > iff T = [{x | ψ(x)}]db.

We can now give sufficient conditions for the decidability of the EQUALF problem.
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Lemma 3.4. Let F be a query language. EQUALF is decidable if there is a query language F ′ such
that:

1. F ⊆ F ′,
2. AGREEF ′ is decidable for all F -policies, and
3. for any finite set T ∈ L and any formula ψ(x) ∈ F such that |x| = |t| for all t ∈ T , we can

compute a sentence φT,ψ(x) ∈ F ′ that encodes the property ψ(x) satisfied by the set T .

Proof. Let D be a database schema, S be an F -security policy over D, db ∈ ΩD be a database state,
q = {x | ψ(x)} be an F -query, and T ∈ L be a finite set of tuples such that |x| = |t| for all t ∈ T .
From (3), it follows that we can compute the encoding φT,ψ(x). Then, EQUALF (D,S, q, T, db) = > iff
[φT,ψ(x)]db = > and AGREEF ′(D,S, φT,ψ(x), db) = >. The decidability of EQUALF directly follows
from (1) and (2).

We now show the correctness of our reduction. In case [φT,ψ(x)]db = > and AGREEF ′(D,S,
φT,ψ(x), db) = >, then for all states db′ indistinguishable from db, we have that T = [{x | ψ(x)}]db′ ,
and therefore EQUALF (D,S, {x | ψ(x)}, T, db) = >. If [φT,ψ(x)]s = ⊥, then T 6= [{x | ψ(x)}]db

and thus EQUALF (D,S, {x | ψ(x)}, T, db) = ⊥. Similarly, if AGREEF ′(D,S, φT,ψ(x), db) = ⊥,
then there is at least a state db′ indistinguishable from db such that T 6= [{x | ψ(x)}]db′ and thus
EQUALF (D,S, {x | ψ(x)}, T, db) = ⊥.

Using Lemma 3.4, we derive the following result, whose proof is given in Appendix A.

Theorem 3.10. EQUALERC is decidable.

Similarly to Section 3.5.4, we have:

Lemma 3.5. Let D be a database schema, F be a query language (that supports equality and is
closed under conjunction and disjunction), AV be a set of F -authorization views, db ∈ ΩD be a state,
and q be a non-boolean F -query. Moreover, let S be the F -security policy equivalent to AV . The
query q is conditionally valid in the state db with respect to AV iff EQUALF (D,S, q, [q]db, db) = >.

Proof. (⇒). Let q be a query conditionally valid in the state db with respect to AV . From this,
it follows that there is a query q′ expressed only in terms of AV such that [q]db′ = [q′]db′ for all
states db′ AV -equivalent to db. Note that two states are AV -equivalent iff they have the same views’
materializations. Since q′ is expressed only in terms of AV , it is domain independent, the query
language is deterministic, and the views’ materializations are fixed, then q′ returns always the same
result K on all states db′ AV -equivalent to db. Therefore, [q]db′ = [q′]db′ = K for all states db′
such that db ∼=AV db′. Since AV and S are equivalent, it follows that db ∼=AV db′ iff db ∼=S db′. It
follows that [q]db′ = K for all states db′ such that db ∼=S db′. Note that [q]db = K, and therefore,
EQUALF (D,S, q, [q]db, db) = >.
(⇐). Let q = {x | φ(x)} be a query such that EQUALF (D,S, q, [q]db, db) = > holds. Moreover, let
K = [q]db. Let S be the F -security policy equivalent to AV . Since EQUALF (D,S, q, [q]db, db) = >,
the result of q is K for all states indistinguishable from db according to S. Since AV and S are
equivalent, it follows that the result of q is K for all states AV -equivalent to db. We can now define
the query q′ as

{y1, . . . , y|x| |
∨
t∈K

∧
i∈{1,...,|x|}

yi = t(i)}

Observe that (1) the result of q′ for all states db′ AV -equivalent to db is exactly K, and (2) q′ does
not depend on database tables. This means that q′ is equivalent to q for all states AV -equivalent to
db, and therefore q is conditionally valid in db according to AV .

Theorem 3.11. Let F be a query language. A strongly-optimal F -SAQP for non-boolean queries
is an optimal F -SAQP for non-boolean queries in the Non-Truman model when † is interpreted as
rejecting the query.

Proof. The theorem follows from Proposition 3.2, Theorem 3.8, Lemma 3.5, and the definition of
optimal SAQP in the Non-Truman model.

For non-boolean queries, strongly-optimal algorithms and optimal algorithms are distinct. There-
fore, from Theorem 3.11, we have:

Corollary 3.1. There is a non-boolean RC-query q, a state db, a set AV of RC-views, and the
equivalent row-level RC -policy S, such that the result of an optimal SAQP for non-boolean queries
in the Non-Truman model is different from the result of an optimal SAQP for non-boolean queries in
the Truman model.
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For boolean RC-queries, optimal algorithms in the Non-Truman model are a special case of
optimal algorithms in the Truman model. Corollary 3.1 states that this result does not hold for
non-boolean queries. In this case, the two models are distinct.

The reason for this difference is that in the Truman model we can return partial results, whereas
in the Non-Truman model we either return the query’s result or reject the query. Moreover, given
the same inputs, the result of an optimal SAQP in one model does not provide any insights about the
result of an optimal SAQP in the other model. For instance, if an optimal SAQP in the Non-Truman
model rejects a query q, we do not know anything about the result in the Truman model. Similarly,
if an optimal SAQP in the Truman model returns {∅} as a query’s result, we do not know whether
an optimal SAQP in the Non-Truman model accepts the query or rejects it. Hence, we cannot use
optimal SAQPs in the Truman model as optimal SAQPs in the Non-Truman model and vice versa.

Theorem 3.11 shows that, for RC, optimal SAQPs in the Non-Truman model are a special case of
strongly-optimal SAQPs. From this, it follows that Lemma 3.4 and Theorem 3.10 apply to optimal
SAQPs in the Non-Truman model, and to the conditional validity problem. Observe too that, for
sufficiently powerful query languages (such as the relational calculus extended with count operators),
optimal SAQPs in the Non-Truman model and strongly-optimal SAQPs are equivalent modulo the
interpretation of †.

3.7 Related Work

Security-Aware Query Processing. Security-Aware Query Processing algorithms are imple-
mented in commercial databases [8, 41, 150]. Despite that, only limited work has been done on
the theoretical aspects of this problem. In [131], Rizvi et al. proposed the notions of Truman and
Non-Truman models. They provided inference rules, which are sound but not complete, for de-
termining whether a query is conditionally valid. The undecidability of the unconditional validity
problem follows from well-known results on query rewriting using views [124]. Zhang et al. [170]
studied the conditional validity problem for conjunctive queries and showed that it is decidable.
We improve these results in that we provide sufficient conditions for the decidability of conditional
validity. We also show that this problem is decidable for the existential fragment of the relational
calculus, which contains conjunctive queries, and for our security policies, which are more expressive
than authorization views.

Wang et al. [165] were the first to propose correctness criteria for algorithms in the Truman model.
They proposed a secure and sound SAQP algorithm. Other secure and sound algorithms have been
proposed since then, such as [90, 145]. Our results prove the claim of Wang et al. that optimal
Security-Aware Query Processing is difficult. We also prove that optimal SAQP in the Truman
model is possible for the existential fragment of the relational calculus.
Instance-based Determinacy. The instance-based determinacy problem [107] consists of checking
whether, given a database state db, a set of views V , and a query q, the materialization of the views
in V in the state db fully determines the result of q in db. Koutris et al. [107] proved that the problem
of instance-based determinacy for unions of conjunctive queries under the set semantics is decidable
and is coNP-complete in terms of data complexity.

When restricted to row-level policies, which are equivalent to RC-views, the AGREE and EQUAL
problems are equivalent to the instance-based determinacy problem for boolean and non-boolean
queries respectively. In the unrestricted case, however, these equivalences do not hold because security
policies are more expressive than RC-views and, therefore, AGREE and EQUAL are more general
than instance-based determinacy under the set semantics. Indeed, masked tuples introduce a kind of
bag semantics that cannot be captured using RC-views under the set semantics. We are not aware
of any work exploring instance-based determinacy under the bag semantics.
Certain Answers. The problem of computing certain answers using views under the closed world
assumption [9] shares similarities with optimal SAQP. But it also has important differences. For
instance, the result of a boolean query φ according to optimal SAQP is one of {>,⊥, †} whereas the
certain answer is one of {>,⊥}. Indeed, one must compute both the certain answer and the possible
answer to compute the result of boolean optimal SAQP.

For non-boolean queries, optimal algorithms in the Truman model return a set of results, whereas
the certain answer is unique. Moreover, while optimal SAQP in the Truman model considers masked
tuples, the certain answer problem considers only unmasked tuples. This seriously limits Fine-
Grained Access Control. For example, suppose we have a policy with a constraint on the i-th value
of a query q = {x | ψ}, for some i ∈ {1, . . . , |x|}. The certain answer of q will be ∅, whereas the
result of an optimal SAQP will be a multi-set of masked tuples where the i-th value is replaced with
†. In the Non-Truman model, an algorithm either returns the query’s result or rejects the query. In
contrast, the certain answer to a query is generally different from the query’s result.
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The main difference between optimal SAQP and the certain answer problem is that security
policies are more expressive than views in the relational calculus. As we previously noted, the presence
of masked tuples introduces a kind of bag semantics. However, while the problem of querying views
has been studied extensively under the set semantics [9, 124], only limited work have been done
under the bag-set and bag semantics [12]. Note that our work can be viewed in the general setting
of querying views under the bag-set semantics. Despite that, we decided to keep the terminology
of Security-Aware Query Processing for consistency with previous works on Fine-Grained Access
Control in databases, e.g., [131,165].

Another related problem is computing the certain answer to a query in an incomplete data-
base [112]. The same considerations for certain answers using views apply to this case. Observe
also that the notion of indistinguishability appears related to the notion of semantics of incomplete
databases [112].

3.8 Conclusions

We presented the first analysis of optimal Security-Aware Query Processing. Our results show
that (1) it is impossible to build optimal SAQP algorithms for Codd-complete query languages, such
as SQL, and (2) this impossibility is not due to specific characteristics of these query languages but
rather to the undecidability of the relational calculus and several of its fragments. Note that our
results also do not depend on the particular characteristics of our security model. We showed that
there are interesting fragments of RC for which optimal Security-Aware Query Processing is possible,
such as the existential fragment of RC. Our results may be used to prove the decidability of optimal
Security-Aware Query Processing for other fragments of RC, such as the monadic fragment and the
guarded fragment, and other query languages.

For boolean queries, we showed that, for the relational calculus, optimal SAQP in the Non-Truman
model is a special case of optimal SAQP in the Truman model, and that optimal algorithms in the
two models coincide for the relational calculus extended with aggregation operators. In contrast, for
non-boolean queries, optimal algorithms in the two models are distinct. This has direct consequences
for developing algorithms for those models.

Optimal Security-Aware Query Processing is a difficult problem: it is intractable even for conjunc-
tive queries. Indeed, it is coNP-complete in terms of data complexity for boolean conjunctive queries
and row-level security policies [107]. Despite that, optimal SAQP can still have practical applications.
For instance, there are fragments of conjunctive queries for which optimal SAQP in the Non-Truman
model is in PTIME in terms of data complexity for row-level policies [107]. This suggests that there
might be other fragments of conjunctive queries for which optimal SAQP is tractable.

Non-optimal SAQP algorithms can benefit from efficient optimal algorithms for some special cases.
Namely, we can use tractable optimal algorithms when it is possible, and fall back to efficient non-
optimal algorithms for the cases where optimal SAQP is undecidable or intractable. Furthermore,
the study of optimal SAQP may shed some light on the trade-offs between efficiency and optimality,
and can therefore lead to improvements for non-optimal algorithms.
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Chapter 4

Securing Databases from Probabilistic
Inference

Probability is expectation founded upon
partial knowledge. A perfect acquaintance
with all the circumstances affecting the
occurrence of an event would change
expectation into certainty, and leave nether
room nor demand for a theory of
probabilities.

George Boole

Databases can leak confidential information when users combine query results with probabilis-
tic data dependencies, such as those found in genomics [97, 105, 109], social networks [92], and
location tracking [117]. Attackers can exploit these dependencies to infer sensitive information
with high confidence. To effectively prevent probabilistic inferences, DBIC mechanisms should
(1) support a large class of probabilistic dependencies, and (2) have tractable runtime perfor-
mance. The former is needed to express different attacker models. The latter is necessary for
mechanisms to scale to real-world databases. Most existing DBIC mechanisms, however, support
only precise data dependencies [36,40,157,158,168] or just limited classes of probabilistic dependen-
cies [44, 45, 91, 102, 120, 121, 166]. As a result, they cannot reason about the complex probabilistic
dependencies that exist in many realistic settings. Mardziel et al.’s mechanism [116] instead supports
arbitrary probabilistic dependencies, but no complexity bounds have been established and their al-
gorithm appears to be intractable.

In this chapter, we propose foundations for DBIC based on ProbLog, a probabilistic logic pro-
gramming language. We leverage these foundations to develop Angerona1, a provably secure en-
forcement mechanism that prevents information leakage in the presence of probabilistic dependencies.
We then provide a tractable inference algorithm for a practically relevant fragment of ProbLog.
Finally, we empirically evaluate Angerona’s performance showing that it scales to relevant security-
critical problems. Note that this chapter is largely based on [88].
Structure. In Section 4.1, we illustrate the security risks associated with probabilistic data de-
pendencies. In Section 4.2, we present our system model, which we formalize in Section 4.3. In
Section 4.4, we introduce AtkLog, a language, based on ProbLog, for formalizing attacker models
in DBIC, whereas in Section 4.5 we present our dedicated inference engine for acyclic ProbLog
programs. In Section 4.6, we present Angerona. We discuss related work in Section 4.7 and draw
conclusions in Section 4.8. Finally, in Section 4.9 we present some extensions, technical details, and
additional examples. The proof of all our results are given in Appendix B, and a prototype of our
enforcement mechanism is available at [85].

4.1 Motivating Example

Hospitals and medical research centres store large quantities of health-related information for pur-
poses ranging from diagnosis to research. As this information is extremely sensitive, the databases
used must be carefully secured [7, 130]. This task is, however, challenging due to the dependencies
between health-related data items. For instance, information about someone’s hereditary diseases
or genome can be inferred from information about her relatives. Even seemingly non-sensitive infor-
mation, such as someone’s job or habits, may leak sensitive health-related information such as her
predisposition to diseases. Most of these dependencies can be formalized using probabilistic models
developed by medical researchers.

Consider a database storing information about the smoking habits of patients and whether they
have been diagnosed with lung cancer. The database contains the tables patient, smokes, cancer ,

1Angerona is the Roman goddess of silence and secrecy. She is the keeper of the city’s sacred, and secret, name.
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Figure 4.1: System model.

father , and mother . The first table contains all patients, the second contains all regular smokers,
the third contains all diagnosed patients, and the last two associate patients with their parents.
Now consider the following probabilistic model: (a) every patient has a 5% chance of developing
cancer, (b) for each parent with cancer, the likelihood that a child develops cancer increases by
15%, and (c) if a patient smokes regularly, his probability of developing cancer increases by 25%.
We intentionally work with a simple model since, despite its simplicity, it illustrates the challenges
of securing data with probabilistic dependencies. We refer the reader to medical research for more
realistic probabilistic models [14, 161].

The database is shared between different medical researchers, each conducting a research study
on a subset of the patients. All researchers have access to the patient, smokes, father , and mother
tables. Each researcher, however, has access only to the subset of the cancer table associated with
the patients that opted-in to his research study. We want to protect our database against a malicious
researcher whose goal is to infer the health status of patients not participating in the study. This
is challenging since restricting direct access to the cancer table is insufficient. Sensitive information
may be leaked even by queries involving only authorized data. For instance, the attacker may know
that the patient Carl, which has not disclosed his health status, smokes regularly. From this, he
can infer that Carl’s probability of developing lung cancer is, at least, 30%. If, additionally, Carl’s
parents opted-in to the research study and both have cancer, the attacker can directly infer that the
probability of Carl developing lung cancer is 60% by accessing his parents’ information.

Security mechanisms that ignore such probabilistic dependencies allow attackers to infer sensitive
information. An alternative is to use standard DBIC mechanisms and encode all dependencies as
precise, non-probabilistic, dependencies. This, however, would result in an unusable system. Medical
researchers, even honest ones, would be able to access the health-related status only of those patients
whose relatives also opted-in to the user study, independently of the amount of leaked information,
which may be negligible. Hence, to secure the database and retain usability, it is essential to reason
about the probabilistic dependencies.

4.2 System Model

Figure 4.1 depicts our system model. Users interact with two components: a database system
and an inference control system, which consists of a Policy Decision Point (PDP) and a Policy
Enforcement Point (PEP). We assume that all communication between users and the components
and between the components themselves is over secure channels.
Database System. The database system manages the system’s data. Its state is a mapping from
tables to sets of tuples.
Users. Each user has a unique account used to retrieve information from the database system by
issuing SELECT commands. Note that these commands do not change the database state. This reflects
settings where users have only read-access to a database. Each command is checked by the inference
control system and is executed if and only if the command is authorized by the security policy.
Security policy. The system’s security policy consists of a set of negative permissions specifying
information to be kept secret. These permissions express bounds on users’ beliefs, formalized as
probability distributions, about the actual database content. Negative permissions are formalized
using commands of the form SECRET q FOR u THRESHOLD l, where q is a query, u is a user identifier,
and l is a rational number, 0 ≤ l ≤ 1. This represents the requirement that “A user u’s belief in
the result of q must be less than l.” Namely, the probability assigned by u’s belief to q’s result
must be less than l. Requirements like “A user u is not authorized to know the result of q” can
be formalized as SECRET q FOR u THRESHOLD 1. The system also supports commands of the form
SECRET q FOR USERS NOT IN {u1, . . . , un} THRESHOLD l, which represents the requirement that “For all
users u 6∈ {u1, . . . , un}, u’s belief in the result of q must be less than l.”
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Figure 4.2: The template for all database states, where the content of the cancer
table is left unspecified.

Attacker. An attacker is a system user with an assigned user account, and each user is a potential
attacker. An attacker’s goal is to violate the security policy, that is, to read or infer information
about one of the SECRETs with a probability of at least the given threshold.

An attacker can interact with the system and observe its behavior in response to his commands.
Furthermore, he can reason about this information and infer information by exploiting domain-
specific relationships between data items. We assume that attackers know the database schema as
well as any integrity constraints on it.
Attacker Model. An attacker model represents each user’s initial beliefs about the actual database
state and how he updates his beliefs by interacting with the system and observing its behavior in
response to his commands. These beliefs may reflect the attacker’s knowledge of domain-specific
relationships between the data items or prior knowledge.
Inference Control System. The inference control system protects the confidentiality of database
data. It consists of a PEP and a PDP, configured with a security policy P and an attacker model
ATK . For each user, the inference control system keeps track of the user’s beliefs according to ATK .

The system intercepts all commands issued by the users. When a user u issues a command c, the
inference control system decides whether u is authorized to execute c. If c complies with the policy,
i.e., the users’ beliefs still satisfy P even after executing c, then the system forwards the command to
the database, which executes c and returns its result to u. Otherwise, it raises a security exception
and rejects c.

4.3 Formal Model

Here we formalize the various components of our system model.

4.3.1 Database Model
We use the database model presented in Section 2.2, and we use the relational calculus as a query

language (see Section 2.2.2). Observe that we support arbitrary integrity constraints. Finally, we
assume that the domain dom is finite, as is standard for many application areas combining databases
and probabilistic reasoning [60,77,105,153]. In this case, the set of all states ΩD is finite.

Example 4.1. The database associated with the example in Section 4.1 consists of five relational
schemas patient, smokes, cancer , father , and mother , where the first three schemas have arity 1 and
the last two have arity 2. We assume that there are only three patients Alice, Bob, and Carl, so the
domain dom is {Alice, Bob, Carl}. The integrity constraints are as follows:

• Alice, Bob, and Carl are patients.

patient(Alice) ∧ patient(Bob) ∧ patient(Carl)

• Alice and Bob are Carl’s parents.

∀x, y. (father(x, y)↔ (x = Bob ∧ y = Carl))∧
∀x, y. (mother(x, y)↔ (x = Alice ∧ y = Carl))

• Alice does not smoke, whereas Bob and Carl do.

¬smokes(Alice) ∧ smokes(Bob) ∧ smokes(Carl)

Given these constraints, there are just 8 possible database states in ΩΓ
D, which differ only in their

cancer relation. The content of the cancer relation is a subset of {Alice, Bob, Carl}, whereas the
content of the other tables is shown in Figure 4.2. We denote each possible world as sC , where the
set C ⊆ {Alice, Bob, Carl} denotes the users having cancer. �
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4.3.2 Security Policies
Existing access control models for databases are inadequate to formalize security requirements

capturing probabilistic dependencies. For example, SQL cannot express statements like “A user u’s
belief that φ holds must be less than l.” We present a simple framework, inspired by knowledge-based
policies [116], for expressing such requirements.

A D-secret is a tuple 〈U, φ, l〉, where U is either a finite set of users in U or a co-finite set of
users, i.e., U = U \ U ′ for some finite U ′ ⊂ U , φ is a relational calculus sentence over D, and
l is rational number 0 ≤ l ≤ 1 specifying the uncertainty threshold. Abusing notation, when U
consists of a single user u, we write u instead of {u}. Informally, 〈U, φ, l〉 represents that for each
user u ∈ U , u’s belief that φ holds in the actual database state must be less than l. Therefore, a
command of the form SECRET q FOR u THRESHOLD l can be represented as 〈u, q, l〉, whereas a command
SECRET q FOR USERS NOT IN {u1, . . . , un} THRESHOLD l can be represented as 〈U \ {u1, . . . , un}, q, l〉.
Finally, a D-security policy is a finite set of D-secrets. Given a D-security policy P , we denote by
secrets(P, u) the set of D-secrets associated with the user u, i.e., secrets(P, u) = {〈u, φ, l〉 | 〈U, φ,
l〉 ∈ P ∧ u ∈ U}. Note that the function secrets is computable since the set U is always either finite
or co-finite.

Our framework also allows the specification of lower bounds. Requirements of the form “A user u’s
belief that φ holds must be greater than l” can be formalized as 〈u,¬φ, 1− l〉 (since the probability
of ¬φ is 1 − P (φ), where P (φ) is φ’s probability). Security policies can be extended to support
secrets over non-boolean queries. A secret 〈u, {x | φ(x)}, l〉 can be seen as a shorthand for the set
{〈u, φ[x 7→ t], l〉 | t ∈

⋃
s∈ΩΓ

D
[{x | φ(x)}]s}, i.e., u’s belief in any tuple t being in the query’s result

must be less than l.

Example 4.2. Let Mallory denote the malicious researcher from Section 4.1 and D be the database
schema in Example 4.1. Consider the requirement from Section 4.1: Mallory’s belief in a patient hav-
ing cancer must be less than 50%. This can be formalized as 〈Mallory, cancer(Alice), 1/2〉, 〈Mallory,
cancer(Bob), 1/2〉, and 〈Mallory, cancer(Carl), 1/2〉, or equivalently as 〈Mallory, {p | cancer(p)}, 1/2〉.
In contrast, the requirement “For all users u that are not Carl, u’s belief in Carl having cancer must
be less than 50%” can be formalized as 〈U \ {Carl}, cancer(Carl), 1/2〉, where Carl denotes the user
identifier associated with Carl. �

4.3.3 Formalized System Model
We now formalize our system model. We first define a system configuration, which describes the

database schema and the integrity constraints. Afterwards, we define the system’s state. Finally, we
define a system run, which represents a possible interaction of users with the system.

A system configuration is a tuple 〈D,Γ〉, where D is a database schema and Γ is a set of integrity
constraints over D. Let C = 〈D,Γ〉 be a system configuration. A C-system state is a tuple 〈db, U, P 〉,
where db ∈ ΩΓ

D is a database state, U ⊂ U is a finite set of users (representing all active users), and P
is a D-security policy. A C-query is a pair 〈u, φ〉 where u ∈ U is a user and φ is a relational calculus
sentence over D.2 We denote by ΩC the set of all system states and by QC the set of all queries.

A C-event is a triple 〈q, a, res〉, where q is a C-query in QC , a ∈ {>,⊥} is a security decision,
where > stands for “authorized query” and ⊥ stands for “unauthorized query”, and res ∈ {>,⊥,
†} is the query’s result, where > and ⊥ represent the usual boolean values and † represents that
the query was not executed as access was denied. Given a C-event e = 〈q, a, res〉, we denote by q(e)
(respectively a(e) and res(e)) the query q (respectively the decision a and the result res). A C-history
is a finite sequence of C-events. We denote by HC the set of all possible C-histories.

We now formalize Policy Decision Points. A C-PDP is a function f : ΩC ×QC ×HC → {>,⊥}
taking as input a system state, a query, and a history and returning the security decision, accept (>)
or deny (⊥).

Let C be a system configuration, s = 〈db, U, P 〉 be a C-state, and f be a C-PDP. A C-history h
is compatible with s and f iff for each 1 ≤ i ≤ |h|, (1) f(s, q(h(i)), hi−1) = a(h(i)), (2) if a(h(i)) = ⊥,
then res(h(i)) = †, and (3) if a(h(i)) = >, then res(h(i)) = [φ]db, where q(h(i)) = 〈u, φ〉. In other
words, h is compatible with s and f iff it was generated by the PDP f starting in state s.

A (C, f)-run is a pair 〈s, h〉, where s is a system state in ΩC and h is a history in HC compatible
with s and f . Since all queries are SELECT queries, the system state does not change along the run.
Hence, our runs consist of a state and a history instead of e.g., an alternating sequence of states and
actions (as is standard for runs). We denote by runs(C, f) the set of all (C, f)-runs. Furthermore,

2Without loss of generality, we focus only on boolean queries. We can support non-boolean queries as follows.
Given a query q := {x | φ} and a database state db, we first compute the set R of all possible results of q, i.e.,
R = {[q]db | db ∈ ΩΓ

D}. Then, we authorize the query q and return its result [q]db iff for all R ∈ R, the inference
control mechanism authorizes the boolean query

∧
t∈R

φ[x 7→ t] ∧ (∀x. φ→
∨
t∈R

x = t).
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given a run r = 〈〈db, U, P 〉, h〉, we denote by ri the run 〈〈db, U, P 〉, hi〉, and we use a dot notation to
access to r’s components. For instance, r.db denotes the database state db and r.h denotes the history.

Example 4.3. Consider the run r = 〈〈db, U, P 〉, h〉, where the database state db is the state s{A,B,C},
where Alice, Bob, and Carl have cancer, the policy P is defined in Example 4.2, the set of users U
contains only Mallory, and the history h is as follows (here we assume that all queries are authorized):

1. Mallory checks whether Carl smokes. Thus, h(1) = 〈〈Mallory, smokes(Carl)〉,>,>〉.
2. Mallory checks whether Carl is Alice’s and Bob’s son. Therefore, h(2) is 〈〈Mallory, father(Bob,

Carl) ∧mother(Alice, Carl)〉,>,>〉.
3. Mallory checks whether Alice has cancer. Thus, h(3) = 〈〈Mallory, cancer(Alice)〉,>,>〉.
4. Mallory checks whether Bob has cancer. Thus, h(4) = 〈〈Mallory, cancer(Bob)〉,>,>〉. �

4.3.4 Attacker Model
To reason about DBIC, it is essential to precisely define (1) how users interact with the system, (2)

how they reason about the system’s behavior, (3) their initial beliefs about the database state, and (4)
how these beliefs change by observing the system’s behavior. We formalize this in an attacker model.

Each user has an initial belief about the database state. Following [52, 53, 71, 116], we represent
a user’s beliefs as a probability distribution over all database states. Furthermore, users observe the
system’s behavior and derive information about the database content. We formalize a user’s obser-
vations as an equivalence relation over runs, where two runs are equivalent iff the user’s observations
are the same in both runs, as is standard in information-flow control [18, 20]. A user’s knowledge
is the set of all database states that he considers possible given his observations. Finally, we use
Bayesian conditioning to update a user’s beliefs given his observations.

Let C = 〈D,Γ〉 be a system configuration and f be a C-PDP. A C-probability distribution is a
discrete probability distribution given by a function P : ΩΓ

D → [0, 1] such that
∑

db∈ΩΓ
D
P (db) = 1.

Given a set E ⊆ ΩΓ
D, P (E) denotes

∑
s∈E P (s). Furthermore, given two sets E′, E′′ ⊆ ΩΓ

D such
that P (E′) 6= 0, P (E′′ | E′) denotes P (E′′ ∩ E′)/P (E′) as is standard. We denote by PC the set of
all possible C-probability distributions. Abusing notation, we extend probability distributions to
formulae: P (ψ) = P (JψK), where JψK = {db ∈ ΩΓ

D | [ψ]db = >}.
We now introduce indistinstinguishability, an equivalence relation used in information-flow con-

trol [93]. Let C be a system configuration and f be a C-PDP. Given a history h and a user u ∈ U ,
h|u denotes the history obtained from h by removing all C-events from users other than u, namely
ε|u = ε, and if h = 〈〈u′, q〉, a, res〉 · h′, then h|u = h′|u in case u 6= u′, and h|u = 〈〈u, q〉, a, res〉 · h′|u if
u = u′. Given two runs r = 〈〈db, U, P 〉, h〉 and r′ = 〈〈db′, U ′, P ′〉, h′〉 in runs(C, f) and a user u ∈ U ,
we say that r and r′ are indistinguishable for u, written r ∼u r′, iff h|u = h′|u. This means that r
and r′ are indistinguishable for a user u iff the system’s behavior in response to u’s commands is the
same in both runs. Note that ∼u depends on both C and f , which we generally leave implicit. Given
a run r, [r]∼u is the equivalence class of r with respect to ∼u, i.e, [r]∼u = {r′ ∈ runs(C, f) | r′ ∼u r},
whereas JrK∼u is set of all databases associated with the runs in [r]∼u , i.e., JrK∼u = {db | ∃U,P,
h. 〈〈db, U, P 〉, h〉 ∈ [r]∼u}.

Definition 4.1. Let C = 〈D,Γ〉 be a configuration and f be a C-PDP. A (C, f)-attacker model is a
function ATK : U → PC associating to each user u ∈ U a C-probability distribution representing u’s
initial beliefs. Additionally, for all users u ∈ U and all states db ∈ ΩΓ

D, we require that ATK(u)(db) >
0. The semantics of ATK is JATKK(u, r) = λdb ∈ ΩΓ

D.ATK(u)(db | JrK∼u), where u ∈ U and
r ∈ runs(C, f). �

The semantics of an attacker model ATK associates to each user u and each run r the probability
distribution obtained by updating u’s initial beliefs given his knowledge with respect to the run r.
We informally refer to JATKK(u, r)(JφK) as u’s beliefs in a sentence φ (given a run r).

Example 4.4. The attacker model for our motivating example from Section 4.1 is as follows. Let
XAlice, XBob, and XCarl be three boolean random variables, representing the probability that the
corresponding patient has cancer. They define the following joint probability distribution, which
represents a user’s initial beliefs about the actual database state: P (XAlice, XBob, XCarl) = P (XAlice) ·
P (XBob)·P (XCarl | XAlice, XBob). The probability distributions of these variables are given in Figure 4.3
and they are derived from the probabilistic model in Section 4.1. We associate each outcome 〈x, y, z〉
of XAlice, XBob, XCarl with the corresponding database state sC , where C is the set of patients such
that the outcome of the corresponding variable is >. For each user u ∈ U , the distribution Pu is
defined as Pu(sC) = P (XAlice = x,XBob = y,XCarl = z), where x (respectively y and z) is > if Alice
(respectively Bob and Carl) is in C and ⊥ otherwise. Figure 4.4 shows the probabilities associated
with each state in ΩΓ

D, i.e., a user’s initial beliefs. Finally, the attacker model is ATK = λu ∈ U . Pu. �



44 Chapter 4. Securing Databases from Probabilistic Inference

XAlice
> 1/20
⊥ 19/20

XBob
> 6/20
⊥ 14/20

XCarl
XAlice XBob > ⊥
> > 12/20 8/20
> ⊥ 9/20 11/20
⊥ > 9/20 11/20
⊥ ⊥ 6/20 14/20

Figure 4.3: Probability distribution for the random variables XAlice, XBob, and
XCarl from Example 4.4.

State Probability
s∅ 0.4655
s{A} 0.01925
s{B} 0.15675
s{C} 0.1995

State Probability
s{A,B} 0.006
s{A,C} 0.01575
s{B,C} 0.12825
s{A,B,C} 0.009

Figure 4.4: Probability distribution over all database states. Each state is
denoted as sC , where C is the content of the cancer table. Here we denote the
patients’ names with their initials.

4.3.5 Confidentiality
We first define the notion of a secrecy-preserving run for a secret 〈u, φ, l〉 and an attacker model

ATK . Informally, a run r is secrecy-preserving for 〈u, φ, l〉 iff whenever an attacker’s belief in the
secret φ is below the threshold l, then there is no way for the attacker to increase his belief in φ
above the threshold. Our notion of secrecy-preserving runs is inspired by existing security notions
for query auditing [71].
Definition 4.2. Let C = 〈D,Γ〉 be a configuration, f be a C-PDP, and ATK be a (C, f)-attacker
model. A run r is secrecy-preserving for a secret 〈u, φ, l〉 and ATK iff for all 0 ≤ i < |r|, JATKK(u,
ri)(φ) < l implies JATKK(u, ri+1)(φ) < l. �

We now formalize our confidentiality notion. A PDP provides data confidentiality for an attacker
model ATK iff all runs are secrecy-preserving for ATK . Note that our security notion can be seen
as a probabilistic generalization of opacity [142] for the database setting. Our notion is also inspired
by the semantics of knowledge-based policies [116].
Definition 4.3. Let C = 〈D,Γ〉 be a system configuration, f be a C-PDP, and ATK be a (C, f)-
attacker model. We say that the PDP f provides data confidentiality with respect to C and ATK iff
for all runs r = 〈〈db, U, P 〉, h〉 in runs(C, f), for all users u ∈ U , for all secrets s ∈ secrets(P, u), r is
secrecy-preserving for s and ATK . �

A PDP providing confidentiality ensures that if an attacker’s initial belief in a secret φ is below
the corresponding threshold, then there is no way for the attacker to increase his belief in φ above
the threshold by interacting with the system. However, this guarantee does not apply to trivial
non-secrets, i.e., those secrets an attacker knows with a probability at least the threshold even before
interacting with the system. No PDP can prevent their disclosure since the disclosure does not
depend on the attacker’s interaction with the database.
Example 4.5. Let r be the run given in Example 4.3, ATK be the attacker model in Example 4.4,
and u be the user Mallory. In the following, φ1, φ2, and φ3 denote cancer(Carl), cancer(Bob), and
cancer(Alice) respectively, i.e., the three secrets from Example 4.2. Furthermore, we assume that
the policy contains an additional secret 〈Mallory, φ4, 1/2〉, where φ4 := ¬cancer(Alice).

Figure 4.5 illustrates Mallory’s beliefs about φ1, . . . , φ4 and whether the run is secrecy-preserving
for the secrets φ1, . . . , φ4. The probabilities in the tables can be obtained by combining the states
in JriK∼u , for 0 ≤ i ≤ 4, and JφjK, for 1 ≤ j ≤ 4, with the probabilities from Figure 4.4. As shown
in Figure 4.5, the run is not secrecy-preserving for the secrets φ1 and φ2 as it completely discloses
that Alice and Bob have cancer, in the third and fourth steps respectively. Secrecy-preservation is
also violated for the secret φ1, even though r does not directly disclose any information about Carl’s
health status. Indeed, in the last step of the run, Mallory’s belief in φ1 is 0.6, which is higher than
the threshold 1/2, even though his belief in φ1 before learning that Bob had cancer was below the
threshold. Note that φ4 is a trivial non-secret: even before interacting with the system, Mallory’s
belief in φ4 is 0.95. �

4.3.6 Discussion
Our approach assumes that the attacker’s capabilities are well-defined. While this, in general, is

a strong assumption, there are many domains where such information is known. There are, however,
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i
JATKK(u, ri)(JφK) JATKK(u, ri+1)(JφK) Secrecy

φ1 φ2 φ3 φ4 φ1 φ2 φ3 φ4 φ1 φ2 φ3 φ4

0 0.3525 0.3 0.05 0.95 0.3525 0.3 0.05 0.95 X X X ∗
1 0.3525 0.3 0.05 0.95 0.3525 0.3 0.05 0.95 X X X ∗
2 0.3525 0.3 0.05 0.95 0.495 0.3 1 0 X X X ∗
3 0.495 0.3 1 0 0.6 1 1 0 X X X ∗
4 0.6 1 1 0 – – – – – – – –

Figure 4.5: Evolution of Mallory’s beliefs in the secrets φ1, . . . , φ4 for the run r
and the attacker model ATK from Example 4.5. In the table, X and X denote
that secrecy-preservation is violated and satisfied respectively, whereas ∗ denotes
trivial secrets.

domains where this information is lacking. In these cases, security engineers must (1) determine the
appropriate beliefs capturing the desired attacker models, and (2) formalize them. The latter can
be done, for instance, using AtkLog (see Section 4.4). Note however that precisely eliciting the
attackers’ capabilities is still an open problem in DBIC.

4.4 AtkLog

We now describe AtkLog, a language for formalizing a large class of attacker models. AtkLog
is built on top of ProbLog [60, 61, 73], a state-of-the-art probabilistic logic programming language.
We first briefly review ProbLog’s syntax and semantics. Afterwards, we present AtkLog and use
it to formalize the attacker model associated with our motivating example from Section 4.1.

4.4.1 Probabilistic Logic Programming
ProbLog [60,61,73] is a probabilistic logic programming language with associated tool support.

An exact inference engine for ProbLog is available at [6].
Here we introduce ProbLog by building on top of our logic programming’s foundations from

Section 2.3. Thus, following our treatment of logic programs in Section 2.3, we restrict ourselves to
function-free stratified ProbLog programs with negation. As a result, in our setting ProbLog is
a probabilistic extension of stratified Datalog with negation. In the following, let 〈Σ,dom〉 be a
database schema such that dom is a finite set.
Syntax. To reason about probabilities, ProbLog extends logic programs with probabilistic atoms.
A (Σ,dom)-probabilistic atom is a (Σ,dom)-atom a annotated with a rational value 0 ≤ v ≤ 1,
denoted v::a. If v = 1, then we write a(c) instead of 1::a(c). A (Σ,dom)-ProbLog program is
a finite set of ground (Σ,dom)-probabilistic atoms and (Σ,dom)-rules. Note that ground atoms
a ∈ AΣ,dom are represented as 1::a. Given a ProbLog program p, we denote by prob(p) the set of
all probabilistic ground atoms v::a in p, i.e., prob(p) := {v::a ∈ p | 0 ≤ v ≤ 1 ∧ a ∈ AΣ,dom}, and
by rules(p) the (non-probabilistic) rules in p, i.e., rules(p) := p \ prob(p). Observe that ProbLog
programs are subject to all restrictions we introduced in Section 2.3 for logic programs. For instance,
we consider only programs p that admit a stratification. Finally, we say that a ProbLog program p
is a logic program iff v = 1 for all v::a ∈ prob(p), i.e., p does not contain probabilistic atoms.
Semantics. Given a (Σ,dom)-ProbLog program p, a p-grounded instance is a logic program
A ∪ R, where the set of ground atoms A is a subset of {a | ∃v. v::a ∈ prob(p)} and R = rules(p).
Informally, a grounded instance of p is one of the logic programs that can be obtained by selecting
some of the probabilistic atoms in p and keeping all rules in p. A p-probabilistic assignment is a
total function associating to each probabilistic atom v::a in prob(p) a value in {>,⊥}. We denote by
A(p) the set of all p-probabilistic assignments. The probability of a p-probabilistic assignment f is
prob(f) =

∏
v::a∈{v::a∈prob(p)|f(v::a)=>} v ·

∏
v::a∈{v::a∈prob(p)|f(v::a)=⊥}(1− v). Given a p-probabilistic

assignment f , instance(p, f) denotes the p-grounded instance {a | ∃v. f(v::a) = >} ∪ rules(p).
The semantics of a (Σ,dom)-ProbLog program p is defined as a probability distribution over all

possible p-grounded instances. Note that ProbLog’s semantics relies on the closed world assumption,
namely every fact that is not in a given model is considered false. The semantics of p, denoted by JpK,
is as follows: JpK(p′) =

∑
f∈Fp,p′

prob(f), where Fp,p′ = {f ∈ A(p) | p′ = instance(p, f)}. We remark
that a (Σ,dom)-ProbLog program p implicitly defines a probability distribution over (Σ,dom)-
structures. Indeed, the probability of a given (Σ,dom)-structure s is the sum of the probabilities
of all p-grounded instances p′ such that Jp′K = s.3 With a slight abuse of notation, we extend the

3With a slight abuse of notation, we treat a set of ground (Σ,dom)-atoms as a (Σ,dom)-structure. This is
without loss of generality. Under the closed world assumption, a set of ground atoms directly defines a structure
(and vice versa).
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semantics of p to (Σ,dom)-structures and sentences as follows: JpK(s) =
∑

f∈M(p,s) prob(f), where
s is a (Σ,dom)-structure andM(p, s) is the set of all assignments f such that Jinstance(p, f)K = s.
Finally, p’s semantics can be lifted to sentences as follows: JpK(φ) = Σs∈JφKJpK(s), where JφK is the
set of all (Σ,dom)-structures satisfying φ.
Evidence. ProbLog supports expressing evidence inside programs [60]. To express evidence, i.e.,
to condition a probability distribution on some event, we use statements of the form evidence(a,
v), where a is a ground atom and v ∈ {true, false}. Let p be a (Σ,dom)-ProbLog program
p with evidence evidence(a1, v1), . . . , evidence(an, vn), and p′ be the program without the evidence
statements. Furthermore, let POX(p′) be the set of all (Σ,dom)-structures s complying with the
evidence, i.e., the set of all states s such that ai holds in s iff vi = true. Then, JpK(s), for a
(Σ,dom)-structure s ∈ POX(p), is Jp′K(s) ·

(∑
s′∈POX(p)Jp

′K(s′)
)−1

.

Syntactic Sugar. Following [60, 61, 73], we extend ProbLog programs with two additional con-
structs: probabilistic rules and annotated disjunctions. As shown in [60], these constructs are just
syntactic sugar. A probabilistic rule is a ProbLog rule whose head is a probabilistic atom. The
probabilistic rule v::h← l1, . . . , ln can be encoded using the additional probabilistic atoms v::sw(_)
and the rule h← l1, . . . , ln, sw(x), where sw is a fresh predicate symbol, x is the tuple containing the
variables in vars(h) ∪

⋃
1≤i≤n vars(li), and v::sw(_) is a shorthand representing the fact that there

is a probabilistic atom v::sw(t) for each tuple t ∈ dom|x|.
An annotated disjunction v1::a1(t1); . . . ; vn::an(tn), where a1(t1), . . . , an(tn) are ground atoms

and
(∑

1≤i≤n vi

)
≤ 1, denotes that a1, . . . , an are mutually exclusive probabilistic events happening

with probabilities v1, . . . , vn. This annotated disjunction can be encoded as:

p1::sw1(_)
...

pn::swn(_)
a1(t1)← sw1(t1)
a2(t2)← ¬sw1(t1), sw2(t2)

...
an(tn)← ¬sw1(t1), . . . ,¬swn−1(tn−1), swn(tn),

where each pi, for 1 ≤ i ≤ n, is vi ·
(

1−
∑

1≤j<i vj

)−1
. Probabilistic rules can be easily extended

to support annotated disjunctions in their heads.

Example 4.6. Let Σ be a first-order signature with two predicate symbols V andW , both with arity
1, dom be the domain {a, b}, and p be the program consisting of the facts 1/4::T (a) and 1/2::T (b), the
annotate disjunction 1/4::W (a); 1/2::W (b), and the rule 1/2::T (x)←W (x). The probability associated
to each (Σ,dom)-structure by the program p is shown in the following table.

W
∅ {a} {b} {a, b}

T

∅ 3/32 3/64 3/32 0
{a} 1/32 5/64 1/32 0
{b} 3/32 3/64 9/32 0
{a, b} 1/32 5/64 3/32 0

The empty structure has probability 3/32. The only grounded instance producing the empty
database is the instance i1 that does not contain ground atoms. Its probability is 3/32 because the
probability that T (a) is not in i1 is 3/4, the probability that T (b) is not in i1 is 1/2, and the probability
that neither W (a) nor W (b) are in i1 is 1/4 and all these events are independent.

The probability of some structures is determined by more than one grounded instance. For
example, the probability of the structure s such that s(T ) = {a, b} and s(W ) = {a} is 5/64. There
are two grounded instances i2 and i3 that produce s. The instance i2 has probability 1/16 and it
consists of the atoms T (b),W (a), sw(a) and the rule T (x) ← W (x), sw(x), whereas the instance i3
has probability 1/64 and it consists of the atoms T (a), T (b),W (a) and the rule T (x)←W (x), sw(x).
Note that before computing the ground instances, we translated probabilistic rules and annotated
disjunctions into standard ProbLog rules. �

Medical Data. We formalize the probability distribution from Example 4.4 as a ProbLog program.
We use the database schema from Example 4.1 as the database schema for the ProbLog program.
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We encode the template shown in Figure 4.2 using ground atoms: patient(Alice), patient(Bob),
patient(Carl), smokes(Bob), smokes(Carl), father(Bob, Carl), and mother(Alice, Carl). Finally, we
encode the probability distribution associated with the possible values of the cancer table using the
following probabilistic rules:

1/20::cancer(x)← patient(x)
5/19::cancer(x)← smokes(x)
3/14::cancer(y)← father(x, y), cancer(x),mother(z, y),¬cancer(z)
3/14::cancer(y)← father(x, y),¬cancer(x),mother(z, y), cancer(z)
3/7::cancer(y)← father(x, y), cancer(x),mother(z, y), cancer(z)

The coefficients in the above example are derived from Section 4.1. For instance, the probability that
a smoking patient x whose parents are not in the cancer relation has cancer is 30%. The coefficient
in the first rule is 1/20 since each patient has a 5% probability of having cancer. The coefficient in the
second rule is 5/19, which is (6/20− 1/20) · (1− 1/20)−1, i.e., the probability that cancer(x) is derived
from the second rule given that it has not been derived from the first rule. This ensures that the
overall probability of deriving cancer(x) is 6/20, i.e., 30%. The coefficients for the last two rules are
derived analogously.

Informally, a probabilistic ground atom 1/2::cancer(Bob) expresses that cancer(Bob) holds with
a probability 1/2. Similarly, the rule 1/20::cancer(x) ← patient(x) states that, for any x such that
patient(x) holds, then cancer(x) can be derived with probability 1/20. This program yields the
probability distribution shown in Figure 4.4.

4.4.2 AtkLog’s Foundations
We first introduce belief programs, which formalize an attacker’s initial beliefs. Afterwards, we

formalize AtkLog.
Belief Programs. A belief program formalizes an attacker’s beliefs as a probability distribution
over the database states.

A database schema D′ = 〈Σ′,dom〉 extends a schema D = 〈Σ,dom〉 iff Σ′ contains all relation
schemas in Σ. The extension D′ may extend Σ with additional predicate symbols necessary to
encode probabilistic dependencies. Given an extension D′, a D′-state s′ agrees with a D-state s iff
s′(R) = s(R) for all R in D. Given a D-state s, we denote by EXT(s,D,D′) the set of all D′-states
that agree with s.

A (Σ′,dom)-ProbLog program p, where D′ = 〈Σ′,dom〉 extends D, is a belief program over
D. The D-semantics of p is JpKD = λs ∈ ΩD.

∑
s′∈EXT(s,D,D′)JpK(s

′). Given a system configuration
C = 〈D,Γ〉, a belief program p over D complies with C iff JpKD is a C-probability distribution.
With a slight abuse of notation, we lift the semantics of belief programs to sentences: JpKD = λφ ∈
RCbool .

∑
s′∈{s∈ΩD|[φ]s=>}JpKD(s′).

AtkLog. An AtkLog model specifies the initial beliefs of all users in U using belief programs.
Let D be a database schema and C = 〈D,Γ〉 be a system configuration. A C-AtkLog model

ATK is a function associating to each user u ∈ U , where U ⊂ U is a finite set of users, a belief
program pu and to all users u ∈ U \U a belief program p0, such that for all users u ∈ U , JATK(u)KD
complies with C and for all database states db ∈ ΩΓ

D, JATK(u)KD(db) > 0, i.e., all database states
satisfying the integrity constraints are possible. Informally, a C-AtkLog model associates a distinct
belief program to each user in U , and it associates to each user in U \U the same belief program p0.

Given a C-PDP f , a C-AtkLog model ATK defines the (C, f)-attacker model λu ∈ U .JATK(u)KD
that associates to each user u ∈ U the probability distribution defined by the belief program ATK(u).
The semantics of this (C, f)-attacker model is: λu ∈ U .λr ∈ runs(C, f).λdb ∈ ΩΓ

D. JATK(u)KD(db |
JrK∼u). Informally, given a C-AtkLog model ATK , a C-PDP f , and a user u, u’s belief in a database
state db, given a run r, is obtained by conditioning the probability distribution defined by the belief
program ATK(u) given the set of database states corresponding to all runs r′ ∼u r.

4.5 Tractable Inference for ProbLog programs

Probabilistic inference in ProbLog is intractable in general. Its data complexity, i.e., the com-
plexity of inference when only the programs’ probabilistic ground atoms are part of the input and
the rules are considered fixed and not part of the input, is #P -hard; see Appendix B. This limits
the practical applicability of ProbLog (and AtkLog) for DBIC. To address this, we define acyclic
ProbLog programs, a class of programs where the data complexity of inference is PTime.

Given a ProbLog program p, our inference algorithm consists of three steps: (1) we compute
all of p’s derivations, (2) we compile these derivations into a Bayesian Network (BN) bn, and (3) we
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perform the inference over bn. To ensure tractability, we leverage two key insights. First, we exploit
guarded negation [25] to develop a sound over-approximation, called the relaxed grounding, of all
derivations of a program that is independent of the presence (or absence) of the probabilistic atoms.
This ensures that whenever a ground atom can be derived from a program (for a possible assignment
to the probabilistic atoms), the atom is also part of this program’s relaxed grounding. This avoids
grounding p for each possible assignment to the probabilistic atoms. Second, we introduce syntactic
constraints (acyclicity) that ensure that bn is a forest of poly-trees. This ensures tractability since
inference for poly-tree BNs can be performed in polynomial time in the network’s size [105].

We also precisely characterize the expressiveness of acyclic ProbLog programs. In this respect,
we prove that acyclic programs are as expressive as forests of poly-tree BNs, one of the few classes
of BNs with tractable inference.

As mentioned in Section 4.4, probabilistic rules and annotated disjunctions are just syntactic
sugar. Hence, in the following we consider ProbLog programs consisting just of probabilistic ground
atoms and non-probabilistic rules. Note also that we treat ground atoms as rules with an empty body.

In the following, let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a
(Σ,dom)-program. Without loss of generality, we assume that there are no distinct v1 and v2 such
that v1::a(c) ∈ p and v2::a(c) ∈ p.

4.5.1 Preliminaries

Negation-guarded Programs. A rule r is negation-guarded [25] iff all the variables occurring in
negative literals also occur in positive literals, namely for all negative literals l in body−(r), vars(l) ⊆⋃
l′∈body+(r) vars(l′). To illustrate, the rule C(x) ← A(x),¬B(x) is negation-guarded, whereas the

rule C(x) ← A(x),¬B(x, y) is not since the variable y does not occur in any positive literal. We
say that a program p is negation-guarded if all rules r ∈ p are. Observe that negation-guarded rules
ensure domain independence, i.e., the result of a negation-guarded program does not depend on the
domain dom.
Relaxed Grounding. The relaxed grounding of a program p is obtained by considering all prob-
abilistic atoms as certain and by grounding all positive literals. For all negation-guarded programs,
the relaxed grounding of p is a sound over-approximation of all possible derivations in p. Given a
program p and a rule r ∈ p, ground(p) denotes p’s relaxed grounding and ground(p, r) denotes the
set of r’s ground instances.

Formally, ground(p) and ground(p, r) are defined as follows. Let 〈Σ,dom〉 be a database schema
such that dom is a finite domain, p be a (Σ,dom)-negation guarded ProbLog program, and i ∈ N
be an natural number. The function ground(p, i) is inductively defined as follows: ground(p, 0) =
{a(c) | a(c) ∈ p ∨ ∃v. v::a(c) ∈ p}, and ground(p, i) = ground(p, i − 1) ∪ {hΘ | ∃r ∈ p. (Θ ∈
ASGN (r) ∧ h = head(r) ∧ ∀l ∈ body+(r). lΘ ∈ ground(p, i− 1) ∧ ∀i, j. consistent(body(r, i)Θ, body(r,
j)Θ) = >)}, where consistent(a(v),¬a(v)) = consistent(¬a(v), a(v)) = ⊥ and consistent(l, l′) = >
otherwise. The function ground(p, r, i), where r ∈ p, is inductively defined as follows: ground(p,
a(c), i) = {a(c)}, ground(p, v::a(c), i) = {a(c)}, ground(p, r, 0) = ∅, and ground(p, r, i) is the set
{hΘ ← l1Θ, . . . , lnΘ | Θ ∈ ASGN (r) ∧ ∀li ∈ body+(r). liΘ ∈ ground(p, i − 1) ∧ ∀i, j. consistent(liΘ,
ljΘ) = >}, where r = h ← l1, . . . , ln. Finally, the relaxed grounding of p, denoted by ground(p), is
the set ground(p) =

⋃
i∈N ground(p, i), whereas ground(p, r) =

⋃
i∈N ground(p, r, i).

Example 4.7. Let p be the program consisting of the facts 1/2::A(1), A(2), A(3), D(1), E(2),
F (1), O(1, 2), and 2/3::O(2, 3), and the rules ra = B(x) ← A(x), D(x), rb = B(x) ← A(x), E(x),
and rc = B(y) ← B(x),¬F (x), O(x, y). The relaxed grounding of p consists of the initial facts
together with B(1), B(2), and B(3), whereas ground(p, rc) consists of B(2) ← B(1),¬F (1), O(1, 2)
and B(3)← B(2),¬F (2), O(2, 3). �

Dependency and Ground Graphs. The dependency graph of a program p, denoted graph(p), is
the labelled directed graph having as nodes all the predicate symbols in p and having an edge a r,i−→ b
iff there is a rule r such that a occurs in i-th literal in r’s body and b occurs in r’s head. Formally,
the p-dependency graph is the labelled directed graph 〈N,E〉 where N = Σ and E = {pred(body(r,
i)) r,i−→ pred(head(r)) | r ∈ p ∧ 1 ≤ i ≤ |body(r)|}. Figure 4.6 depicts the dependency graph from
Example 4.7.

The ground graph of a program p is the graph obtained from its relaxed grounding. Hence, there
is an edge a r,gr,i−−−→ b from the ground atom a to the ground atom b iff there is a rule r and a ground
rule gr ∈ ground(p, r) such that body(gr , i) ∈ {a,¬a} and head(gr) = b. Formally, the ground graph
of p, denoted gg(p), is the labelled directed graph 〈N,E〉 where N = ground(p)∪{l ∈ body+(r′) | ∃r ∈
p. r′ ∈ ground(p, r)} ∪ {a(c) | ∃r ∈ p, r′ ∈ ground(p, r), l ∈ body−(r′). a = pred(l) ∧ c = args(l)} and
E = {a r,gr,i−−−→ b | r ∈ p∧ gr ∈ ground(p, r)∧ 1 ≤ i ≤ |body(r)| ∧ body(gr , i) ∈ {a,¬a} ∧ head(gr) = b}.
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Figure 4.7: Ground graph for the program in Example 4.7. The ground rules r′a,
r′b, r

1
c , and r2

c are as follows: r′a = B(1)← A(1), D(1), r′b = B(2)← A(2), E(2),
r1
c = B(2)← B(1),¬F (1), O(1, 2), and r2

c = B(3)← B(2),¬F (2), O(2, 3).

Figure 4.7 depicts the ground graph from Example 4.7. Note that there are no incoming or outgoing
edges from the node A(3) because it is not involved in any derivation.
Paths and Cycles. We now introduce some terminology and notation for paths and cycles in
graphs. Let G = 〈N,E〉 be a directed graph. A directed path in G is a sequence of edges n1 →
n′1·n2 → n′2· . . . ·nm−1 → n′m−1·nm → n′m such that for all 1 ≤ i ≤ m, ni → n′i ∈ E and if i 6= m,
n′i = ni+1. Observe that we denote a path n1 → n′1·n2 → n′2· . . . ·nm−1 → n′m−1·nm → n′m simply
as n1 → n2 → . . . nm−1 → nm → n′m. Furthermore, the empty path is just the empty sequence ε. A
directed cycle in G is a directed path n1 → n2 . . . nm−1 → nm such that n1 = nm. We say that a
directed cycle C is simple iff each edge occurs at most once in C.

Given a directed path P = n1 → n2 . . . nm−1 → nm, we denote by start(P ) the node n1 and
by end(P ) the node nm. Two directed paths n1 → n2 . . . nm−1 → nm and n′1 → n′2 . . . n

′
k−1 → n′k

are head-connected (respectively tail-connected) iff n1 = n′1 (respectively nm = n′k). Furthermore, a
directed path P1 is connected with a directed path P2 iff end(P1) = end(P2), start(P1) = start(P2),
or end(P1) = start(P2). Finally, given a node n, we denote by reach(n) the set of all nodes n′ such
that there is a direct path from n to n′.

A reversed path is a sequence of reversed edges n1 ← n′1·n2 ← n′2· . . . ·nm−1 ← n′m−1·nm ← n′m
such that n′m → nm·n′m−1 → nm−1· . . . ·n′2 → n2·n′1 → n1 is a directed path. Given a directed path
P , we denote by P−1 the corresponding reversed path. Similarly, given a reversed path P , we denote
by P−1 the corresponding directed path.

An undirected path in G is a sequence of undirected edges n1 — n′1·n2 — n′2· . . . ·nm−1 —
n′m−1·nm — n′m such that for all 1 ≤ i ≤ m, ni → n′i ∈ E ∨ n′i → ni ∈ E and if i 6= m,
n′i = ni+1. Again, we denote a path n1 — n′1·n2 — n′2· . . . ·nm−1 — n′m−1·nm — n′m simply as
n1 — n2 — . . . nm−1 — nm — n′m. An undirected cycle in G is an undirected path n1 — n2 —
. . . nm−1 — nm — n′m such that n1 = n′m. Observe that any undirected cycle C can be seen as a
sequence of directed and reversed paths D1· . . . ·Dm. Observe also that a directed path (respectively
cycle) is also an undirected path (respectively cycle). We say that two (directed or undirected) cycles
are equivalent iff they are the same cycle.
Propagation Maps. We use propagation maps to track how information flows inside rules. Given
a rule r and a literal l ∈ body(r), the (r, l)-vertical map is the mapping µ from {1, . . . , |l|} to {1,
. . . , |head(r)|} such that µ(i) = j iff args(l)(i) = args(head(r))(j) and args(l)(i) ∈ Var . Given a rule
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r and literals l and l′ in r’s body, the (r, l, l′)-horizontal map is the mapping µ from {1, . . . , |l|} to
{1, . . . , |l′|} such that µ(i) = j iff args(l)(i) = args(l′)(j) and args(l)(i) ∈ Var .

We say that a path links to a literal l if information flows along the rules to l. This can be
formalized by posing constraints on the mapping obtained by combining horizontal and vertical
maps along the path. Formally, given a literal l and a mapping ν : N→ N, a directed path pr1

r1,i1−−−→
. . .

rn−1,in−1−−−−−−−→ prn ν-downward links to l iff there is a 0 ≤ j < n − 1 such that the function µ :=
µ′ ◦ µj ◦ . . . ◦ µ1 satisfies µ(k) = ν(k) for all k for which ν(k) is defined, where for 1 ≤ h ≤ j, µh is
the (rh, body(rh, ih))-vertical map, and µ′ is the horizontal map connecting body(rj+1, ij+1) with l.
Similarly, a directed path pr1

r1,i1−−−→ . . .
rn−1,in−1−−−−−−−→ prn ν-upward links to l iff there is a 1 ≤ j ≤ n− 1

such that the function µ := µ′−1 ◦ µ−1
j+1 ◦ . . . ◦ µ

−1
n−1 satisfies µ(k) = ν(k) for all k for which ν(k) is

defined, where µh is the (rh, body(rh, ih))-vertical map, for j < h ≤ n−1, and µ′ is the (rj , l)-vertical
map. Given a predicate symbol a, a path P ν-upward links to a (respectively ν-downward links to a)
iff there is an atom a(x) such that P ν-upward links (respectively ν-downward links) to a(x).

Example 4.8. The horizontal map connecting A(x) and D(x) in ra, i.e., the (ra, A(x), D(x))-
horizontal map, is {1 7→ 1}. The horizontal map connecting A(x) and E(x) in rb is {1 7→ 1} as well.
Hence, the path A ra,1−−−→ B downward links to D and the path A rb,1−−→ B downward links to E for
the mapping {1 7→ 1}. Furthermore, the path B

rc,1−−→ B downward links to O for {1 7→ 1} since
the (rc, B(x), O(x, y))-horizontal map is {1 7→ 1}. Finally, the path B rc,1−−→ B upward links to O for
{2 7→ 1} since the (rc, O(x, y))-vertical map is {2 7→ 1}. �

4.5.2 Annotations
Annotations represent properties of the relations induced by the program p, and they are syntac-

tically derived by analyzing p’s ground atoms and rules. We now illustrate how to derive three kinds
of annotations: disjointness, ordering, and uniqueness annotations. In this section, whenever we use
the notation reach(·) (defined in Section 4.5.1), we always refer to p’s dependency graph.
Disjointness annotations. Let a, a′ ∈ Σ be two predicate symbols such that |a| = |a′|. A dis-
jointness annotation DIS(a, a′) represents that the relations induced by a and a′ (given p’s relaxed
grounding) are disjoint. Informally, DIS(a, a′) can be derived from p iff (1) no rules in p contain
a or a′ in their heads, and there is no v ∈ dom|a| where both a(v) and a′(v) appear as (possibly
probabilistic) ground atoms in p, or (2) a and a′ can be derived only from other disjoint predicate
symbols. Hence, the relations induced by a and a′ are disjoint. Formally, the annotation DIS(a, a′)
can be derived from p iff one of the following conditions hold:

1. There are no rules r ∈ p such that body(r) 6= ∅ and pred(head(r)) = a or pred(head(r)) = a′,
and the sets {c | a(c) ∈ p ∨ ∃v. v::a(c) ∈ p} and {c | a′(c) ∨ ∃v. v::a′(c) ∈ p} are disjoint.

2. There are no rules r ∈ p such that body(r) 6= ∅ and pred(head(r)) = a, the annotation DIS(a, b)
can be derived from p, b 6∈ reach(a′), b 6= a′, and for all rules r ∈ p such that head(r) = a′(x),
b(x) ∈ body(r).

3. There are no rules r ∈ p such that body(r) 6= ∅ and pred(head(r)) = a′, the annotation DIS(b,
a′) can be derived from p, b 6∈ reach(a), b 6= a, and for all rules r ∈ p such that head(r) = a(x),
b(x) ∈ body(r).

4. The annotation DIS(b, b′) can be derived from p, {b, b′} ∩ (reach(a) ∪ reach(a′)) = ∅, b 6= a,
b′ 6= a′, and for all rules r ∈ p, if head(r) = a(x), b(x) ∈ body(r) and if head(r) = a′(x),
b′(x) ∈ body(r).

Ordering annotations. Let n ∈ N and A ⊆ Σ be a set of predicate symbols such that |a| = 2n
for all a ∈ A. An ordering annotation ORD(A) represents that the transitive closure of the union
of the relations induced by predicates in A given p’s relaxed grounding is a strict partial order over
domn. The annotation ORD(A) can be derived from the program p iff (1) there is no rule r ∈ p
that contains any of the predicates in A in its head and the transitive closure of

⋃
a∈A{〈〈v1, . . . , vn〉,

〈vn+1, . . . , v2n〉〉 | ∃k. k::a(v1, . . . , v2n) ∈ p} is a strict partial order over domn, or (2) the predicates
in A are derived from other predicates for which we can derive an ordering annotation. Hence, the
closure of the relation

⋃
a∈A{〈〈v1, . . . , vn〉, 〈vn+1, . . . , v2n〉〉 | a(v1, . . . , v2n) ∈ ground(p)} induced by

the relaxed grounding is a strict partial order. Formally, the annotation ORD(A) can be derived
from the program p iff one of the following conditions hold:

1. For all pr ∈ A, there is no rule r in p such that pred(head(r)) = pr and body(r) 6= ∅, and the
transitive closure of the relation R =

⋃
pr∈A{〈c, v〉 | ∃r ∈ p. ((head(r) = pr(c, v)∨∃v′. head(r) =

v′::pr(c, v)) ∧ body(r) = ∅) ∧ |c| = |v| = |pr|/2} is strict partial order.
2. The annotation ORD(A′) can be derived from p and there are two distinct predicate symbols

pr ∈ Σ and pr ′ ∈ A′ such that (a) |pr | = |pr ′|, (b) A = (A′ \ {pr ′}) ∪ {pr}, (c) pr ′ 6∈
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⋃
a∈A reach(a), and (d) for all rules r in p such that pred(head(r)) = pr, there are sequences of

variables x and y such that head(r) = pr(x, y), pr ′(x, y) ∈ body(r), and |x| = |y|.
Uniqueness annotations. Let a ∈ Σ be a predicate symbol and K ⊆ {1, . . . , |a|}. A uniqueness
annotation UNQ(a,K) represents that the attributes in K are a primary key for the relation induced
by a given the relaxed grounding. We say that UNQ(a,K) can be derived from a program p iff no rule
contains a in its head and for all v, v′ ∈ dom|a|, if (1) v(i) = v′(i) for all i ∈ K, and (2) there are k and
k′ such k::a(v) ∈ p and k′::a(v′) ∈ p, then v = v′. This ensures that whenever a(v), a(v′) ∈ ground(p)
and v(i) = v′(i) for all i ∈ K, then v = v′. Alternatively, uniqueness annotations can be derived from
other uniqueness annotations under appropriate conditions. Formally, the annotation UNQ(pr ,K)
can be derived from p iff one of the following conditions hold:

1. There are no rules r ∈ p such that body(r) 6= ∅ and pred(head(r)) = pr , and for all t, v in
{c | pr(c) ∈ p ∨ ∃v. v::pr(c) ∈ p}, if t(i) = v(i) for all i ∈ K, then t = v.

2. Both the following conditions hold:
(a) For each rule r ∈ p such that head(r) = pr(x) and body(r) 6= ∅, there is a mapping µ′

associating to each predicate pr ′ not in reach(pr) a set K such that (a) the annotation
UNQ(pr ′, µ(pr ′)) can be derived from p, and (b) V ⊆

⋃
l∈bound(head(r),K,body+(r),µ′) vars(l),

where V = {x(i) | i 6∈ K ∧ x(i) ∈ Var}, u(y,K) = {y(i) | i ∈ K}, and bound(h,K,L,
µ′) =

⋃
b(y)∈L∧b6∈reach(pr)∧b 6=pr∧
u(y,µ′(b))⊆u(args(h),K)

{b(y)} ∪
⋃

b(y)∈L∧b 6∈reach(pr)∧b 6=pr∧
∃l′∈bound(h,K,L,µ′).u(y,µ′(b))⊆vars(l′)

{b(y)}.

(b) For all rules r1, r2 ∈ p, if r1 6= r2, pred(head(r1)) = pred(head(r2)) = pr , and K 6= {1, . . . ,
|pr |}, then there is a value i ∈ K such that args(head(r1))(i) ∈ dom, args(head(r2))(i) ∈
dom, and args(head(r1))(i) 6= args(head(r1))(i).

Templates. A Σ-template T is a set of annotations.

Example 4.9. We can derive DIS(D,E) from the program in Example 4.7 since no rule generates
facts for D and E and the relations defined by the ground atoms are {1} and {2}. We can also derive
ORD({O}) since the relation defined by O’s ground atoms is {(1, 2), (2, 3)}, whose transitive closure
is a strict partial order. Finally, we can derive UNQ(O, {1}), UNQ(O, {2}), and UNQ(O, {1, 2}) since
both arguments of O uniquely identify the tuples in the relation induced by O. �

4.5.3 Acyclic ProbLog programs
A sufficient condition for tractable inference is that p’s ground graph is a forest of poly-trees.

This requires that p’s ground graph neither contains directed nor undirected cycles, or, equivalently,
the undirected version of p’s ground graph is acyclic. To illustrate, the ground graph in Figure 4.7
is a poly-tree. The key insight here is that a cycle among ground atoms is caused by a (directed
or undirected) cycle among p’s predicate symbols. In a nutshell, acyclicity requires that all possible
cycles in graph(p) are guarded. This ensures that cycles in graph(p) do not lead to cycles in the
ground graph. Additionally, acyclicity requires that programs are negation-guarded. This ensures
that the relaxed grounding and the ground graph are well-defined.
Unsafe structures. An unsafe structure models a part of the dependency graph that may intro-
duce cycles in the ground graph. We define directed and undirected unsafe structures which may
respectively introduce directed and undirected cycles in the ground graph.

A directed unsafe structure in graph(p) is a directed cycle C in graph(p). We say that a directed
unsafe structure C covers a directed cycle C′ iff C is equivalent to C′.

An undirected unsafe structure in graph(p) is quadruple 〈D1, D2, D3, U〉 such that (1) D1, D2, and
D3 are directed paths whereas U is an undirected path, (2) D1 and D2 start from the same node, (3)
D2 and D3 end in the same node, and (4) D1 ·U ·D3 ·D2 is an undirected cycle in graph(p). We say
that an unsafe structure 〈D1, D2, D3, U〉 covers an undirected cycle U ′ in graph(p) iff D1 ·U ·D3 ·D2
is equivalent to U ′.

Example 4.10. The cycle introduced by the rule rc is captured by the directed unsafe structure
B

rc,1−−→ B, while the cycle introduced by ra and rb is captured by the structure 〈A ra,1−−−→ B,A
rb,1−−→ B,

ε, ε〉, where ε denotes the empty path. �

Connected Rules. A connected rule r ensures that a grounding of r is fully determined either by the
assignment to the head’s variables or to the variables of any literal in r’s body. Formally, a strongly
connected rule r guarantees that for any two groundings gr ′, gr ′′ of r, if head(gr ′) = head(gr ′′), then
gr ′ = gr ′′. In contrast, a weakly connected rule r guarantees that for any two groundings gr ′, gr ′′
of r, if body(gr ′, i) = body(gr ′′, i) for some i, then gr ′ = gr ′′. This is done by exploiting uniqueness
annotations and the rule’s structure.

Before formalizing connected rules, we introduce join trees. A join tree represents how multiple
predicate symbols in a rule share variables. In the following, let r be a rule and T be a template. A
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join tree for a rule r is a rooted labelled tree 〈N,E, root, λ〉, where N ⊆ body(r), E is a set of edges
(i.e., unordered pairs over N2), root ∈ N is the tree’s root, and λ is the labelling function. Moreover,
we require that for all n, n′ ∈ N , if n 6= n′ and (n, n′) ∈ E, then λ(n, n′) = vars(n)∩vars(n′) and λ(n,
n′) 6= ∅. A join tree 〈N,E, root, λ〉 covers a literal l iff l ∈ N . Given a join tree J = 〈N,E, root, λ〉 and
a node n ∈ N , the support of n, denoted support(n), is the set vars(head(r))∪{x | (x = c) ∈ cstr(r)∧
c ∈ dom}∪{vars(n′) | n′ ∈ anc(J, n)}, where anc(J, n) is the set of n’s ancestors in J , i.e., the set of
all nodes (different from n) on the path from root to n. A join tree J = 〈N,E, root, λ〉 is T -strongly
connected iff for all positive literals l ∈ N , there is a set K ⊆ {i | x = args(l)∧x(i) ∈ support(l)} such
that UNQ(pred(l),K) ∈ T and for all negative literals l ∈ N , vars(l) ⊆ support(l). In contrast, a join
tree 〈N,E, root, λ〉 is T -weakly connected iff for all (a(x), a′(x′)) ∈ E, there are K ⊆ {i | x(i) ∈ L}
and K′ ⊆ {i | x′(i) ∈ L} such that UNQ(a,K),UNQ(a′,K′) ∈ T , where L = λ(a(x), a′(x′)).

We now formalize strongly and weakly connected rules. A rule r is T -strongly connected iff there
exist T -strongly connected join trees J1, . . . , Jn that cover all literals in r’s body. This guarantees
that for any two groundings gr ′, gr ′′ of r, if head(gr ′) = head(gr ′′), then gr ′ = gr ′′.

Given a rule r, a set of literals L, and a template T , a literal l ∈ body(r) is (r, T , L)-strictly
guarded iff (1) vars(l) ⊆

⋃
l′∈L∩body+(r) vars(l′) ∪ {x | (x = c) ∈ cstr(r) ∧ c ∈ dom}, and (2) there

is a positive literal a(x) ∈ L and an annotation UNQ(a,K) ∈ T such that {x(i) | i ∈ K} ⊆ vars(l).
A rule r is weakly connected for T iff there exists a T -weakly connected join tree J = 〈N,E, root, λ〉
such that N ⊆ body+(r), and all literals in body(r)\N are (r, T , N)-strictly guarded. This guarantees
that for any two groundings gr ′, gr ′′ of r, if body(gr ′, i) = body(gr ′′, i) for some i, then gr ′ = gr ′′.
Example 4.11. Let T be the template from Example 4.9. The rule rc := B(y)← B(x),¬F (x), O(x,
y) is T -strongly connected. Indeed, the join tree having O(x, y) as root and B(x) and ¬F (x) as leaves
is such that (1) there is a uniqueness annotation UNQ(O, {2}) in T such that the second variable in
O(x, y) is included in those of rc’s head, (2) the variables in B(x) and ¬F (x) are a subset of those of
their ancestors, and (3) the tree covers all literals in rc’s body. The rule is also T -weakly connected:
the join tree consisting only of O(x, y) is T -weakly connected and the literals B(x) and ¬F (x) are
strictly guarded. Note that the rules ra and rb are trivially both strongly and weakly connected. �

Guarded undirected structures. Guarded undirected structures ensure that undirected cycles
in the dependency graph do not correspond to undirected cycles in the ground graph by exploiting
disjointness and uniqueness annotations. Formally, an undirected unsafe structure 〈D1, D2, D3, U〉
is guarded by a template T iff either 〈D1, D2〉 is T -head-guarded or 〈D2, D3〉 is T -tail-guarded.

A pair of non-empty paths 〈P1, P2〉 sharing the same initial node a is T -head guarded iff (1) if
P1 = P2, all rules in P1 are weakly connected for T , and (2) if P1 6= P2, there is an annotation DIS(pr ,
pr ′) ∈ T , a set K ⊆ {1, . . . , |a|}, and a bijection ν : K → {1, . . . , |pr |} such that P1 ν-downward
links to pr and P2 ν-downward links to pr ′. Given two ground paths P ′1 and P ′2 corresponding to P1
and P2, the first condition ensures that P ′1 = P ′2 whereas the second ensures that P ′1 or P ′2 are not in
the ground graph.

Similarly, a pair of non-empty paths 〈P1, P2〉 sharing the same final node a is T -tail guarded
iff (1) if P1 = P2, all rules in P1 are strongly connected for T , and (2) if P1 6= P2, there is an
annotation DIS(pr , pr ′) ∈ T , a set K ⊆ {1, . . . , |a|}, and a bijection ν : K → {1, . . . , |pr |}, such that
P1 ν-upward links to pr and P2 ν-upward links to pr ′.
Example 4.12. The only non-trivially guarded undirected cycle in the graph from Figure 4.6 is
the one represented by the undirected unsafe structure 〈A ra,1−−−→ B,A

rb,1−−→ B, ε, ε〉. The structure is
guarded since the paths A ra,1−−−→ B and A rb,1−−→ B are head guarded by DIS(D,E). Indeed, for the
same ground atom A(v), for some v ∈ {1, 2, 3}, only one of ra and rb can be applied since D and E
are disjoint. �

Guarded directed structures. Guarded directed structures exploit ordering annotations to ensure
that directed cycles in the dependency graph do not correspond to directed cycles among ground
atoms. A directed unsafe structure pr1

r1,i1−−−→ . . .
rn,in−−−→ pr1 is guarded by a template T iff there

is an annotation ORD(O) ∈ T , integers 1 ≤ y1 < y2 < . . . < ye = n, atoms o1(x1), . . . , oe(xe)
(where o1, . . . , oe ∈ O), a non-empty set K ⊆ {1, . . . , |pr1|}, and a bijection ν : K → {1, . . . , |o|/2}

such that for each 0 ≤ k < e, (1) pryk
ryk ,iyk−−−−−→ . . .

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν-downward connects

to ok+1(xk+1), and (2) pryk+1−1

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν

′-upward connects to ok+1(xk+1), where
ν′(i) = ν(x) + |o1|/2 for all 1 ≤ i ≤ |o1|/2, and y0 = 1.

Example 4.13. The directed unsafe structure B rc,1−−→ B is guarded by ORD({O}) in the template
from Example 4.9. Indeed, the strict partial order induced by O breaks the cycle among ground
atoms belonging to B. In particular, the path B rc,1−−→ B both downward links and upward links to
O(x, y); see Example 4.8. �
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Figure 4.8: Ground graph for the program in Example 4.7 extended with the atom
E(1). The additional edges and nodes are represented using dashed lines. The
ground rules r′a, r′b, r

1
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c are as in Figure 4.7, and r′ = B(1)← A(1), E(1).
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Figure 4.9: Portion of the resulting BN for the atoms B(2), F (2), and O(2, 3),
the rule rc = B(y)← B(x),¬F (x), O(x, y), and the ground rule r2

c = B(3)←
B(2),¬F (2), O(2, 3), together with the CPT encoding r2

c ’s semantics.

Acyclic Programs. Let p be a negation-guarded program and T be the template containing all
annotations that can be derived from p. We say that p is acyclic iff (a) for all undirected cycles U in
graph(p) that are not directed cycles, there is a T -guarded undirected unsafe structure that covers
U , and (b) for all directed cycles C in graph(p), there is a T -guarded directed unsafe structure that
covers C. This ensures the absence of cycles in the ground graph.

Proposition 4.1. Let p be a ProbLog program. If p is acyclic, then the ground graph of p is a
forest of poly-trees.

Example 4.14. The program p from Example 4.7 is acyclic. This is reflected in the ground graph
in Figure 4.7. The program q = p ∪ {E(1)}, however, is not acyclic: we cannot derive DIS(D,E)
from q and the undirected unsafe structure 〈A ra,1−−−→ B,A

rb,1−−→ B, ε, ε〉 is not guarded. As expected,
q’s ground graph contains an undirected cycle between A(1) and B(1), as shown in Figure 4.8. �

Expressiveness. Acyclicity trades some of ProbLog’s expressiveness for a tractable inference
procedure. Acyclic programs, nevertheless, can encode many relevant probabilistic models.

Proposition 4.2. Any forest of poly-tree BNs can be represented as an acyclic ProbLog program.

To clarify this proposition’s scope, observe that poly-tree BNs are one of the few classes of BNs
with tractable inference procedures. From Proposition 4.2, it follows that a large class of probabilistic
models with tractable inference can be represented as acyclic programs. This supports our thesis
that our syntactic constraints are not overly restrictive. In Section 4.9, we relax acyclicity to support
a limited form of annotated disjunctions and rules sharing a part of their bodies, which are needed
to encode the example from Section 4.4 and for Proposition 4.2. The proofs of all our results are in
Appendix B.
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4.5.4 Inference Engine
Our inference algorithm for acyclic ProbLog programs consists of three steps: (1) we compute

the relaxed grounding of p (see Section 4.5.1), (2) we compile the relaxed grounding into a Bayesian
Network (BN), and (3) we perform the inference using standard algorithms for poly-tree Bayesian
Networks [105].
Encoding as BNs. We compile the relaxed grounding ground(p) into the BN bn(p). The boolean
random variables in bn(p) are as follows: (a) for each atom a in ground(p) and ground literal a or
¬a occurring in any gr ∈

⋃
r∈p ground(p, r), there is a random variable X[a], (b) for each rule r ∈ p

and each ground atom a such that there is a ground rule gr ∈ ground(p, r) satisfying a = head(gr),
there is a random variable X[r, a], and (c) for each rule r ∈ p, each ground atom a, and each ground
rule gr ∈ ground(p, r) such that a = head(gr), there is a random variable X[r, gr , a].

The edges in bn(p) are as follows: (a) for each ground atom a, rule r, and ground rule gr , there is
an edge from X[r, gr , a] to X[r, a] and an edge from X[r, a] to X[a], and (b) for each ground atoms
a and b, rule r, and ground rule gr , there is an edge from X[b] to X[r, gr , a] if b occurs in gr ’s body
as a positive or negative literal.

Finally, the Conditional Probability Tables (CPTs) of the variables in bn(p) are as follows. The
CPT of variables of the form X[a] and X[r, a] is just the OR of the values of their parents, i.e., the
value is > with probability 1 iff at least one of the parents has value >. For variables of the form
X[r, gr , a] such that body(r) 6= ∅, the variable’s CPT encode the semantics of the rule r, i.e., the value
of X[r, gr , a] is > with probability 1 iff all positive literals have value > and all negative literals have
value ⊥. In contrast, for variables of the form X[r, gr , a] such that body(r) = ∅, the variable has value
> with probability v and ⊥ with probability 1− v, where r is of the form v::a (if r = a, then v = 1).

To ensure that the size of the CPT of variables of the form X[r, a] is independent of the size of
the relaxed grounding, instead of directly connecting variables of the form X[r, gr , a] with X[r, a],
we construct a binary tree of auxiliary variables where the leaves are all variables of the form X[r,
gr , a] and the root is the variable X[r, a]. Figure 4.9 depicts a portion of the BN for the program in
Example 4.7.
Complexity. We now introduce the main result of this section.

Theorem 4.1. The data complexity of inference for acyclic ProbLog programs is Ptime.

This follows from (1) the relaxed grounding and the encoding can be computed in Ptime in terms
of data complexity, (2) the encoding ensures that, for acyclic programs, the resulting Bayesian Net-
work is a forest of poly-trees, and (3) inference algorithms for poly-tree BNs [105] run in polynomial
time in the BN’s size. In Section 4.9, we extend our encoding to handle additional features such
as (a limited class of) annotated disjunctions, whereas in Appendix B we prove its correctness and
complexity.

4.6 Angerona

Angerona is a DBIC mechanism that provably secures databases against probabilistic inferences.
Angerona is parametrized by an AtkLog model representing the attacker’s capabilities and it
leverages ProbLog’s inference capabilities.

4.6.1 Checking Query Security
Algorithm 1 presents Angerona. It takes as input a system state s = 〈db, U, P 〉, a history h,

the current query q issued by the user u, a system configuration C, and an AtkLog model ATK
formalizing the users’ beliefs. Angerona checks whether disclosing the result of the current query q
may violate any secrets in secrets(P, u). If this is the case, the algorithm concludes that q’s execution
would be insecure and returns ⊥. Otherwise, it returns > and authorizes q’s execution. Note that
once we fix a configuration C and an AtkLog model ATK , Angerona is a C-PDP as defined in
Section 4.3.3.

To check whether a query q may violate a secret 〈u, ψ, l〉 ∈ secrets(P, u), Angerona first checks
whether the secret has been already violated. If this is not the case, Angerona checks whether
disclosing q violates any secret. This requires checking that u’s belief about the secret ψ stays below
the threshold independently of the result of the query q; hence, we must ensure that u’s belief is
below the threshold both in case the query q holds in the actual database and in case q does not
hold (this ensures that the security decision itself does not leak information). Angerona, therefore,
first checks whether there exists at least one possible database state where q is satisfied given h,
using the procedure pox. If this is the case, the algorithm extends the current history h with the
new event recording that the query q is authorized and its result is > and it checks whether u’s
belief about ψ is still below the corresponding threshold once q’s result is disclosed, using the secure
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Algorithm 1: Angerona Enforcement Algorithm.
Input: A system state s = 〈db, U, P 〉, a history h, an action 〈u, q〉, a system configuration C, and a

C-AtkLog model ATK .
Output: The security decision in {>,⊥}.
begin

for 〈u, ψ, l〉 ∈ secrets(P, u) do
if secure(C,ATK , h, 〈u, ψ, l〉)

if pox(C,ATK , h, 〈u, q〉)
h′ := h · 〈〈u, q〉,>,>〉
if ¬secure(C,ATK , h′, 〈u, ψ, l〉)

return ⊥
if pox(C,ATK , h, 〈u,¬q〉)

h′ := h · 〈〈u, q〉,>,⊥〉
if ¬secure(C,ATK , h′, 〈u, ψ, l〉)

return ⊥
return >

function secure(〈D,Γ〉,ATK , h, 〈u, ψ, l〉)
p := ATK(u)
for φ ∈ observations(h, u) do

p := p ∪ PL(φ) ∪ {evidence(head(φ), true)}
p := p ∪ PL(ψ)
return JpKD(head(ψ)) < l

function pox(〈D,Γ〉,ATK , h, 〈u, ψ〉)
p := ATK(u)
for φ ∈ observations(h, u) do

p := p ∪ PL(φ) ∪ {evidence(head(φ), true)}
p := p ∪ PL(ψ)
return JpKD(head(ψ)) > 0

procedure. Afterwards, Angerona checks whether there exists at least a possible database state
where q is not satisfied given h, it extends the current history h with another event representing that
the query q does not hold, and it checks again whether disclosing that q does not hold in the current
database state violates the secret. Note that checking whether there is a database state where q is
(or is not) satisfied is essential to ensure that the conditioning that happens in the secure procedure
is well-defined, i.e., the set of states we condition on has non-zero probability.

Angerona uses the secure subroutine to determine whether a secret’s confidentiality is violated.
This subroutine takes as input a system configuration, an AtkLog model ATK , a history h, and a
secret 〈u, ψ, l〉. It first computes the set observations(h, u) containing all the authorized queries in the
u-projection of h, i.e., observations(h, u) = {φ | ∃i. h|u(i) = 〈〈u, φ〉,>,>〉}∪{¬φ | ∃i. h|u(i) = 〈〈u, φ〉,
>,⊥〉}. Afterwards, it generates a ProbLog program p by extending ATK(u) with additional rules.
In more detail, it translates each relational calculus sentence φ ∈ observations(h, u) to an equivalent
set of ProbLog rules PL(φ). The translation PL(φ) is standard [10]. For example, given a query
φ = (A(1) ∧ B(2)) ∨ ¬C(3), the translation PL(φ) consists of the rules {(h1 ← A(1)), (h2 ← B(2)),
(h3 ← ¬C(3)), (h4 ← h1, h2), (h5 ← h3), (h5 ← h4)}, where h1, . . . , h5 are fresh predicate symbols.
We denote by head(φ) the unique predicate symbol associated with the sentence φ by the translation
PL(φ). In our example, head(φ) is the fresh predicate symbol h5. The algorithm then conditions
the initial probability distribution ATK(u) based on the sentences in observations(h, u). This is
done using evidence statements, which are special ProbLog statements of the form evidence(a, v),
where a is a ground atom and v is either true or false (see Section 4.4.1). For each sentence
φ ∈ observations(h, u), the program p contains a statement evidence(head(φ), true). Finally, the
algorithm translates ψ to a set of logic programming rules and checks whether ψ’s probability is
below the threshold l.

The pox subroutine takes as input a system configuration, an AtkLog model ATK , a history h,
and a query 〈u, ψ〉. It determines whether there is a database db′ that satisfies ψ and complies with
the history h|u. Internally, the routine again constructs a ProbLog program starting from ATK ,
observations(h, u), and ψ. Afterwards, it uses the program to check whether the probability of ψ
given h|u is greater than 0.

Given a run 〈s, h〉 and a user u, the secure and pox subroutines condition u’s initial beliefs based
on the sentences in observations(h, u), instead of using the set JrK∼u as in the AtkLog semantics.
The key insight is that, as we prove in Appendix B, the set of possible database states defined by the
sentences in observations(h, u) is equivalent to JrK∼u , which contains all database states derivable
from the runs r′ ∼u r. This allows us to use ProbLog to implement AtkLog’s semantics without
explicitly computing JrK∼u .

Example 4.15. Let ATK be the attacker model in Example 4.4, u be the user Mallory, the database
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state be s{A,B,C}, where Alice, Bob, and Carl have cancer, and the policy P be the one from Exam-
ple 4.2. Furthermore, let q1, . . . , q4 be the queries issued by Mallory in Example 4.3. Angerona
permits the execution of the first two queries since they do not violate the policy. In contrast, it
denies the execution of the last two queries as they leak sensitive information. �

Confidentiality. As we prove in Appendix B, Angerona provides the desired security guarantees
for any AtkLog-attacker. Namely, it authorizes only those queries whose disclosure does not increase
an attacker’s beliefs in the secrets above the corresponding thresholds. Angerona also provides
precise completeness guarantees: it authorizes all secrecy-preserving queries. Informally, a query
〈u, q〉 is secrecy-preserving given a run r and a secret 〈u, ψ, l〉 iff disclosing the result of 〈u, q〉 in any
run r′ ∼u r does not violate the secret.

Theorem 4.2. Let a system configuration C and a C-AtkLog model ATK be given, and let
Angerona be the C-PDP f . Angerona provides data confidentiality with respect to C and λu ∈
U . JATK(u)KD, and it authorizes all secrecy-preserving queries.

Complexity. Angerona’s complexity is dominated by the complexity of inference. We focus our
analysis only on data complexity, i.e., the complexity when only the ground atoms in the ProbLog
programs are part of the input while everything else is fixed. A literal query is a query consisting
either of a ground atom a(c) or its negation ¬a(c). We call an AtkLog model acyclic if all belief
programs in it are acyclic. Furthermore, a literal secret is a secret 〈U, φ, l〉 such that φ is a literal
query. We prove in Appendix B that for acyclic AtkLog models, literal queries, and literal secrets,
the ProbLog programs produced by the secure and pox subroutines are acyclic. We can therefore
use our dedicated inference engine from Section 4.5 to reason about them. Hence, Angerona can
be used to protect databases in Ptime in terms of data complexity.

Theorem 4.3. For all acyclic AtkLog attackers, for all literal queries q, for all runs r whose histo-
ries contain only literal queries and contain only secrets expressed using literal queries, Angerona’s
data complexity is Ptime.

Discussion. Our tractability guarantees apply only to acyclic AtkLog models, literal queries, and
literal secrets. Nevertheless, Angerona can still handle relevant problems of interest. As stated in
Section 4.5, acyclic models are as expressive as poly-tree Bayesian Networks, one of the few classes
of Bayesian Networks with tractable inference. Hence, for many probabilistic models that cannot be
represented as acyclic AtkLog models, exact probabilistic inference is intractable.

Literal queries are expressive enough to state simple facts about the database content. For
instance, they can be used to formulate queries such as “does Alice have cancer?”. More complex
(non-literal) queries can be simulated using (possibly large) sequences of literal queries. Similarly,
policies with non-literal secrets can be implemented as sets of literal secrets, and the Boole–Fréchet
inequalities [89] can be used to derive the desired thresholds. In both cases, however, our completeness
guarantees hold only for the resulting literal queries, not for the original ones.

Finally, whenever our tractability constraints are violated, Angerona can still be used by directly
using ProbLog’s inference capabilities. In this case, one would retain the security and completeness
guarantees (Theorem 4.2) but lose the tractability guarantees (Theorem 4.3).

4.6.2 Implementation and Empirical Evaluation
To evaluate the feasibility of our approach in practice, we implemented a prototype of Angerona,

available at [85]. The prototype implements our dedicated inference algorithm for acyclic ProbLog
programs (Section 4.5), which computes the relaxed grounding of the input program p, constructs
the Bayesian Networks BN , and performs the inference over BN using belief propagation [105].
For inference over BN , we rely on the GRRM library [154]. Observe that evidence statements in
ProbLog are encoded by fixing the values of the corresponding random variables in the BN. Note
also that computing the relaxed grounding of p takes polynomial time in terms of data complexity,
where the exponent is determined by p’s rules. A key optimization is to pre-compute the relaxed
grounding and construct BN off-line. This avoids grounding p and constructing the (same) Bayesian
Network for each query. In our experiments we measure this time separately.

We use our prototype to study Angerona’s efficiency and scalability. We run our experiments
on a PC with an Intel i7 processor and 32GB of RAM. For our experiments, we consider the database
schema from Section 4.3. For the belief programs, we use the ProbLog program given in Section 4.4,
which can be encoded as an acyclic program whenever each person has at most one son. We evaluate
Angerona’s efficiency and scalability in terms of the number of ground atoms in the belief programs.
We generate synthetic belief programs containing 1,000 to 100,000 patients and for each of these
instances, we generate 100 random queries of the form R(t), where R is a predicate symbol and t
is a tuple. For each instance and sequence of queries, we check the security of each query with our
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Figure 4.10: Angerona execution time in seconds.

prototype, against a policy containing 100 randomly generated secrets specified as literal queries.
Note that in our experiments we repeated the above process 5 times, i.e., we generated 5 synthetic
belief programs per data point and, for each of the programs, we generated random queries and
policies.

Figure 4.10 reports the average execution times for our case study. Once the BN is generated,
Angerona takes under 300 milliseconds on average, even for our larger examples, to check a query’s
security. During the initialization phase of our dedicated inference engine, we ground the original
ProbLog program and translate it into a BN. Most of the time is spent in the grounding process,
whose data complexity is polynomial, where the polynomial’s degree is determined by the number
of free variables in the belief program. Our prototype uses a naive bottom-up grounding technique,
and for our larger examples the initialization times are less than 2.5 minutes. We remark, however,
that the initialization is performed just once per belief program. Furthermore, it can be done offline
and its performance can be greatly improved by naive parallelization.

4.7 Related Work

Database Inference Control. Existing DBIC approaches protect databases (either at design
time [120, 121] or at runtime [44, 45, 91]) only against restricted classes of probabilistic dependen-
cies, e.g., those arising from functional and multi-valued dependencies. AtkLog, instead, supports
arbitrary probabilistic dependencies, and even our acyclic fragment can express probabilistic depen-
dencies that are not supported by [44,45,91,120,121]. Wiese [166] proposes a DBIC framework, based
on possibilistic logic, that formalizes secrets as sentences and expresses policies by associating bounds
to secrets. Possibility theory differs from probability theory, which results in subtle differences. For
instance, there is no widely accepted definition of conditioning for possibility distributions, cf. [38].
Thus, the probabilistic model from Section 4.1 cannot be encoded in Wiese’s framework [166].

Statistical databases store information associated to different individuals and support queries
that return statistical information about an entire population [47]. DBIC solutions for statistical
databases [11,47,62,65,67] prevent leakages of information about single individuals while allowing the
execution of statistical queries. These approaches rely on various techniques, such as perturbating
the original data, synthetically generating data, or restricting the data on which the queries are
executed. Instead, we protect specific secrets in the presence of probabilistic data dependencies and
we return the original query result, without modifications, if it is secure.
Controlled Query Evaluation. Controlled Query Evaluation (CQE) is an inference control frame-
work initially proposed by Biskup and Bonatti [28, 29, 36]. The framework has been specialized to
several settings, such as deductive databases [36,146], incomplete databases [33–35], databases in the



58 Chapter 4. Securing Databases from Probabilistic Inference

presence of updates [31,32], possibilistic databases [166], and ontologies [82]. In a CQE system, each
query q is executed on the database and its result is inspected by a censor, which decides whether
the query’s result violates the security policy. In case the result is considered sensitive, the censor
may reject the result [28, 29] or modify it [36] (or a combination of both strategies [30]). Observe
that the first strategy corresponds to the Non-Truman model, whereas the last one corresponds to
the Truman model.

Works on CQE formalize security policies using secrecies and secrets. A secret is a sentence φ
defined on the database, whereas a secrecy is a set {φ,¬φ} where φ is a secret. A policy then is
either a set of secrets or a set of secrecies. Note that secrecies can be reduced to secrets. Our security
policies from Section 4.3 can be seen as an extension of secrets to the probabilistic setting.

In a nutshell, the two security conditions studied in CQE are defined as follows:
• Secrecies: a censor is secure iff for all sequences of queries Q, for all database states db, for all

secrecies {φ,¬φ} in S, there exists a state db′ such that the results of all queries in Q on db
and db′ are the same, φ holds in one state, and ¬φ holds in the other one.

• Secrets: a censor is secure iff for all sequences of queries Q, for all database states db, for all
secrets φ in S, there exists a state db′ such that the results of all queries in Q on db and db′
are the same, and in one of the two states ¬φ holds.

Intuitively, the security condition for secrecies guarantees that an attacker is not able to infer φ’s
truth value, whereas the one for secrets only guarantees that an attacker is not able to infer that
φ holds in current database states. Observe that our data confidentiality property from Section 4.3
generalizes the latter condition to the probabilistic setting.
Differential Privacy. Differential Privacy [68,69] is widely used for privacy-preserving data analysis.
Systems such as Airavat [132], ProPer [70], and PINQ [118] provide users with automated ways to
perform differentially private computations. A differentially private computation guarantees that
the presence (or absence) of an individual’s data in the input data set affects the probability of
the computation’s result only in limited way, i.e., by at most a factor eε where ε is a parameter
controlling the privacy-utility trade-off. While differential privacy does not make any assumption
about the attacker’s beliefs, we assume that the attacker’s belief is known and we guarantee that for
all secrets in the policy, no user can increase his beliefs, as specified in the attacker model, over the
corresponding thresholds by interacting with the system.
Database Access Control. Rastogi et al. [129] propose an access control language for uncertain
data and a perturbation algorithm to securely answer queries. Their security notion differs from
ours, as it is based on differential privacy. To prevent leaks, their algorithm adds noise to the original
query answer. Instead, Angerona returns the original result to the user if this does not violate the
security policy.
Query Auditing. Query auditing [71, 103, 123] is the task of determining whether the answer to a
user’s query may lead to a privacy breach. Evfimievski et al.’s security notion [71] guarantees that for
a secure query, a user cannot increase his confidence in the secret by observing the query’s output.
Instead, our security notion guarantees that users cannot use queries to increase their confidence
in a secret above a given threshold. Our approach works for arbitrary relational calculus queries.
In contrast, existing online query auditing approaches [103, 123] are limited to restricted classes of
queries, such as COUNT and MAX queries.
Information-flow Control. Quantified Information Flow [16, 51, 106, 115] aims at quantifying the
amount of information leaked by a program. Instead of measuring the amount of leaked information,
we focus on restricting the information that an attacker may obtain about a set of given secrets.

Non-interference has been extended to consider probabilities [15,136,164] for concurrent programs.
Our security notion, instead, allows those leaks that do not increase an attacker’s beliefs in a secret
above the threshold, and it can be seen as a probabilistic extension of opacity [142], which allows any
leak except leaking whether the secret holds.

Mardziel et al. [116] present a general DBIC architecture, where users’ beliefs are expressed
as probabilistic programs, security requirements as threshold on these beliefs, and the beliefs are
updated in response to the system’s behaviour. Our work directly builds on top of this architecture.
However, instead of using an imperative probabilistic language, we formalize beliefs using probabilistic
logic programming, which provides a natural and expressive language for formalizing dependencies
arising in the database setting, e.g., functional and multi-valued dependencies, as well as common
probabilistic models, like Bayesian Networks.

Mardziel et al. [116] also propose a DBIC mechanism based on abstract interpretation. They do
not provide any precise complexity bound for their mechanism. Their algorithm’s complexity class,
however, appears to be intractable, since they use a probabilistic extension of the polyhedra abstract
domain, whose asymptotic complexity is exponential in the number of program variables [148]. In
contrast, Angerona exploits our inference engine for acyclic programs to secure databases against
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a practically relevant class of probabilistic inferences, and it provides precise tractability and com-
pleteness guarantees.

We now compare (unrestricted) AtkLog with the imperative probabilistic language used in [116].
AtkLog allows one to concisely encode probabilistic properties specifying relations between tuples in
the database. For instance, a property like “the probability of A(x) is 1/2n, where n is the number of
tuples (x, y) in B” can be encoded as 1/2::A(x)← B(x, y). Encoding this property as an imperative
program is more complex; it requires a for statement to iterate over all variables representing tuples
in B and an if statement to filter the tuples. In contrast to [116], AtkLog provides limited support
for numerical constraints (as we support only finite domains). Mardziel et al. [116] formalize queries
as imperative probabilistic programs. They can, therefore, also model probabilistic queries or the
use of randomization to limit disclosure. While all these features are supported by AtkLog, our
goal is to protect databases from attackers that use standard query languages like SQL. Hence, we
formalize queries using relational calculus and ignore probabilistic queries. Similarly to [116], our
approach can be extended to handle some uncertainty on the attackers’ capabilities. In particular,
we can associate to each user a finite number of possible beliefs, instead of a single one. However,
like [116], we cannot handle infinitely many alternative beliefs.
Probabilistic Programming. Probabilistic programming is an active area of research [81]. Here,
we position ProbLog with respect to expressiveness and inference. Similarly to [77,116], ProbLog
can express only discrete probability distributions, and it is less expressive than languages supporting
continuous distributions [76, 80, 144]. Current exact inference algorithms for probabilistic programs
are based on program analysis techniques, such as symbolic execution [76,144] or abstract interpreta-
tion [116]. In this respect, we present syntactic criteria that ensure tractable inference for ProbLog.
Sampson et al. [139] symbolically execute probabilistic programs and translate them to BNs to ver-
ify probabilistic assertions. In contrast, we translate ProbLog programs to BNs to perform exact
inference and our translation is tailored to work together with our acyclicity constraints to allow
tractable inference.

4.8 Conclusions

Effectively securing databases that store data with probabilistic dependencies requires an ex-
pressive language to capture the dependencies and a tractable enforcement mechanism. To address
these requirements, we developed AtkLog, a formal language providing an expressive and concise
way to represent attackers’ beliefs while interacting with the system. We leveraged this to design
Angerona, a provably secure DBIC mechanism that prevents the leakage of sensitive information
in the presence of probabilistic dependencies. Angerona is based on a dedicated inference engine
for a fragment of ProbLog where exact inference is tractable. We see these results as providing a
foundation for building practical protection mechanisms, which include probabilistic dependencies,
as part of real-world database systems.

4.9 Technical Details, Extensions, and Additional Examples

In Section 4.9.1, we introduce an extension of acyclic programs. We present a simple encoding from
relational calculus queries to logic programs in Section 4.9.2. Afterwards, we show that the program
associated with our medical example from Section 4.1 is a relaxed acyclic program (Section 4.9.3).
Finally, in Section 4.9.4 we present an additional example from the genomic data domain.

4.9.1 Relaxed acyclic programs
Here we present an extension of acyclic programs, called relaxed acyclic programs. Relaxed acyclic

programs support a restricted class of annotated disjunctions. They also support rules with overlap-
ping bodies. Relaxed acyclic programs are needed to encode the example from Section 4.4 and for
Proposition 4.2. We also generalize our BN encoding to relaxed acyclic programs. Observe that (1)
acyclic programs are also relaxed acyclic programs, and (2) all our results extend to relaxed acyclic
programs.

The key components of this new fragment are two syntactic transformations over ProbLog pro-
grams that preserve certain key aspects of the program’s structure. Intuitively, a ProbLog program
p is a relaxed acyclic program iff the program obtained from p by applying the transformations is
an acyclic ProbLog program. Finally, we develop a procedure for compiling any relaxed acyclic
ProbLog program into a poly-tree Bayesian Network. Since any acyclic program is a relaxed acyclic
program as well, this procedure can be applied also to acyclic programs.
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4.9.1.1 Rule Domination

Let r1 and r2 be two rules. Rule r1 is dominated by rule r2, written r1 v r2, iff: (a) head(r1) =
head(r2), (b) cstr(r1) = cstr(r2), (c) for all 1 ≤ i ≤ |body(r1)|, then pred(body(r1, i)) = pred(body(r2,
i)) and args(body(r1, i)) = args(body(r2, i)). We extend the domination relation also to atoms and
probabilistic atoms as follows: a1(c1) v a2(c1) iff a1 = a2 and c1 = c2, and v1::a1(c1) v v2::a2(c1) iff
v1 = v2, a1 = a2, and c1 = c2.

Given a program p and a rule r ∈ p, [r]vp denotes the set {r′ ∈ p | r′ v r}. We say that a rule r is
maximal in a program p, written maximal(r, p), iff there is no rule r′ ∈ p such that r v r′. The kernel
of [r]vp, denoted k([r]vp), is the rule r′ defined as follows: head(r′) = head(r), |body(r′)| = |body(r)|,
cstr(r′) = cstr(r), and for all 1 ≤ i ≤ |body(r′)|, then body(r′, i) = ai(ci) if for all rules r′′ ∈ [r]vp
(1) |body(r′′)| ≥ i and (2) body(r′′, i) is a positive literal and body(r′, i) = ¬ai(ci) otherwise, where
ai = pred(body(r, i)) and ci = args(body(r, i)).

The maximal projection of p, denoted p⇓v, is {k([r]vp) | r ∈ p ∧ maximal(r, p)}. The syntactic
transformation α, which removes all non-maximal rules, takes as input a ProbLog program p and
returns as output its maximal projection p⇓v.

4.9.1.2 Safe annotated disjunctions

We now present safe annotated disjunctions predicates, a special kind of probabilistic structures
that can be formalized using annotated disjunctions. While our fragment does not support the
unrestricted use of annotated disjunctions, as they may introduce cycles in the ground graph, safe
annotated disjunctions can be still encoded as poly-trees (using non-boolean random variables).
Notation. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, pr be a predicate
symbol in Σ of arity |pr |, p be a (Σ,dom)-ProbLog program, and K be a set of distinct integer
values such that for all i ∈ K, 1 ≤ i ≤ |pr |. Given a tuple t, we denote by t↓{i1,...,in} the tuple
〈t(i1), . . . , t(in)〉, where i1 ≤ i2 ≤ . . . ≤ in. The syntactic transformation ⇓pr,K is defined as follows:

• (pr(x))⇓pr,K is pr(x↓{1,...,|x|}\K),
• (pr ′(x))⇓pr,K is pr ′(x), where pr 6= pr ′,
• (v::a(x))⇓pr,K is v::(a(x)⇓pr,K),
• (¬a(x))⇓pr,K is ¬(a(x)⇓pr,K), and
• (h← l1, . . . , ln, c1, . . . , cn)⇓pr,K is h⇓pr,K ← l1⇓pr,K , . . . , ln⇓pr,K , c1, . . . , cn, and
• p⇓pr,K , where p is a program, is {r⇓pr,K | r ∈ p}.

Given (pr1,K1), . . . , (prn,Kn), the transformation ⇓(pr1,K1),...,(prn,Kn) is ⇓pr1,K1 ◦ . . . ◦ ⇓prn,Kn . Fi-
nally, given a partial function µ assigning to predicate symbols pr sets K ⊆ {1, . . . , |pr |}, the trans-
formation ⇓µ is ⇓(pr1,µ(pr1)),...,(prn,µ(prn), where pr1, . . . , prn are all predicate symbols for which µ is
defined.
Partitionings and CPT-schemas. Let p be a program.

An horizontal partitioning πH is a function taking as input a program p and a predicate symbol
pr and returning as output an element of 222rules(p)

such that the following conditions hold:
1. For all RR ∈ πH(p, pr) and for all R ∈ RR, RR 6= ∅ and R 6= ∅.
2. For all RR ∈ πH(p, pr), for all distinct R1 and R2 in RR, R1 ∩R2 = ∅.
3. For all distinct RR1 and RR2 in πH(p, pr),

⋃
R1∈RR1

R1 ∩
⋃
R2∈RR2

R2 = ∅.
4.
⋃

RR∈πH (p,pr)

⋃
R∈RR R = {r ∈ rules(p) | pred(head(r)) = pr}.

A vertical partitioning πV is a function that takes as input rules in p and returns as output a triple
〈row, sel, sw〉, where row, sel, and sw are sequences of literals, such that for each rule r ∈ rules(p),
πV (r) = 〈row, sel, sw〉 and row·sel·sw = body(r). A CPT-schema is a triple 〈πH , πV , µ〉 such that πH
is an horizontal partitioning, πV is a vertical partitioning, and µ is a total function associating to
each predicate symbol pr in p a set in 2N such that µ(pr) ⊆ {1, . . . , |pr |}.
K-fixed domain predicates. Let p be a program, pr be a predicate symbol, and K ⊆ {1, . . . , |pr |}
be a non-empty set. We say that pr is K-fixed domain with respect to p iff for all rules r ∈ p, the
following conditions hold: (1) if pred(head(r)) = pr , then args(head(r))↓K is a tuple in dom|K|,
and (2) if pred(body(r, j)) = pr , for some 1 ≤ j ≤ |body(r)|, then args(body(r, j))↓K is a tuple in
dom|K|. We denote by pdom(pr , p,K) the set of |K|-tuples representing all constant values associated
with the positions in K. Namely, pdom(pr , p,K) = {args(head(r))↓K | r ∈ p ∧ pred(head(r)) =
pr} ∪ {args(body(r, j))↓K | r ∈ p ∧ 1 ≤ j ≤ |body(r)| ∧ pred(body(r, j)) = pr}.
Switch predicates. Let p be a program. We say that a predicate symbol pr is a switch predicate
for p iff (1) there is no rule in rules(p) having pr in the head, (2) for any v::pr(c1) ∈ p, v 6= 0, and
(3) for any two ground atoms v1::pr(c1) ∈ p and v2::pr(c2) ∈ p, then v1 = v2.
Safe schemas. Let p be a program, 〈πH , πV , µ〉 be a CPT-schema for p, and T be the template
with all annotations that can be derived from p. We say that 〈πH , πV , µ〉 is a safe schema iff for all
pr in Σ such that µ(pr) 6= ∅ the following conditions hold:
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1. For all rules r ∈ p such that pred(head(r)) = pr , r is strongly connected for T and body(r) 6= ∅.
Note that this implies that there are no ground atoms pr(c) in p.

2. The predicate symbol pr is µ(pr)-fixed domain with respect to p.
3. For all RR ∈ πH(p, pr), the following conditions hold:

(a) For all R ∈ RR, the following conditions hold:
i. For any two distinct r1, r2 ∈ R, the following conditions hold:

A. row1 = row2 and sel1 = sel2, where πV (r1) = 〈row1, sel1, sw1〉 and πV (r2) =
〈row2, sel2, sw2〉.

B. x1↓K 6= x2↓K and x1↓{1,...,|pr|}\K = x2↓{1,...,|pr|}\K hold, where pr(x1) = head(r1),
pr(x2) = head(r2), and K = µ(pr).

ii. One of the following conditions hold:
A. There is an ordering r1, . . . , rn of the rules in R and switch predicates sw1, . . . ,

swn−1 such that (1) for all 1 ≤ i < n, pswi = ¬sw1(x1), . . . ,¬swi−1(xi−1), swi(xi),
and pswn = ¬sw1(x1), . . . ,¬swn−1(xn−1), where πV (ri) = 〈rowi, seli, pswi〉 and
xj = args(head(rj)) for 1 ≤ j ≤ n, and (2)

∑
1≤i≤n−1 p(i) = 1, where p(i) =

vi · (1−
∑

1≤j<i p(j)) and vi is the probability associated to the predicate symbol
swi in the program p.

B. There is an ordering r1, . . . , rn of the rules in R and switch predicates sw1, . . . ,
swn such that (1) for all 1 ≤ i ≤ n, pswi = ¬sw1(x1), . . . ,¬swi−1(xi−1), swi(xi),
where πV (ri) = 〈rowi, seli, pswi〉 and xj = args(head(rj)) for 1 ≤ j ≤ n, and (2)∑

1≤i≤n p(i) = 1, where p(i) = vi · (1 −
∑

1≤j<i p(j)) and vi is the probability
associated to the predicate symbol swi in the program p.

iii. For all r ∈ R, pred(head(r)) = pr , args(head(r))↓µ(pr) ∈ pdom(pr , p, µ(pr)), and
vars(head(r)) ⊆

⋃
l∈row∩body+(r) vars(l), where πV (r) = 〈row, sel, sw〉.

(b) For any two distinct R1, R2 ∈ RR, for all r1 ∈ R1 and r2 ∈ R2, where πV (r1) = 〈row1,
sel1, sw1〉 and πV (r2) = 〈row2, sel2, sw2〉, the following conditions hold:
i. args(head(r1))↓{1,...,|pr|}\µ(pr) = args(head(r2))↓{1,...,|pr|}\µ(pr).
ii. For all 1 ≤ i ≤ min(|row1|, |row2|), the following conditions hold:

A. pred(row1(i)) = pred(row2(i)).
B. args(row1(i))↓K1,i

= args(row2(i))↓K2,i
, where K1,i = {1, . . . , |pred(row1(i))|} \

µ(pred(row1(i))) and K2,i = {1, . . . , |pred(row2(i))|} \ µ(pred(row2(i))).
iii. There exists a 1 ≤ i ≤ min(|row1|, |row2|) such that one of the following conditions

hold:
A. µ(pred(row1(i))) 6= ∅, row1(i) is a positive literal, row2(i) is a positive literal,

and args(row1(i))↓K1,i
6= args(row2(i))↓K2,i

, where K1,i = µ(pred(row1(i))) and
K2,i = µ(pred(row2(i))).

B. µ(pred(row1(i))) = ∅, row1(i) is a positive literal, and row2(i) is a negative one or
vice versa.

(c) The set {k([r]vp) | r ∈
⋃
R∈RR R ∧maximal(r,

⋃
R∈RR R)} has cardinality 1.

4. For any two distinct RR1 and RR2 in πH(p, pr), the following conditions hold:
(a) For all R1 ∈ RR1, R2 ∈ RR2, r1 ∈ R1, and r2 ∈ R2, args(head(r1))↓{1,...,|pr|}\µ(pr) =

args(head(r2))↓{1,...,|pr|}\µ(pr).
(b) There is a disjointness annotation DIS(a, b) ∈ T and indexes i, j such that for all R1 ∈ RR1

and R2 ∈ RR2, all r1 ∈ R1 and all r2 ∈ R2, a(args(head(r1))↓{1,...,|pr|}\µ(pr)) = body+(r1,

i) and b(args(head(r2))↓{1,...,|pr|}\µ(pr)) = body+(r2, j).
(c) The set {k([r]vp) | r ∈

⋃
R1∈RR1

R1∪
⋃
R2∈RR2

R2∧maximal(r,
⋃
R1∈RR1

R1∪
⋃
R2∈RR2

R2)}
has cardinality 2.

Syntactic transformation. Let p be a program and 〈πH , πV , µ〉 be a CPT-schema for p. The
syntactic transformation β〈πH ,πV ,µ〉 takes as input a ProbLog program p and it returns as output
the program p′ := p⇓(pr1,µ(pr1)),...,(prn,µ(prn)), where pr1, . . . , prn are the predicate symbols in µ’s
domain. Note that p′ is defined on a different database schema than p. The program p′ is defined
over the reduced database schema obtained by applying β to the atoms in p.

4.9.1.3 Relaxed Acyclic ProbLog programs

Let p be a (Σ,dom)-ProbLog program. An acyclicity witness for a program p is safe CPT-
schema W = 〈πH , πV , µ〉 such that α(βW (p)) is an acyclic ProbLog program. We say that p is a
relaxed acyclic (Σ,dom)-ProbLog program iff there is an acyclicity witness W = 〈πH , πV , µ〉 for p.
We remark that an acyclic program is also a relaxed acyclic program (for any assignment 〈πH , πV , µ〉
such that µ(pr) = ∅ for any pr). Given a relaxed acyclic (Σ,dom)-ProbLog program p and a
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witness W , we associate to each rule r in α(βW (p)), the set [r]p,W of rules in p defined as follows:

[r]p,W :=
⋃

r′∈[r]vβW (p)

{r′′ ∈ p | βW (r′′) = r′}

The set [r]p,W contains all rules in p that are represented by the rule r in α(βW (p)).

4.9.1.4 Notation

Let p be a relaxed acyclic ProbLog program and W = 〈πH , πV , µ〉 be a witness for p. For
each atom a(x), we denote by a(c)↓p the atom obtained by applying the transformations α and βW ,
whereas we denote by a(x)↑p the constants not used in the transformed program, namely a(x)↑p is
x↓µ(a). Furthermore, given a rule r ∈ p (respectively a ground rule s ∈ ground(p, r)), we denote by
r↓p (respectively s↓p) the rule obtained by applying the transformations α and βW . If µ(a) = ∅,
then a(x)↑p = > and ¬a(x)↑p = ⊥.

4.9.1.5 Compilation to Bayesian Networks

Given a relaxed acyclic ProbLog program p, its encoding as a Bayesian Network BN = 〈N,E,
D,CPT,�〉, denoted bn(p), is defined by Algorithm 2. We remark that this encoding extends the
one we presented in Section 4.5 in two main aspects:

1. it supports safe annotated disjunctions by using non-boolean random variables (instead of just
using boolean random variables), and

2. it supports rules with overlapping bodies by encoding the semantics of multiple rules in the
conditional probability table of a single random variable (see the CPT auxiliary function in
Algorithm 4).

For simplicity, in the following we assume given the total ordering � over random variables in N .
Furthermore, we do not explicitly refer to each variable’s domain, as it can be immediately derived
from CPT . Hence, we refer to a Bayesian Network as a triple 〈N,E,CPT〉 instead of a 5-tuple
〈N,E,D,CPT,�〉. In Algorithm 2, given a ground rule s = h← l1, . . . , ln, e1, . . . , em, we denote by
pos(s) the rule h ← atom(l1), . . . , atom(ln), e1, . . . , em, where each negative literal is replaced with
the corresponding positive literal.

4.9.2 From relational calculus to logic programs
In the following, let D = 〈Σ,dom〉 be a database schema. Without loss of generality, we focus

only on relational calculus formulae φ where no distinct pair of quantifiers binds the same variable.
Normal Form. We say that a formula ψ ∧ ¬γ is guarded iff free(γ) ⊆ free(ψ). We say that a
relational calculus formula φ is in Normal Form (NF) iff (1) φ uses only existential quantifiers, (2)
negation is used only in sub-formulae of the form ψ ∧ ¬γ and it is always guarded, (3) for any sub-
formula ψ ∨ γ, free(ψ) = free(γ), (4) no distinct pair of quantifiers binds the same variable, and (5)
there are no equality and inequality constraints.

Most of the time, domain-independent relational calculus formulae can be easily written in NF by
just re-arranging sub-formulae. We remark that any domain-independent relational calculus formula
can be written in NF by (1) extending the database schema with two relations eq and neq encoding =
and 6= among constants in dom (this is always possible because dom is finite), (2) renaming the quan-
tified variables in a unique way, (3) replacing all universally quantified sub-formula ∀x.φe → ψ with
the equivalent existentially quantified version ¬∃x. φe ∧ ¬ψ, (4) replacing each negated sub-formula
¬ψ with the equivalent sub-formula (

∧
x∈free(ψ) adom(x))∧¬ψ, where adom(x) is

∨
R∈D

∨
1≤i≤|R| ∃x1,

. . . , xi−1, xi+1, . . . , x|R|. R(x1, . . . , xi−1, x, xi+1, . . . , x|R|), and (5) replacing sub-formulae of the form
ψ ∨ γ with the equivalent formula (

∧
x∈free(γ)\free(ψ) adom(x) ∧ ψ) ∨ (

∧
x∈free(ψ)\free(γ) adom(x) ∧ γ).

Note that the resulting NF formula is equivalent to the original one (because the rewriting does not
modify the formula’s semantics). Therefore, in the following we consider only NF relational calculus
formulae.
From Relational Calculus to Logic Programming. Let φ be a NF relational calculus sentence.
We denote by sub(φ) the sequence φ1, . . . , φn of all φ’s sub-formulae ordered from the smallest to the
largest, i.e., φn = φ, and by DIsub(φ) the sequence obtained by removing from the sequence sub(φ)
all formulae of the form ¬ψ. Since φ is in NF, all negated sub-formulae in φ appear only in NF in
the sequence DIsub(φ).

The function PL(φ) encodes any NF relational calculus sentence as a set of equivalent logic
programming rules. We associate a unique predicate symbol Hi and a set of rules r(Hi) to each ψi
in DIsub(φ) as follows:

• If ψi := xi 6= xj , then r(Hi) is {Hi(xi)← neq(xi, xj)}.
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Algorithm 2: Constructing the Bayesian Network. The sub-routines CPT is shown in Algo-
rithm 3, whereas the sub-routines tree and CPT⊕ are shown in Algorithm 4.

Input: A relaxed acyclic (Σ,dom)-ProbLog program p0 and a witness W = 〈πH , πV , µ′〉 for p0.
Output: A Bayesian Network 〈N,E,CPT〉.
.Transform the original program.
p = α(βW (p0))
.Initialize the domain of each predicate symbol.
D = ∅
for pr ∈ Σ do

if |µ′(pr)| > 0 then
D(pr) = pdom(pr , p0, µ(pr)) ∪ {⊥}

else
D(pr) = {>,⊥}

.Initialize the BN.
N = ∅
E = ∅
CPT = ∅
.Creates the nodes.
for r ∈ p do

for r′ ∈ ground(p, r) do
N = N ∪ {X[head(r′)]}
for a(c) ∈ body+(r′) do

N = N ∪ {X[a(c)]}
for ¬a(c) ∈ body−(r′) do

N = N ∪ {X[a(c)]}
for r ∈ p do

µ = ∅
for s ∈ ground(p, r) do

if head(s) 6∈ dom(µ) then
µ = µ[head(s) 7→ ∅]

µ(head(s)) = µ(head(s)) ∪ {pos(s)}
for a(c) ∈ dom(µ) do

N = N ∪ {X[r, a(c)]}
E = E ∪ {X[r, a(c)]→ X[a(c)]}
K = ∅
for I ∈ µ(a(c)) do

K = K ∪ {X[r, I, a(c)]}
if I = ∅ then

.Here, [r]p0,W = {r} and D(a) = {>,⊥}.
if ∃v. head(r) = v::a(c) then

prob = v
else

prob = 1
CPT(X[r, ∅, a(c)]) = (> 7→ prob,⊥ 7→ (1− prob))

else
for b(v) ∈ I do

E = E ∪ {X[b(v)]→ X[r, I, a(c)]}
for ¬b(v) ∈ I do

E = E ∪ {X[b(v)]→ X[r, I, a(c)]}
CPT(X[r, I, a(c)]) = CPT(I, r,D,W, p0)

〈N ′, E′,CPT ′〉 = tree(K,X[r, a(c)], D(a))
N = N ∪N ′
E = E ∪ E′
CPT = CPT ∪ CPT ′

.Set the CPT for the variables associated to the atoms.
for X[a(c)] ∈ N do

CPT(X[a(c)]) = CPT⊕(|{X[r, a(c)] ∈ N}|+ 1, D(a))
return 〈N,E,CPT〉
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Algorithm 3: Auxiliary functions used in Algorithm 2.
function CPT((a1(c1), . . . , an(cn)), r,D,W, p0)

A = D(a1)× . . .×D(an)×D(pred(head(r)))
CPT = ∅
for a ∈ A do

a′ = removeDuplicates((a1(c1), . . . , an(cn)), a)
if satisfiable(r, a,D,W, p0) ∧ ∀1 ≤ i, j ≤ n. ((i 6= j ∧ ai(ci) = aj(cj))→ a(i) = a(j)) then

CPT = CPT ∪ {a′ 7→ 1}
else

CPT = CPT ∪ {a′ 7→ 0}
return CPT

function satisfiable(r, (v1, . . . , vn), D,W, p0)
if vn 6= ⊥ then

.At least one satisfiable assignment.
res = ⊥
for r′ ∈ [r]p0,W do

if filter(head(r′), D, µ) = vn then
sat = >
for 1 ≤ i ≤ |body(r′)| do

if vi 6∈ filter(body(r′, i), D, µ) then
sat = ⊥

res = res ∨ sat
return res

if vn = ⊥ then
.All assignments must be unsatisfiable.
res = ⊥
for r′ ∈ [r]p0,W do

sat = >
for 1 ≤ i ≤ |body(r′)| do

if vi 6∈ filter(body(r′, i), D, µ) then
sat = ⊥

res = res ∨ sat
return ¬res

function filter(l, D, 〈πH , πV , µ〉)
if ∃a ∈ Σ, x ∈ (Var ∪ dom)|a|. l = a(x) then

if µ(pred(l)) 6= ∅ then
return {args(l)↓µ(pred(l))}

else
return {>}

if ∃a ∈ Σ, x ∈ (Var ∪ dom)|a|. l = ¬a(x) then
if µ(pred(l)) 6= ∅ then

return (D(pred(l)) \ {args(l)↓µ(pred(l))}) ∪ {⊥}
else

return {⊥}
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Algorithm 4: Auxiliary functions used in Algorithm 2.
function CPT⊕(n,D)

.If D 6= {>,⊥}, then n = 2 (since the program is relaxed-acyclic).
if D 6= {>,⊥} ∧ n = 2 then

CPT = ∅
for (v1, v2) ∈ D2 do

if v1 = v2 then
CPT = CPT ∪ {(v1, v2) 7→ 1}

else
CPT = CPT ∪ {(v1, v2) 7→ 0}

return CPT
if D = {>,⊥} then

E = {>,⊥}n
CPT = ∅
for (v1, . . . , vn) ∈ E do

K = {vi | 1 ≤ i ≤ n− 1 ∧ vi = >}
if (vn = > ∧K 6= ∅) ∨ (vn = ⊥ ∧K = ∅) then

CPT = CPT ∪ {v 7→ 1}
else

CPT = CPT ∪ {v 7→ 0}
return CPT

function tree(X, root, D)
p = nil
N = X
E = ∅
CPT = ∅
X′ = ∅
if X = {x} then

N = N ∪ {root}
E = E ∪ {x→ root}
CPT(root) = CPT⊕(2, D)

else
for v ∈ X do

if p = nil then
p = v

else
X′ = X′ ∪ {X[p, v]}
N = N ∪ {X[p, v]}
E = E ∪ {p→ X[p, v], v → X[p, v]}
CPT(X[p, v]) = CPT⊕(3, D)
p = nil

if p 6= nil then
X′ = X′ ∪ {p}

〈N ′, E′,CPT ′〉 = tree(X′, root, D)
return 〈N ∪N ′, E ∪ E′,CPT ∪ CPT ′〉
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• If ψi := xi = xj , then r(Hi) is {Hi(xi)← eq(xi, xj)}.
• If ψi := R(xi), for some R ∈ Σ, then r(Hi) is {Hi(xi)← R(xi)}, where xi are ψi’s free variables.
• If ψi := ψj ∧¬ψk, then r(Hi) is {Hi(xi)← Hj(xj),¬Hk(xk)}, where xi are ψi’s free variables,
xj are ψj ’s free variables, and xk are ψk’s free variables (note that xi = xj and xk ⊆ xj).

• If ψi = ψj ∧ ψk, then r(Hi) is {Hi(xi)← Hj(xj), Hk(xk)}, where xi are ψi’s free variables, xj
are ψj ’s free variables, and xk are ψk’s free variables.

• If ψi = ψj ∨ ψk, then r(Hi) contains the rules Hi(xi) ← Hj(xi) and Hi(xi) ← Hk(xi) (note
that free(ψi) = free(ψj) = free(ψk)).

• If ψi = ∃x. ψj , then r(Hi) is {Hi(xi) ← Hj(xj)}, where xi are ψi’s free variables and xj are
ψj ’s free variables (i.e., those in xi and x).

Additionally, we add ground atoms encoding the equality and inequality relations eq and neq. Fur-
thermore, we denote by head(φ) the predicate symbol associated to ψm.

4.9.3 Acyclicity of the medical data example
We now show, step by step, that the ProbLog program we presented in Section 4.4, which

captures the motivating example from Section 4.1, is a relaxed acyclic program.
Original program. For simplicity, we report here the rules defining the original ProbLog program.

1/20::cancer(x)← patient(x)
5/19::cancer(x)← smokes(x)
3/14::cancer(y)← father(x, y), cancer(x),mother(z, y),¬cancer(z)
3/14::cancer(y)← father(x, y),¬cancer(x),mother(z, y), cancer(z)
3/7::cancer(y)← father(x, y), cancer(x),mother(z, y), cancer(z)

We do not fix the set of ground atoms. Instead, below we present a set of requirements for acyclicity.
Removing syntactic sugar. The first step is removing the syntactic sugar, which, in this case,
consists of the probabilistic rules. We do so exactly as specified in Section 4.4. We therefore obtain
the following program:

1/20::sw1(_)
5/19::sw2(_)
3/14::sw3(_)
3/7::sw4(_)

cancer(x)← patient(x), sw1(x)
cancer(x)← smokes(x), sw2(x)
cancer(y)← father(x, y),mother(z, y), cancer(x),¬cancer(z), sw3(y)
cancer(y)← father(x, y),mother(z, y),¬cancer(x), cancer(z), sw3(y)
cancer(y)← father(x, y),mother(z, y), cancer(x), cancer(z), sw4(y)

Some rewriting. The last three rules in the above program use the same predicate symbols in their
first four literals. However, they differ on the last literal, since the first two rules use sw3(y) while
the last one uses sw4(y). We thus rewrite the program in an equivalent way:

1/20::sw1(_)
5/19::sw2(_)
3/14::sw3(_)
3/7::sw4(_)

cancer(x)← patient(x), sw1(x)
cancer(x)← smokes(x), sw2(x)
cancer(y)← father(x, y),mother(z, y), cancer(x),¬cancer(z), sw3(y)
cancer(y)← father(x, y),mother(z, y),¬cancer(x), cancer(z), sw3(y)
cancer(y)← father(x, y),mother(z, y), cancer(x), cancer(z), sw3(y), sw4(y)
cancer(y)← father(x, y),mother(z, y), cancer(x), cancer(z),¬sw3(y), sw4(y)

In the above program, we replaced the rule cancer(y)← father(x, y),mother(z, y), cancer(x), cancer(z),
sw4(y) with the two rules cancer(y)← father(x, y),mother(z, y), cancer(x), cancer(z), sw3(y), sw4(y)
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Figure 4.11: Dependency graph for the program capturing the motivating
example in Section 4.1.

and cancer(y) ← father(x, y),mother(z, y), cancer(x), cancer(z),¬sw3(y), sw4(y). This does not
modify the program’s semantics.
Syntactic transformations. By applying the syntactic transformation for relaxed acyclic programs
(see Section 4.9.1), we obtain the following program:

1/20::sw1(_)
5/19::sw2(_)
3/14::sw3(_)
3/7::sw4(_)

cancer(x)← patient(x), sw1(x)
cancer(x)← smokes(x), sw2(x)
cancer(y)← father(x, y),mother(z, y),¬cancer(x),¬cancer(z),¬sw3(y), sw4(y)

In the above transformation we considered a CPT-schema 〈πV , πH , µ〉 such that µ(pr) = ∅ for any
predicate symbol. Note that such a CPT-schema is always safe.

The dependency graph of this program is depicted in Figure 4.11, where r1 denotes cancer(x)←
patient(x), sw1(x), r2 denotes the rule cancer(x) ← smokes(x), sw2(x), and r3 denotes the rule
cancer(y)← father(x, y),mother(z, y),¬cancer(x),¬cancer(z),¬sw3(y), sw4(y).
Restrictions and annotations. To ensure that the parent-child relationship forms a poly-tree,
we require that (1) each patient has at most one son, and (2) the relations induced by father and
mother form a (strict) partial order. Furthermore, we require that the father and mother rela-
tions are disjoint. Whenever the ground atoms in the program satisfy these conditions, we can
derive the annotations UNQ(father , {1}), UNQ(father , {2}), UNQ(mother , {1}), UNQ(mother , {2}),
ORD({father ,mother}), and DIS(father ,mother) from the program.
Relaxed Acyclicity. We now show that the program is relaxed acyclic. First, we observe that all
rules in the program are both weakly and strongly connected. Hence, all undirected structures of the
form 〈P, P, ε, ε〉 and 〈ε, P, P, ε〉, where P is a directed path in the dependency graph, are guarded.
Therefore, any undirected cycle involving predicates other than cancer is immediately guarded (see
Proposition B.8 in Appendix B).

Second, consider an undirected cycle, which is not a directed cycle, that involves only the predicate
symbol cancer . For simplicity, we consider only cycles consisting of 2 distinct paths, denoted P1 and
P2, of length 1. There are two possible cases:

1. P1 = cancer r3,3−−→ cancer and P2 = cancer r3,4−−→ cancer . The cycle is guarded by the structure
〈cancer r3,3−−→ cancer , cancer r3,4−−→ cancer , ε, ε〉 (since we can derive the annotation DIS(father ,
mother)).

2. P1 = cancer r3,4−−→ cancer and P2 = cancer r3,3−−→ cancer . The cycle is guarded by the structure
〈cancer r3,4−−→ cancer , cancer r3,4−−→ cancer , ε, ε〉 (since we can derive the annotation DIS(father ,
mother)).

Hence, all undirected cycles consisting of two paths of length 1 are guarded. We can extend this
result to all undirected cycles (without restrictions) using Proposition B.8 from Appendix B.

Third, consider the two directed cycles C1 = cancer r3,3−−→ cancer and C2 = cancer r3,4−−→ cancer .
Both are guarded, since we can derive ORD({father ,mother}). Furthermore, any directed cycle can
be obtained only by combining C1 and C2. From this and Proposition B.9 from Appendix B, it
follows that all directed cycles are guarded.
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Child
Mother Father CC CT TT
CC CC 1 0 0
CC CT 1/2 1/2 0
CC TT 0 1 0
CT CC 1/2 1/2 0
CT CT 1/4 1/2 1/4
CT TT 0 1/2 1/2
TT CC 0 1 0
TT CT 0 1/2 1/2
TT TT 0 0 1

Figure 4.12: Probability distribution for a child’s genome given his parents’
genome, for a fixed position.

Since all directed and undirected cycles are guarded, the program is relaxed acyclic.

4.9.4 Genomic Data Example
We first present an overview of our example. Afterwards, we encode it in ProbLog, and we

show how it can be represented as a relaxed acyclic program. Finally, we present some experimental
results obtained with Angerona.

4.9.4.1 Overview

Genomic data is extremely sensitive. From an individual’s genome, one can derive his predispo-
sition to different diseases and his relationship to other persons. At the same time, genomic data is
becoming increasingly available in hospitals, research centres, and online [1, 2, 5]. It is thus essential
to understand how to secure genomic databases.

We now briefly summarize relevant aspects of genomics, see [42,109] for an in-depth introduction
to the topic. A chromosome is a string of DNA consisting of a sequence of complementary nucleotide
pairs, where each pair consists either of Adenine (A) and Thymine (T), or Cytosine (C) and Guanine
(G). Each cell’s genetic material is stored in 23 pairs of chromosomes, where in each pair one of the
chromosomes derives from the corresponding maternal chromosome and the other derives from the
paternal one. Figure 4.12 illustrates the probabilistic model defined by Mendel’s inheritance laws.

Humans have 99.9% of their DNA in common. Hence, what characterizes and differentiates us are
the variations in our DNA. The most common variation is called Single Nucleotide Polymorphism
(SNP), which occurs when a nucleotide (at a specific position) varies among the individuals in a
population. SNPs are related to the susceptibility to various diseases, and therefore information
about SNPs, precise or probabilistic, is sensitive. For instance, the SNP rs11200638 in the HTRA1
promoter is associated with a 10-fold increased risk of age-related macular degeneration [104].

A simple example of a database for storing and querying patients’ genomic data is as follows. The
database contains: a table patient storing the patients’ information; a table doctor storing the doctors’
information; a table patientof, with two attributes doctor and patient, associating the doctors with the
patients they treat; a table genome, with four attributes patient, position, value1, and value2, storing
the genomic data in the form of SNPs; and tables father and mother, with two attributes parent
and child, representing the parent-child relationships. This database is shared between different
doctors and each doctor can access only the information associated with the patients he is treating.
Furthermore, each doctor has access to the tables father, mother, and patient.

Controlling probabilistic inference is critical in this scenario. Restricting direct access to the
genome of the patients not treated by a doctor, for instance by granting to each doctor d access to a
view genomed disclosing only the genome of d’s patients, is insufficient to prevent a malicious doctor
from inferring sensitive information about patients that he is not treating. For instance, suppose
that a malicious doctor d is treating both Alice and Bob but not Carl, which is Alice and Bob’s
son. Suppose too that the nucleotide pair associated with the age-related macular disease is TT for
Alice and CT for Bob. The doctor can use this information to infer that Carl has nucleotide TT
with probability 50% for the position associated with age-related macular disease and is, therefore,
10 times more likely to suffer from the disease. Securing the database requires restricting direct and
indirect access and reasoning about the probabilistic dependencies among the data.

4.9.4.2 Encoding

Original program. We encode the probability distribution associated with the Mendel’s inheritance
laws in ProbLog. We assume given the tables patient, father, and mother (denoted respectively P ,
F , and M). Furthermore, we assume that there are two auxiliary tables withParents and noParents
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(denoted WP and NP respectively), which represent whether a patient’s parents are in the database
or not. Finally, we assume that the content of the above tables is the same in all possible states. The
content of these tables can be encoded using ground non-probabilistic facts.

In contrast, the content of the genome table (denoted by G) follows the probability distribution
shown in Figure 4.12. For simplicity, we assume that patients either have both parents in the database
or neither of them, and in all possible database states, all patients have an entry in the genome table.
For the patients without parents in the database, the three possible values are uniformly distributed.
This is represented using the rule:

1/3::G(x, p, C, C); 1/3::G(x, p, C, T); 1/3::G(x, p, T, T)← P (x),NP(x)

In contrast, for patients with both parents in the database, the possible values are distributed ac-
cording to Mendel’s laws:

G(x, p, C, C)←WP(x), F (f, x), G(f, p, C, C),M(m,x), G(m, p, C, C)
1/2::G(x, p, C, C); 1/2::G(x, p, C, T)←WP(x), F (f, x), G(f, p, C, C),M(m,x), G(m, p, C, T)

G(x, p, C, T)←WP(x), F (f, x), G(f, p, C, C),M(m,x), G(m, p, T, T)
1/2::G(x, p, C, C); 1/2::G(x, p, C, T)←WP(x), F (f, x), G(f, p, C, T),M(m,x), G(m, p, C, C)

1/4::G(x, p, C, C); 1/2::G(x, p, C, T); 1/4::G(x, p, T, T)←WP(x), F (f, x), G(f, p, C, T),M(m,x), G(m, p, C, T)
1/2::G(x, p, C, T); 1/2::G(x, p, T, T)←WP(x), F (f, x), G(f, p, C, T),M(m,x), G(m, p, T, T)

G(x, p, C, T)←WP(x), F (f, x), G(f, p, T, T),M(m,x), G(m, p, C, C)
1/2::G(x, p, C, T); 1/2::G(x, p, T, T)←WP(x), F (f, x), G(f, p, T, T),M(m,x), G(m, p, C, T)

G(x, p, T, T)←WP(x), F (f, x), G(f, p, T, T),M(m,x), G(m, p, T, T)

In the rules, we use annotated disjunctions to encode the probability distribution, once the parents’
genome is fixed.
Remove syntactic sugar. We now rewrite the program by removing all syntactic sugar, i.e.,
probabilistic rules and annotated disjunctions. We refer the reader to Section 4.4 for a discussion
about how to encode these features in plain ProbLog. Note that we also perform some minor
simplifications on the de-sugared program.

1/3::sw1(_)
1/2::sw2(_)
1/2::sw3(_)
1/2::sw4(_)
G(x, C, C)← P (x),NP(x), sw1(x, C, C)
G(x, C, T)← P (x),NP(x),¬sw1(x, C, C), sw2(x, C, T)
G(x, T, T)← P (x),NP(x),¬sw1(x, C, C),¬sw2(x, C, T)
G(x, C, C)←WP(x), F (f, x), G(f, C, C),M(m,x), G(m, C, C)
G(x, C, T)←WP(x), F (f, x), G(f, C, C),M(m,x), G(m, C, T), sw3(x, C, T)
G(x, C, C)←WP(x), F (f, x), G(f, C, C),M(m,x), G(m, C, T),¬sw3(x, C, T)
G(x, C, T)←WP(x), F (f, x), G(f, C, C),M(m,x), G(m, T, T)
G(x, C, T)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, C, C), sw3(x, C, T)
G(x, C, C)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, C, C),¬sw3(x, C, T)
G(x, C, T)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, C, T), sw3(x, C, T)
G(x, C, C)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, C, T),¬sw3(x, C, T), sw4(x, C, C)
G(x, T, T)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, C, T),¬sw3(x, C, T),¬sw4(x, C, C)
G(x, C, T)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, T, T), sw3(x, C, T)
G(x, T, T)←WP(x), F (f, x), G(f, C, T),M(m,x), G(m, T, T),¬sw3(x, C, T)
G(x, C, T)←WP(x), F (f, x), G(f, T, T),M(m,x), G(m, C, C)
G(x, C, T)←WP(x), F (f, x), G(f, T, T),M(m,x), G(m, C, T), sw3(x, C, T)
G(x, T, T)←WP(x), F (f, x), G(f, T, T),M(m,x), G(m, C, T),¬sw3(x, C, T)
G(x, T, T)←WP(x), F (f, x), G(f, T, T),M(m,x), G(m, T, T)

Syntactic transformations. By applying the syntactic transformation for relaxed acyclic programs
(see Section 4.9.1), we obtain the following program (observe that the rules defining the predicate G
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Figure 4.13: Dependency graph for the genomic data example.

are safe annotated disjunctions):

1/3::sw1(_)
1/2::sw2(_)
1/2::sw3(_)
1/2::sw4(_)

G(x)← P (x),NP(x),¬sw1(x, C, C),¬sw2(x, C, T)
G(x)←WP(x), F (f, x), G(f),M(m,x), G(m),¬sw3(x, C, T),¬sw4(x, C, C)

The dependency graph of this program is shown in Figure 4.13, where r1 denotes the rule G(x) ←
P (x),NP(x),¬sw1(x, C, C),¬sw2(x, C, T) and r2 denotes the rule G(x)←WP(x), F (f, x), G(f),M(m,
x), G(m),¬sw3(x, C, T),¬sw4(x, C, C).
Restrictions and annotations. We make the following assumptions on the set of ground atoms:

1. To ensure that the parent-child relationship forms a poly-tree, we require that (1) each patient
has at most one son, and (2) the relations induced by F and M form a (strict) partial order.

2. We require that the F and M relations are disjoint.
3. We require that the WP and NP relations are disjoint. Furthermore, we require that these

relations capture their intuitive semantics (e.g., a patient belongs to NP iff he has no parents
in the database).

Whenever the ground atoms in the program satisfy these conditions, we can derive the annotations
UNQ(F, {1}), UNQ(F, {2}), UNQ(M, {1}), UNQ(M, {2}), ORD({F,M}), DIS(F,M), and DIS(WP,
NP) from the program. Note that we can also derive other annotations, such as UNQ(G, {1}).
Relaxed Acyclicity. We can finally show that the program is relaxed acyclic. Observe that all
rules in the program are both weakly and strongly connected. Hence, all undirected structures
of the form 〈P, P, ε, ε〉 (and 〈ε, P, P, ε〉), where P is a directed path in the dependency graph, are
guarded. Therefore, any undirected cycle involving predicates other than G is immediately guarded.
Similar to Section 4.9.3, for undirected cycles that involve only G, the acyclicity directly follows
from the annotations DIS(F,M) and DIS(WP,NP). Additionally, consider the two directed cycles
C1 = G r2,3−−→ G and C2 = G r2,5−−→ G. Both are guarded, since we can derive ORD({F ,M}).
Furthermore, any directed cycle can be obtained only by combining C1 and C2. From this and
Proposition B.9 from Appendix B, it follows that all directed cycles are guarded. Since all directed
and undirected cycles are guarded, the program is relaxed acyclic.

4.9.4.3 Experiments

We run our experiments on a PC with an Intel i7 processor and 32GB of RAM. We consider
the database schema and the probabilistic model we presented in the previous section. For our
experiments, we generate synthetic belief programs containing 100 to 10,000 patients and for each of
these instances, we generate 100 random literal queries extracting information from the genome table.
For each instance and sequence of queries, we check the security of each query with our prototype,
against a policy containing 100 randomly generated secrets specified as literal queries (note that the
secrets are specified against the genome table). Note that in our experiments we repeated the above
process 5 times, i.e., we generated 5 synthetic belief programs per data point and, for each of the
programs, we generated random queries and policies. The average execution time for our experiments
is shown in Figure 4.14. After the generation of the BN, Angerona takes under 100 milliseconds
on average, even for our larger examples, to check a query’s security, whereas the grounding time is
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Figure 4.14: Angerona execution time in seconds.

less than 1.5 minutes on our largest examples. We remark that the grounding process is done off-line
and just once.
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Part III

Beyond SELECT-only attackers
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Chapter 5

A Formal Model of Databases

Surely we want solid foundations. What
kind of castle can we build on sand? What
is the point of devoting effort to balconies
and minarets, if the foundation may be so
weak as to allow the structure to collapse
of its own weight? We want our
foundations set on bedrock, designed to last
for generations. Who would want an
architect who cannot certify the soundness
of the foundations of his buildings?

Henry E. Kyburg – Why do we need
foundations for modelling uncertainties?

Reasoning about the security of database access control mechanisms requires a formal model
of database systems. Such a formal model specifies how the database behaves in response to user
commands, and, ultimately, it will serve as a basis for the security proofs.

Existing DBAC works, however, either consider very simplistic formal models [131, 165], which
account only for SELECT queries, or do not provide any formal model at all [8, 41, 145]. To address
this, we present a formal operational semantics of database systems. In contrast to existing models,
our semantics supports advanced database features like triggers and views. As we show in Chapter 6,
the advanced features supported by our model are security-critical, and attackers can exploit them
to violate a database’s confidentiality and integrity. Note that this chapter is largely based on [87].
Structure. We informally present our system model together with the features supported by our
formal model in Section 5.1. In Section 5.2, we formalize our database model as well as the other
supported features, such as triggers and views. Finally, Section 5.3 presents our operational semantics
of database systems.

5.1 Overview

Here, we overview our system model, and we present the supported features and commands.

5.1.1 System Model

Access Control System
Users Database System

Figure 5.1: System model.

In our system model, shown in Figure 5.1, users interact with two components: a database system
and an access control system. The access control system contains both a policy enforcement point
and a policy decision point. We assume that all the communication between the users and the
components is over secure channels.
Database System. The database system (or database for short) manages the data. The data-
base’s state is represented by a mapping from relation schemas to sets of tuples. We assume that all
database operations are atomic.
Users. Users interact with the database where each command is checked by the access control
system. Each user has a unique account through which he can issue commands. We overview the
main features supported by our formal model in Section 5.1.2.
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SqlStmt := SelectStmt | SqlBasicStmt | CreateTrigger | CreateView | AddUser
SqlBasicStmt := InsertStmt | DeleteStmt | GrantStmt | RevokeStmt
SelectStmt := SELECT ϕ | SELECT {x | ϕ}
InsertStmt := INSERT INTO tableId VALUES (valueList)
valueList := const | valueList , const
DeleteStmt := DELETE FROM tableId WHERE restrictedExpr
restrictedExpr := varId = const | restrictedExpr AND varId = const
GrantStmt := GRANT privilege TO userId (WITH GRANT OPTION )
RevokeStmt := REVOKE privilege FROM userId WITH CASCADE
AddUser := ADD USER userId
privilege := SELECT ON (tableId | viewId) | CREATE VIEW |

( INSERT | DELETE | CREATE TRIGGER ) ON tableId
CreateTrigger := CREATE TRIGGER triggerId WITH EXECUTE AS ( OWNER | ACTIVATOR )

AFTER ( INSERT | DELETE ) ON tableId WHEN SelectStmt DO SqlBasicStmt
CreateView := CREATE VIEW viewId WITH EXECUTE AS ( OWNER | ACTIVATOR ) AS SelectStmt

Figure 5.2: Syntax of the supported commands.

The system administrator is a distinguished user responsible for defining the database schema and
the initial security policy. In addition to issuing queries and commands, he can create user accounts
and assign them to users. The administrator interacts with the access control system through a
special account admin.
Access Control System. The access control system protects the confidentiality and integrity of
the data in the database. It is configured with a security policy S, it intercepts all commands issued
by the users, and it prevents the execution of commands that are not authorized by S. When a user
u issues a command c, the access control system decides whether u is authorized to execute c. If
c complies with the policy, then the access control system forwards the command to the database
system, which executes c and returns its result to u. Otherwise, it raises a security exception and
rejects c. Note that this corresponds to the Non-Truman model [131]. The access control system
also logs all issued commands. When evaluating a command, the access control system can access
the database’s current state and the log.

5.1.2 Supported features
In this chapter, we consider the following SQL features: SELECT, INSERT, DELETE, GRANT, REVOKE,

CREATE TRIGGER, CREATE VIEW, and ADD USER commands. Figure 5.2 presents the syntax of the SQL
fragment corresponding to the commands supported by our operational semantics. The fragment’s
syntax is loosely inspired by Transact-Sql, the SQL’s dialect supported by Microsoft SQL Server.
Observe that the supported fragment contains the most common SQL commands for data manipu-
lation and access control as well as the core commands for creating triggers and views. The ideas
and the techniques presented in this chapter (and in the subsequent ones) are general and can be
extended to the entire SQL standard.

Users can retrieve information from the database using SELECT commands. Rather than using
SQL, however, we formalize queries using the relational calculus (RC ), which has a simple and
well-defined semantics (see Section 2.2).

We support changes to the database security policy through GRANT and REVOKE commands. In
particular, we support GRANT commands to add permissions to the security policy. We also support
delegation through GRANT commands with GRANT OPTION. Finally, privileges can be revoked using
REVOKE commands with the CASCADE OPTION, i.e., when a user revokes a privilege, he also revokes
all the privileges that depend on it [137, 162]. Namely, when a user u revokes a privilege p (which
has been granted before with GRANT OPTION) from a user u′, the system automatically revokes all
the privileges that u′ has further delegated to other users. This check is recursively applied for each
revoked privilege with GRANT OPTION, leading to the revocation of all dependent privileges.

Users can modify the database’s content using INSERT and DELETE commands. Specifically, we
support INSERT and DELETE commands that explicitly identify the tuple to be inserted or deleted,
i.e., commands of the form INSERT INTO table(x1, . . . , xn) VALUES (v1, . . . , vn) and DELETE FROM table
WHERE x1 = v1 ∧ . . . ∧ xn = vn, where x1, . . . , xn are table’s attributes and v1, . . . , vn are the tuple’s
values. More complex INSERT and DELETE commands, as well as UPDATEs, can be simulated by
combining SELECT, INSERT, and DELETE commands.

Our model also supports triggers, which are procedures automatically executed by the database
system in response to user commands. In particular, we support only AFTER triggers on INSERT and
DELETE events, i.e., triggers that are executed in response to INSERT and DELETE commands. Our
operational semantics supports triggers that are executed either under the privileges of the trigger’s
owner or under the privileges of the user that executed the command that activated the trigger. The
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triggers’ WHEN conditions are arbitrary boolean queries and their actions are GRANT, REVOKE, INSERT, or
DELETE commands. Note that database systems usually impose severe restrictions on the WHEN clause,
such as it must not contain sub-queries. However, most database systems can express arbitrary con-
ditions on triggers by combining control flow statements with SELECT commands inside the trigger’s
body. Thus, we support the class of triggers whose body is of the form BEGIN IF expr THEN act END,
where act is either a GRANT, REVOKE, INSERT, or DELETE command.

Finally, we support views with both the owner’s privileges and the activator’s privileges. Ad-
ditionally, we support CREATE commands for creating new triggers and views as well as ADD USER
commands to create new user accounts. We also support two kinds of integrity constraints: func-
tional dependencies and inclusion dependencies [10]. They model the most widely used families of
SQL integrity constraints, namely the UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints.

5.2 Formal Database Model

We now formalize databases including features like views, security policies, and triggers. Our
formalization of databases and queries follows Chapter 2, and our security policies formalize SQL
policies. In the following, let U , V, and T be mutually disjoint, countably infinite sets, respectively
representing identifiers of users, views, and triggers. Furthermore, we assume that R ∩ U = ∅,
R∩ V = ∅, and R∩ T = ∅, where R is the set of relation identifiers from Section 2.2.1.

5.2.1 Databases and Queries
We use the database model presented in Section 2.2. Furthermore, we use the Relational Calculus

as query language (see Section 2.2.2). We also support integrity constraints. In this respect, we con-
sider only functional and inclusion dependencies. Recall that functional dependencies are sentences
of the form ∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) → y = y′), whereas inclusion dependencies are
sentence of the form ∀x, y. (R(x, y)→ ∃z. S(x, z)).

5.2.2 Views
Let D be a schema. A view V over D is a tuple 〈id, o, q, m〉, where id ∈ V is the view identifier,

o ∈ U is the view’s owner, q is the non-boolean query over D defining the view, and m ∈ {A,O}
is the security mode, where A stands for activator’s privileges and O stands for owner’s privileges.
Note that the query q may refer to other views. We assume, however, that views have no cyclic
dependencies between them. We denote by VIEWD the set of all views over D.

The materialization of a view 〈V, o, q,m〉 in a state s, denoted by s(V ), is [q]s. We extend the
relational calculus in the standard way to work with views [10]. Namely, we treat the view materi-
alization in the current database state as the relation associated with the corresponding predicate
symbol.

Given a view v, we denote v’s owner by owner(v). Moreover, given a formula φ, we denote by
tables(φ) the set of tables occurring in the formula φ′, where φ′ is obtained from φ by (recursively)
replacing all views with their definitions. Let D be a database schema and V be a set of views over D.
A query q is defined over D and V , denoted by defined(q,D, V ), iff q refers only to relation schemas
in D and views in V . Moreover, a view v is defined over D and V , denoted by defined(v,D, V ), iff
the query specifying v is defined over D and V .

5.2.3 Security Policies
We now formalize the SQL access control model [137,162]. We first formalize five privileges. Let

D be a database schema. A SELECT privilege over D is a tuple 〈SELECT, R〉, where R is a relation
schema in D or a view over D. A CREATE VIEW privilege over D is a tuple 〈CREATE VIEW〉. An INSERT
privilege over D is a tuple 〈INSERT, R〉, a DELETE privilege over D is a tuple 〈DELETE, R〉, and a CREATE
TRIGGER privilege over D is a tuple 〈CREATE TRIGGER, R〉, where R is a relation schema in D. We
denote by PRIVD the set of privileges over D. Given a database schema D and a set of views V
over D, we say that a privilege p is defined over D and V , denoted by defined(p,D, V ), iff p refers
only to tables and views in D and V .

Following SQL, we use GRANT commands to assign privileges to users. Let U ⊆ U be a set of users
and D be a database schema. We now define (U,D)-grants and (U,D)-revokes. There are two types
of (U,D)-grants. A (U,D)-simple grant is a tuple 〈⊕, u, p, u′〉, where u ∈ U is the user receiving the
privilege p ∈ PRIVD and u′ ∈ U is the user granting this privilege. A (U,D)-grant with grant option
is a tuple 〈⊕∗, u, p, u′〉, where u, p, and u′ are as before. A (U,D)-revoke is a tuple 〈	, u, p, u′〉,
where u ∈ U is the user from which the privilege p ∈ PRIVD will be revoked and u′ ∈ U is the user
revoking this privilege. We denote by Ωsec

U,D the set of all (U,D)-grants and (U,D)-revokes. A grant
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〈⊕, u, p, u′〉 models the command GRANT p TO u issued by u′, a grant with grant option 〈⊕∗, u, p, u′〉
models the command GRANT p TO u WITH GRANT OPTION issued by u′, and a revoke 〈	, u, p, u′〉 models
the command REVOKE p FROM u CASCADE issued by u′.

Finally, we define a (U,D)-security policy S as a finite set of (U,D)-grants. We denote by SU,D
the set of all (U,D)-policies.

In the following, we formalize the semantics of GRANT and REVOKE commands, i.e., how their
execution modifies the security policy.
Semantics of GRANT commands. Executing a GRANT command 〈⊕, u, p, u′〉 on a security policy S
simply amounts to adding the GRANT to the policy, i.e., S ∪{〈⊕, u, p, u′〉}. The same holds for GRANTs
with grant option.
Semantics of REVOKE commands. We now define the function revoke that models the semantics
of SQL’s REVOKE statements with cascade. In the following, let S be a security policy and p be a
privilege. A chain is a sequence of grants g1·g2· . . . ·gn such that (1) there is a user identifier u and
an op ∈ {⊕,⊕∗} such that g1 = 〈op, u, p, start〉, (2) if p 6= 〈SELECT, V 〉, where V is a view with
owner’s privileges, then start = admin, and start ∈ {admin, owner(V )} otherwise, and (3) for each
1 ≤ i ≤ n − 1, there are user identifiers u, u′, u′′ and an op ∈ {⊕,⊕∗} such that gi = 〈⊕∗, u′, p, u〉
and gi+1 = 〈op, u′′, p, u′〉. The function chain : SU,D → 2Ωsec

U,D
∗
, which takes as input a policy S and

constructs all possible chains, is the smallest function satisfying the following recurrence relation:

chain(S) ={〈op, u, p, u′〉 ∈ S | u′ = admin}∪
{〈op, u, 〈SELECT, V 〉, u′〉 ∈ S | V = 〈v, o, q, O〉 ∧ u′ = o}∪⋃
G∈chain(S)

{G·g | g ∈ S ∧ g = 〈op, u, p, u′〉 ∧G(|G|) = 〈⊕∗, u′, p, u′′〉∧

∀i ∈ {1, . . . , |G|}. G(i) 6= g}.

The function filter takes as input a set of chains C and a grant g and outputs the set of all chains
in C not containing g:

filter(C, g) :={g1· . . . ·gn ∈ C | ∀i ∈ {1, . . . , n}. gi 6= g}.

The function policy constructs a policy starting from a set of chains C:

policy(C) :=
⋃

g1·...·gn∈C

⋃
1≤i≤n

{gi}.

Finally, the function revoke, which models the semantics of the REVOKE command, is as follows:

revoke(S, u, p, u′) :=policy(filter(chain(policy(filter(chain(S), 〈⊕, u, p, u′〉))), 〈⊕∗, u, p, u′〉)).

Given a policy S, revoke(S, u, p, u′) denotes the policy obtained by applying 〈	, u, p, u′〉 to S.

Example 5.1. Consider a database schema D with three relation schemas N , P, and T , all with
arity 1. Moreover, consider the following policy: the user u has read and write access to the tables
P and N . Finally, assume that the only other user is the administrator admin. This setting can
be formalized as follows. The set U is {u, admin} and the policy S contains the following grants:
〈⊕, u, 〈SELECT,P〉, admin〉, 〈⊕, u, 〈INSERT,P〉, admin〉, 〈⊕, u, 〈DELETE,P〉, admin〉, 〈⊕, u, 〈SELECT,N 〉,
admin〉, 〈⊕, u, 〈INSERT,N 〉, admin〉, and 〈⊕, u, 〈DELETE,N 〉, admin〉. �

5.2.4 Triggers
Let D = 〈Σ,dom〉 be a database schema. A trigger over D is a tuple 〈id, u, e, R, φ, a,m〉, where

id ∈ T is the trigger identifier, u ∈ U is the trigger’s owner, e ∈ {INS ,DEL} is the trigger event
(where INS stands for INSERT and DEL stands for DELETE), R is a relation schema in Σ, the trigger
condition φ is a relational calculus formula such that free(φ) ⊆ {x1, . . . , x|R|}, and the trigger action
a is one of: (1) 〈INSERT, R′, t〉, where R′ ∈ D and t is a |R′|-tuple of values in dom and variables in
{x1, . . . , x|R|}, (2) 〈DELETE, R′, t〉, where R′ and t are as before, or (3) 〈op, u, p〉, where op ∈ {⊕,⊕∗,
	}, u ∈ U , and p is a privilege over D. Finally, m ∈ {A,O} is the security mode, where A stands
for activator’s privileges and O stands for owner’s privileges. We denote by T RIGGERD the set of
all triggers over D. Furthermore, given a trigger t, we denote t’s owner by owner(t) and we denote
its security mode as mode(t). To illustrate, the trigger 〈t, admin, INS ,P,T(x1), 〈INSERT,N , x1〉, O〉
models a trigger (with identifier t), created by admin, that is executed (under admin’s privileges)
whenever a user inserts a tuple in the relation P , and if T (v1) holds in the current database state, it
inserts N(v1) into the table N . Here, x1 is bound, at run-time, to the value v1 inserted in the table
P by the trigger’s invoker.
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Let U be a set of users, D be a database schema, and V be a set of views over D. A trigger t is
a U-trigger, denoted by usersIn(t, U), iff owner(t) ∈ U and t’s statement refers just to users in U .
Furthermore, we say that a trigger t = 〈id, u, e, R, φ, a,m〉 is defined over a database schema D and
a set of views V , denoted by defined(t,D, V ), iff (1) the table R belongs to D, (2) t’s WHEN condition
φ is defined over D and V , and (3) t’s action a refers only to tables and views in D ∪ V .

We assume that (1) any command a is executed atomically together with all the triggers activated
by a, and (2) triggers do not recursively activate other triggers. Hence, all executions terminate.
Formally, a set of triggers T is safe, written safe(T ), iff for all triggers t1, t2 ∈ T : (1) if t1 is
activated by an INSERT on a table R, then t2’s action is not of the form 〈INSERT, R, t〉, and (2) if t1
is activated by a DELETE on a table R, then t2’s action is not of the form 〈DELETE, R, t〉. Observe
that safety ensures termination. We enforce this condition syntactically at the trigger’s creation
time. This simple termination condition is sufficient for the purposes of this thesis, i.e., reasoning
about database security. Note, however, that our results can be easily extended to more complex
and permissive termination conditions.

5.3 Operational Semantics

We formalize our system model as a labelled transition system (LTS). First, we define a system
configuration, which describes the database schema and the integrity constraints, and the user actions.
Afterwards, we define the system’s state, which represents a snapshot of the system that contains the
database’s state, the identifiers of the users interacting with the system, the access control policy,
and the current triggers and views in the system. Finally, we formalize the system’s behavior as a
small step operational semantics, including all features necessary to reason about security, even in
the presence of attacks exploiting advanced database features.
System configurations. A system configuration is a tuple 〈D,Γ〉 such that D is a database schema
and Γ is a finite set of integrity constraints over D. We assume that the constraints in Γ are functional
or inclusion dependencies. Observe that functional and inclusion dependencies model primary key
and foreign key constraints, some of the most common integrity constraints used in practice in
database systems.
User actions. Let M = 〈D,Γ〉 be a system configuration and u ∈ U be a user. A (D,u)-action is
one of the following tuples:

• 〈u, ADD_USER, u′〉, where u = admin and u′ ∈ U \ {admin},
• 〈u, SELECT, q〉, where q is a boolean query1 over D,
• 〈u, INSERT, R, t〉, where R ∈ D and t ∈ dom|R|,
• 〈u, DELETE, R, t〉, where R and t are as above,
• 〈op, u′, p, u〉, where 〈op, u′, p, u〉 ∈ Ωsec

D,U , or
• 〈u, CREATE, o〉, where o ∈ T RIGGERD ∪ VIEWD.

We denote by AD,u the set of all (D,u)-actions and by AD,U , for some U ⊆ U , the set
⋃
u∈U AD,u.

System states. Given a system configuration M = 〈D,Γ〉, an M-system state is a tuple 〈db, U, sec,
T, V 〉 such that db ∈ ΩΓ

D is a database state, U ⊂ U is a finite set of users such that admin ∈ U ,
sec ∈ SU,D is a security policy, T is a finite set of safe triggers over D, and V is a finite set of views
over D. We denote by ΠM the set of all M -system states.
Contexts. An M-context, where M is a system configuration, describes the system’s history, the
scheduled triggers that must be executed, and how to modify the system’s state in case a roll-back
occurs. We denote by CM the set of all M -contexts. We assume that CM contains a distinguished
element ε representing the empty context, which is the context in which the system starts.

We now formalize contexts and all their components. In the following, let M = 〈D,Γ〉 be a
system configuration and u be a user. An (M,u)-action effect is a tuple 〈act, secDec, res, E〉, where
act ∈ AD,u is an action, secDec ∈ {>,⊥} is the security decision for that action (where > stands for
permit and ⊥ stands for deny), res ∈ {>,⊥} is the action’s result, and E ⊆ Γ is the set of integrity
constraints violated by the action. We denote by ΩactEff

M,u the set of all (M,u)-action effects and by
ΩactEff
M,U , for some U ⊆ U , the set

⋃
u∈U ΩactEff

M,u . An (M,u)-trigger effect is a triple 〈t,when, stmt〉
where t ∈ T RIGGERD is a trigger, when ∈ ΩactEff

M,u is the action effect associated with the trigger’s
WHEN condition, and stmt ∈ ΩactEff

M,u ∪ {ε} is the action effect associated with the statement in the
trigger’s body. We denote by ΩtriEff

M,u the set of all (M,u)-trigger effects and by ΩtriEff
M,U , for some

U ⊆ U , the set
⋃
u∈U ΩtriEff

M,u .
1 Without loss of generality, we focus only on boolean queries [10]. We can support non-boolean queries as follows.

Given a database state s and a query q := {x | φ}, if the access control mechanism authorizes the boolean query∧
t∈[q]s

φ[x 7→ t] ∧ (∀x. φ→
∨
t∈[q]s

x = t), then we return q’s result, and otherwise we reject q as unauthorized.
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An M-trigger transaction is a 4-tuple 〈s, t, u, tr〉, where s ∈ ΠM ∪ {ε} is an M -system state
representing the “roll-back state”, i.e., the state that should be restored in case a roll-back happens,
t ∈ {ε} ∪

⋃
n∈N+ domn is the tuple involved in the event that has fired the transaction, u ∈ U ∪ {ε}

is the user that has activated the triggers in the transactions, and tr ∈ T RIGGER∗D is a sequence
of triggers. Note that we denote by 〈ε, ε, ε, ε〉 the empty M -trigger transaction.

An M-history h is a sequence of action effects and trigger effects, i.e., h ∈ (ΩactEff
M,U ∪ΩtriEff

M,U )∗, and
we denote by HM the set of all M -histories.

We are now ready to formally define contexts. Let M = 〈D,Γ〉 be a system configuration. An
M-context is a tuple 〈h, actEff , tr〉, where h ∈ HM models the system’s history, actEff ∈ ΩactEff

M,U ∪
ΩtriEff
M,U ∪{ε} describes the last action’s effect, i.e., whether the action has been accepted by the access

control mechanism and the action’s result, and tr is an M -trigger transaction. Furthermore, the
empty context ε is the element 〈ε, ε, 〈ε, ε, ε, ε〉〉.
Runtime states. An M-runtime state is a tuple 〈db, U, sec, T, V, ctx〉 such that 〈db, U, sec, T, V 〉 is
anM -system state and ctx ∈ CM is anM -context. We denote by ΩM the set of allM -runtime states.
Observe that we often write 〈db, U, sec, T, V, h, actEff , tr〉 instead of 〈db, U, sec, T, V, 〈h, actEff , tr〉〉.
For simplicity, we sometimes write 〈s, ctx〉, where s is a system state 〈db, U, sec, T, V 〉 and ctx is a
context to represent the runtime state 〈db, U, sec, T, V, c〉. Finally, whenever this is clear from the
context, we often refer to system states and runtime states simply as states.

A runtime state 〈db, U, sec, T, V, c〉 is initial iff (a) sec contains only grants issued by admin, (b) T
(respectively V ) contains only triggers (respectively views) owned by admin, and (c) c = ε. We
denote by IM the set of all initial states. Given a runtime state s = 〈db, U, sec, T, V, c〉, we denote by
sysState(s) the M -system state 〈db, U, sec, T, V 〉 obtained from s by dropping the context c and by
ctx(s) its context c. Furthermore, given an M -state s = 〈db, sec, U, T, V, c〉, we use a dot notation to
refer to its components. For instance, we use s.db to refer to the database’s state in s and s.sec to
refer to the policy in s.
Policy Decision Points. Given a system configuration M , an M-Policy Decision Point (M -PDP)
is a total function f : ΩM × AD,U → {>,⊥} that maps each runtime state s and action a to a
security decision represented by a boolean value, where > stands for permit and ⊥ stands for deny.
An extended configuration is a tuple 〈M, f〉, where M is a system configuration and f is an M -PDP.
Operational Semantics. We now define the LTS representing the system model.

Definition 5.1. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 and f is an M -
PDP. The P-LTS is the labelled transition system 〈S,A,→f , I〉 where S = ΩM is the set of states,
A = AD,U ∪T RIGGERD is the set of actions,→f ⊆ S×A×S is the transition relation, and I = IM
is the set of initial states. �

Let P = 〈M, f〉 be an extended configuration. A run r of a P -LTS L is a finite alternating
sequence of runtime states and actions, which starts with an initial state s, ends in some state s′, and
respects the transition relation →f . We denote by traces(L) the set of all L’s runs. Given a run r,
|r| denotes the number of states in r, last(r) denotes r’s last state, and ri, where 1 ≤ i ≤ |r|, denotes
the run obtained by truncating r at the i-th state. With a slight abuse of notation, we denote by r0

the empty run, i.e., the one without states.
The relation →f formalizes the system’s small step operational semantics, and it is defined in

Figures 5.3–5.6. Observe that in the rules we assume fixed a database schema D. Note also that the
rules rely on several auxiliary functions that we define in Section 5.3.1.

Figure 5.3 presents the rules for the ADD USER, SELECT, GRANT, and REVOKE commands. For each
of these commands, there are two rules: one handling the command’s successful execution, which is
applied in case the command is authorized by the PDP f , and the other handling commands whose
execution has been deemed insecure by the PDP f . For instance, the rule SELECT Success models the
system’s behavior when the user u issues a SELECT query q that is authorized by the PDP f , whereas
the SELECT Deny rule models the system’s behavior whenever a SELECT query is unauthorized. Both
rules check the security decision produced by the PDP f and whether the query is well-defined given
the database schema D and the current set of views V . Additionally, the SELECT Success rule also
computes q’s result on the current database state db. The only component of the M -state s that
changes is the context, which is updated by extending the history with the action event associated
with the SELECT query. Observe that, for the rule SELECT Success, the action event also contains
q’s result on the current database state. The rules for the other commands are similar to those for
the SELECT command, the main difference being how they modify the database state.

Figure 5.4 formalizes the semantics for INSERT and DELETE commands. We illustrate the rules
using INSERT commands as an example. The rules for DELETE commands are similar. The rules
INSERT Success 1 and INSERT Success 2 formalize the successful execution of INSERT commands.
They update the database state by adding the tuple t to the relation R. They also check that (1)
the PDP f authorizes the INSERT command, and (2) the database state obtained by executing the
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ADD USER Success
aE′ = 〈〈admin, ADD_USER, u〉,>,>, ∅〉

admin ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈admin, ADD_USER, u〉) = >

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈admin,ADD_USER,u〉
−−−−−−−−−−−−−→f 〈db, U ∪ {u}, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

ADD USER Deny
aE′ = 〈〈admin, ADD_USER, u〉,⊥,⊥, ∅〉

admin ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈admin, ADD_USER, u〉) = ⊥

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈admin,ADD_USER,u〉
−−−−−−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

SELECT Success
u ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈u, SELECT, q〉) = >

[q]db = v aE′ = 〈〈u, SELECT, q〉,>, v, ∅〉 defined(q,D, V )

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,SELECT,q〉
−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

SELECT Deny
u ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈u, SELECT, q〉) = ⊥

aE′ = 〈〈u, SELECT, q〉,⊥,⊥, ∅〉 defined(q,D, V )

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,SELECT,q〉
−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

GRANT Success
u, u′ ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′′, ε〉〉, 〈op, u, p, u′〉) = >

aE′ = 〈〈op, u, p, u′〉,>,>, ∅〉 op ∈ {⊕,⊕∗} defined(p,D, V ) sec′ = sec ∪ {〈op, u, p, u′〉}

〈db, U, sec, T, V, h, aE, 〈rS , t, u′′, ε〉〉
〈op,u,p,u′〉
−−−−−−−−→f 〈db, U, sec′, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

REVOKE Success
u, u′ ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′′, ε〉〉, 〈	, u, p, u′〉) = >

aE′ = 〈〈	, u, p, u′〉,>,>, ∅〉 defined(p,D, V ) sec′ = revoke(sec, u, p, u′)

〈db, U, sec, T, V, h, aE, 〈rS , t, u′′, ε〉〉
〈	,u,p,u′〉
−−−−−−−→f 〈db, U, sec′, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

GRANT-REVOKE Deny
u, u′ ∈ U f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′′, ε〉〉, 〈op, u, p, u′〉) = ⊥
aE′ = 〈〈op, u, p, u′〉,⊥,⊥, ∅〉 op ∈ {⊕,⊕∗,	} defined(p,D, V )

〈db, U, sec, T, V, h, aE, 〈rS , t, u′′, ε〉〉
〈op,u,p,u′〉
−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

Figure 5.3: Rules for the ADD USER, SELECT, GRANT, and REVOKE commands.
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INSERT Success 1
u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, act) = >

act = 〈u, INSERT, R, t〉 db[R⊕ t] ∈ ΩΓ
D aE′ = 〈act,>,>, ∅〉 filter(T, INS , R) = ε ∨ t ∈ db(R)

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,INSERT,R,t〉
−−−−−−−−−→f 〈db[R⊕ t], U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

INSERT Success 2
u ∈ U R ∈ D act = 〈u, INSERT, R, t〉

f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, act) = > db[R⊕ t] ∈ ΩΓ
D

aE′ = 〈act,>,>, ∅〉 tr = filter(T, INS , R) tr 6= ε t 6∈ db(R) rS ′ = 〈db, U, sec, T, V 〉

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,INSERT,R,t〉
−−−−−−−−−→f 〈db[R⊕ t], U, sec, T, V, h·aE, aE′, 〈rS ′, t, u, tr〉〉

INSERT Exception
u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈u, INSERT, R, t〉) = >
E′ = {φ ∈ Γ | [φ]db[R⊕t] = ⊥} E′ 6= ∅ aE′ = 〈〈u, INSERT, R, t〉,>,⊥, E′〉

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,INSERT,R,t〉
−−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

INSERT Deny
u ∈ U R ∈ D aE′ = 〈〈u, INSERT, R, t〉,⊥,⊥, ∅〉

f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈u, INSERT, R, t〉) = ⊥

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,INSERT,R,t〉
−−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

DELETE Success 1
u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, act) = >

act = 〈u, DELETE, R, t〉 db[R	 t] ∈ ΩΓ
D aE′ = 〈act,>,>, ∅〉 filter(T,DEL, R) = ε ∨ t 6∈ db(R)

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,DELETE,R,t〉
−−−−−−−−−→f 〈db[R	 t], U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

DELETE Success 2
u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, act) = >

act = 〈u, DELETE, R, t〉 db[R	 t] ∈ ΩΓ
D

aE′ = 〈act,>,>, ∅〉 tr = filter(T,DEL, R) tr 6= ε t ∈ db(R) rS ′ = 〈db, U, sec, T, V 〉

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,DELETE,R,t〉
−−−−−−−−−→f 〈db[R	 t], U, sec, T, V, h·aE, aE′, 〈rS ′, t, u, tr〉〉

DELETE Exception
u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈u, DELETE, R, t〉) = >
E′ = {φ ∈ Γ | [φ]db[R	t] = ⊥} E′ 6= ∅ aE′ = 〈〈u, DELETE, R, t〉,>,⊥, E′〉

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,DELETE,R,t〉
−−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

DELETE Deny
u ∈ U R ∈ D aE′ = 〈〈u, DELETE, R, t〉,⊥,⊥, ∅〉

f (〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉, 〈u, DELETE, R, t〉) = ⊥

〈db, U, sec, T, V, h, aE, 〈rS , t′, u′, ε〉〉
〈u,DELETE,R,t〉
−−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

Figure 5.4: Rules for the INSERT and DELETE commands.
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Trigger INSERT-DELETE Success
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉 u = getActualUser(m, ow, invk)
φ′ = φ[x|R

′| 7→ t] f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉, 〈u, SELECT, φ′〉) = >
[φ′]db = > aE′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉

act = action(stmt, u, t) db′ = apply(act, db) f (〈db, U, sec, T, V, h·aE, aE′, 〈rS , t, invk, t·tr〉〉, act) = >
db′ ∈ ΩΓ

D aE′′ = 〈act,>,>, ∅〉 tE′ = 〈t, aE′, aE′′〉 ID(act) = >

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db′, U, sec, T, V, h·aE, tE′, 〈rS , t, invk, tr〉〉

Trigger INSERT-DELETE Exception
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉 u = getActualUser(m, ow, invk)

rS = 〈db′, U ′, sec′, T ′, V ′〉 f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉, 〈u, SELECT, φ′〉) = >
[φ′]db = > aE′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉 act = action(stmt, u, t)

f (〈db, U, sec, T, V, h·aE, aE′, 〈rS , t, invk, t·tr〉〉, act) = > ID(act) = > φ′ = φ[x|R
′| 7→ t]

E′ = {φ ∈ Γ | [φ]apply(act,db)} E′ 6= ∅ aE′′ = 〈act,>,⊥, E′〉 tE′ = 〈t, aE′, aE′′〉

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db′, U ′, sec′, T ′, V ′, h·aE, tE′, 〈ε, ε, ε, ε〉〉

Trigger GRANT Success
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉 u = getActualUser(m, ow, invk)
φ′ = φ[x|R

′| 7→ t] f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉, 〈u, SELECT, φ′〉) = >
[φ′]db = > aE′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉

〈op, u′, p, u〉 = action(stmt, u, t) f (〈db, U, sec, T, V, h·aE, aE′, 〈rS , t, invk, t·tr〉〉, 〈op, u′, p, u〉) = >
aE′′ = 〈〈op, u′, p, u〉,>,>, ∅〉 tE′ = 〈t, aE′, aE′′〉 op ∈ {⊕,⊕∗}

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db, U, sec ∪ {〈op, u′, p, u〉}, T, V, h·aE, tE′, 〈rS , t, invk, tr〉〉

Trigger REVOKE Success
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉 u = getActualUser(m, ow, invk)
φ′ = φ[x|R

′| 7→ t] f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉, 〈u, SELECT, φ′〉) = >
[φ′]db = > aE′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉

〈	, u′, p, u〉 = action(stmt, u, t) f (〈db, U, sec, T, V, h·aE, aE′, 〈rS , t, invk, t·tr〉〉, 〈	, u′, p, u〉) = >
aE′′ = 〈〈	, u′, p, u〉,>,>, ∅〉 tE′ = 〈t, aE′, aE′′〉

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db, U, revoke(sec, u, p, u′), T, V, h·aE, tE′, 〈rS , t, invk, tr〉〉

Trigger Disabled
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉 u = getActualUser(m, ow, invk)
φ′ = φ[x|R

′| 7→ t] f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, tr〉〉, 〈u, SELECT, φ′〉) = >
[φ′]db = ⊥ aE′ = 〈〈u, SELECT, φ′〉,>,⊥, ∅〉 tE′ = 〈t, aE′, ε〉

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db, U, sec, T, V, h·aE, tE′, 〈rS , t, invk, tr〉〉

Trigger Deny Condition
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉 u = getActualUser(m, ow, invk)

rS = 〈db′, U ′, sec′, T ′, V ′〉 f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, tr〉〉, 〈u, SELECT, φ′〉) = ⊥
aE′ = 〈〈u, SELECT, φ′〉,⊥,⊥, ∅〉 tE′ = 〈t, aE′, ε〉 φ′ = φ[x|R

′| 7→ t]

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db′, U ′, sec′, T ′, V ′, h·aE, tE′, 〈ε, ε, ε, ε〉〉

Trigger Deny Action
invk, ow ∈ U t = 〈id, ow, ev, R′, φ, stmt,m〉

u = getActualUser(m, ow, invk) f (〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉, 〈u, SELECT, φ′〉) = >
[φ′]db = > aE′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉

act = action(stmt, u, t) f (〈db, U, sec, T, V, h·aE, aE′, 〈rS , t, invk, t·tr〉〉, act) = ⊥
φ′ = φ[x|R

′| 7→ t] aE′′ = 〈act,⊥,⊥, ∅〉 tE′ = 〈t, aE′, aE′′〉 rS = 〈db′, U ′, sec′, T ′, V ′〉

〈db, U, sec, T, V, h, aE, 〈rS , t, invk, t·tr〉〉 t−→f 〈db′, U ′, sec′, T ′, V ′, h·aE, tE′, 〈ε, ε, ε, ε〉〉

Figure 5.5: Rules for triggers.
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CREATE TRIGGER Success
u ∈ U defined(t,D, V ) safe({t} ∪ T ) usersIn(t, U)

f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉, 〈u, CREATE, t〉) = > aE′ = 〈〈u, CREATE, t〉,>,>, ∅〉
t = 〈id, u, ev, R, φ, stmt,m〉 ¬∃t′ ∈ T. t′ = 〈id, ow′, ev′, R′, φ′, stmt′,m′〉

〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉
〈u,CREATE,t〉
−−−−−−−−→f 〈db, U, sec, T ∪ {t}, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

CREATE TRIGGER Deny
u ∈ U defined(t,D, V ) safe({t} ∪ T ) usersIn(t, U)

f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉, 〈u, CREATE, t〉) = > aE′ = 〈〈u, CREATE, t〉,>,⊥, ∅〉
t = 〈id, u, ev, R, φ, stmt,m〉 t′ = 〈id, ow′, ev′, R′, φ′, stmt′,m′〉 t′ ∈ T t′ 6= t

〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉
〈u,CREATE,t〉
−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

CREATE VIEW Success
u ∈ U defined(v,D, V ) f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉, 〈u, CREATE, v〉) = >
v = 〈id, u, q,m〉 aE′ = 〈〈u, CREATE, v〉,>,>, ∅〉 ¬∃v′ ∈ V. v′ = 〈id, ow′, q′,m′〉

〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉
〈u,CREATE,v〉
−−−−−−−−→f 〈db, U, sec, T, V ∪ {v}, h·aE, aE′, 〈ε, ε, ε, ε〉〉

CREATE VIEW Deny
u ∈ U defined(v,D, V ) f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉, 〈u, CREATE, v〉) = >

v = 〈id, u, q,m〉 aE′ = 〈〈u, CREATE, v〉,>,⊥, ∅〉 v′ = 〈id, ow′, q′,m′〉 v′ ∈ V v 6= v′

〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉
〈u,CREATE,v〉
−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

CREATE Deny
u ∈ U defined(o,D, V ) aE′ = 〈〈u, CREATE, o〉,⊥,⊥, ∅〉

f (〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉, 〈u, CREATE, o〉) = ⊥

〈db, U, sec, T, V, h, aE, 〈rS , t, u′, ε〉〉
〈u,CREATE,o〉
−−−−−−−−→f 〈db, U, sec, T, V, h·aE, aE′, 〈ε, ε, ε, ε〉〉

Figure 5.6: Rules for the creation of triggers and views.

INSERT command still satisfies the integrity constraints. Observe that the INSERT Success 1 rule
handles INSERT commands that do not activate triggers. This is done by ensuring that (1) there are
no triggers in the system that could be executed in response to the INSERT command (using the filter
function formalized in Section 5.3.1), or (2) the execution of the INSERT command does not modify the
database state. The INSERT Success 2 rule, instead, handles INSERT commands that activate triggers.
The rule updates the current context by appending the transaction associated with the triggers to
be executed. Furthermore, the INSERT Exception rule handles authorized INSERT commands that
violate the integrity constraints and therefore throw integrity exceptions. The rule updates the
system’s context by recording the set of violated integrity constraints {φ ∈ Γ | [φ]db[R⊕t] = ⊥}.
Finally, the INSERT Deny rule handles INSERT commands that are deemed insecure by the PDP f
and it updates the context accordingly.

The rules for triggers are presented in Figure 5.5. Note that these rules rely on the functions
getActualUser , apply, and action, which are formalized in Section 5.3.1. The rules Trigger INSERT-
DELETE Success, Trigger GRANT Success, and Trigger REVOKE Success formalize the semantics of
triggers that successfully execute commands, without violating the security policy or causing integrity
exceptions. These rules are inspired by the corresponding rules for the successful execution of INSERT,
DELETE, GRANT, and REVOKE commands. Additionally, these rules modify the system’s context by
consuming the first element in the trigger’s transaction. This ensures that triggers are executed in the
order specified by the transaction. Furthermore, the Trigger Disabled rule handles the execution
of triggers whose WHEN condition is not satisfied in the current state. In this case, the database is
not modified as a result of the trigger’s execution, and the system’s context is updated by consuming
the first element in the current transaction. Finally, the rules Trigger INSERT-DELETE Exception,
Trigger Deny Condition, and Trigger Deny Action formalize what happens whenever triggers
throw exceptions. The first rule formalizes the semantics of triggers whose actions violate integrity
constraints. The handling of the command execution and of the exceptions is similar to the INSERT
Exception and DELETE Exception rules from Figure 5.4. The rules Trigger Deny Condition
and Trigger Deny Action, instead, formalize the system’s behavior in case the condition or the
action associated with the trigger violate the security policy. These three rules (1) terminate the
execution of the triggers still in the transactions by setting the list of triggers to be processed to ε,
and (2) roll-back the current database state to the one stored in the transaction (i.e., the one before
executing the command that fired all the triggers). This guarantees that our semantics matches the
behavior of existing database systems, where exceptions caused by triggers terminate the execution
of all triggers and roll-back the database state.
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Finally, Figure 5.6 illustrates the rules associated with the CREATE VIEW and CREATE TRIGGER
commands. The rules CREATE TRIGGER Success and CREATE VIEW Success handle the successful
execution of CREATE commands. The rules CREATE TRIGGER Deny and CREATE VIEW Deny formalize
the unsuccessful execution of CREATE commands due to clashes between triggers and views identifiers.
Finally, the rule CREATE Deny formalizes how the system handles CREATE commands that violate the
security policy.

We developed an executable version of our operational semantics, available at [86], using the
Maude term-rewriting framework [54]. The executable model acts as a reference implementation for
our semantics. We remark that both our operational semantics and the corresponding executable
model can be tailored to model the behavior of specific database systems. Given the complexity of
databases and their features, having an executable version of our semantics provides a way to validate
it against existing database systems.

5.3.1 Auxiliary functions
Here we define several auxiliary functions to extract information from runtime states.

Function used in the operational semantics

We now define the functions mentioned in the rules in Figures 5.3–5.6. The getActualUser(m,
invk, ow) function takes as input a security mode m ∈ {A,O} and two users invk and ow in U , and
it outputs one of the two users depending on m:

getActualUser(m, invk, ow) =
{

invk if m = A
ow if m = O

The ID function takes as input an action act ∈ AD,U and returns > if act is either 〈u, INSERT, R, t〉
or 〈u, DELETE, R, t〉, for some u ∈ U , R ∈ D, and t ∈ dom|R|. The function ID returns ⊥ otherwise.

The apply function takes as input an INSERT or DELETE action act ∈ AD,U and a database state
db ∈ ΩD and it returns as output the updated database state. The function is defined as follows:

apply(act, db) =
{

db[R⊕ t] if act = 〈u, INSERT, R, t〉
db[R	 t] if act = 〈u, DELETE, R, t〉

We are now ready to define the function action, which takes as input a trigger 〈id, ow, ev, R′, φ,
stmt,m〉, a user u, and a tuple t′ ∈ dom|R′|, and returns the concrete action executed by the system.
Formally, action is defined as follows:

action(〈id, ow, ev, R′, φ, stmt,m〉, u, t′) =


〈u, INSERT, R, t[x|R′| 7→ t′]〉 if stmt = 〈INSERT, R, t〉
〈u, DELETE, R, t[x|R′| 7→ t′]〉 if stmt = 〈DELETE, R, t〉
〈op, u′, p, u〉 if stmt = 〈op, u′, p〉∧

op ∈ {	,⊕,⊕∗}

where x|R′| denotes the tuple of variables 〈x1, . . . , x|R′|〉.
We assume given a total-order relation �T over T . We use this ordering to determine the order

in which triggers are executed. Given a set of triggers T and a database schema D, we denote by
filter(T, ev, R), where ev ∈ {INS ,DEL} and R ∈ D, the sequence of triggers in T (ordered according
to �T ) whose event is ev and whose relation schema is R.

Auxiliary Functions over contexts

Given an M -context c = 〈h, aE , tr〉, we denote by secEx the following function, which returns >
if the effect aE is associated with a security exception.

secEx(〈h, aE , tr〉) =


> if aE = 〈act,⊥, res, E〉
> if aE = 〈t, 〈act,⊥, res, E〉, ε〉
> if aE = 〈t,when, 〈act,⊥, res, E〉〉
⊥ otherwise

Similarly, we denote by Ex(c) the function extracting the (violated) integrity constraints stored in
the effect aE .

Ex(〈h, aE , tr〉) =

{
E if aE = 〈act, aC , res, E〉
E if aE = 〈t,when, 〈act, aC , res, E〉〉
∅ otherwise
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Additionally, the functions acA(c) and acC (c) extract the access control decision associated with the
trigger’s action and condition respectively:

acA(〈h, aE , tr〉) =
{

aC ′ if aE = 〈t, 〈act, aC , res, E〉, 〈act′, aC ′, res′, E′〉〉 ∧ 〈act′, aC ′, res′, E′〉 6= ε
⊥ otherwise

acC (〈h, aE , tr〉) =

{ aC if aE = 〈t, 〈act, aC , res, E〉, ε〉
aC if aE = 〈t, 〈act, aC , res, E〉, 〈act′, aC ′, res′, E′〉〉 ∧ 〈act′, aC ′, res′, E′〉 6= ε
⊥ otherwise

The function res(c), instead, extracts the action’s result from the effect aE :

res(〈h, aE , tr〉) =


res if aE = 〈act, aC , res, E〉
aC if aE = 〈t, 〈act, aC , res, E〉, ε〉
aC ∧ aC ′ ∧ res′ if aE = 〈t, 〈act, aC , res, E〉, 〈act′, aC ′, res′, E′〉〉 and

〈act′, aC ′, res′, E′〉 6= ε

We denote by invoker(c) the function extracting the user in the transaction, i.e., invoker(〈h, aE ,
〈s, t, u, trL〉〉) = u. Similarly, we denote by tpl(c) the function extracting the tuple that has fired
the transaction, namely tpl(〈h, aE , 〈s, t, u, trL〉〉) = t, by triggers(c) the function extracting the list of
triggers, i.e., triggers(〈h, aE , 〈s, t, u, trL〉〉) = trL, and by trigger(c), or tr(c) for short, the first trigger
in the sequence triggers(c). With a slight abuse of notation, we lift all the aforementioned functions
from contexts to runtime states. For instance, Ex(s), where s is a runtime state, is simply Ex(ctx(s)).
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Chapter 6

Database Access Control in Modern Databases

If you know the enemy and know yourself,
you need not fear the result of a hundred
battles. If you know yourself but not the
enemy, for every victory gained you will
also suffer a defeat. If you know neither
the enemy nor yourself, you will succumb
in every battle.

Sun Tzu – The art of war

The SQL standard supports database access control, and almost all Database Management Sys-
tems (DBMSs) have accordingly developed access control mechanisms. The standard however fails
to define a precise access control semantics, the attacker model, and the security properties that the
mechanisms ought to satisfy. As a consequence, existing access control mechanisms are implemented
in an ad hoc fashion, with neither precise security guarantees nor the means to verify them.

This deficit has dire and immediate consequences. In this chapter, we show that popular database
systems are susceptible to two types of attacks. Integrity attacks allow an attacker to perform non-
authorized changes to the database. Confidentiality attacks allow an attacker to learn sensitive data.
These attacks exploit advanced SQL features, such as triggers, views, and integrity constraints, and
they are easy to carry out.

Current research efforts in database security are neither adequate for evaluating the security of
modern databases, nor do they account for their advanced features. In more detail, existing research
[13,40,131,165] implicitly considers attackers who use SELECT commands. But the capabilities offered
by databases go far beyond SELECT. Users, in general, can modify the database’s state and security
policy, as well as use features such as triggers, views, and integrity constraints. Consequently, all
proposed research solutions fail to prevent attacks such as those we present in Section 6.1.

In summary, the database vendors have been left to develop access control mechanisms without
guidance from either the SQL standard or existing research in database security. It is therefore not
surprising that modern databases are open to abuse.

In this chapter, we develop a comprehensive formal framework for the design and analysis of
database access control. Our framework, which relies on the operational semantics from Chapter 5,
consists of a precise attacker model complemented with adequate security properties. We use our
framework to design and verify an access control mechanism that prevents confidentiality and integrity
attacks that defeat existing mechanisms. Note that this chapter is largely based on [87].
Organization. In Section 6.1, we present attacks that illustrate serious weaknesses in existing
DBMSs. We introduce and formalize our attacker model in Section 6.2. We define our security
properties in Sections 6.3 and 6.4. In Section 6.5, we present our provably secure DBAC mechanism,
and in Section 6.6 we discuss related work. Finally, we draw conclusions in Section 6.7. For the
sake of readability, some technical details are given in Section 6.8. Furthermore, the proof of all our
results are given in Appendix C. A prototype of our enforcement mechanism is available at [86].

6.1 Illustrative Attacks

We demonstrate here how attackers can exploit existing DBMSs using standard SQL features. We
classify these attacks as either Integrity Attacks or Confidentiality Attacks. In the former, an attacker
makes unauthorized changes to the database, which stores the data, the policy, the triggers, and the
views. In the latter, an attacker learns sensitive data by interacting with the system and observing the
outcome. No existing access control mechanism prevents all the attacks we present. Moreover, many
related attacks can be constructed using variants of the ideas presented here. We manually carried
out the attacks against IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird.
We summarize our findings in Figures 6.1 and 6.2, and we discuss them at the end of this section.
In the figures, X indicates a successful attack, X indicates a failed attack, and ∗ indicates that the
DBMS does not support the features necessary to launch the attack.
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Integrity Attacks

DBMS Triggers with Granting Revoking
activator’s privileges views views

IBM DB2 (v. 10.5) ∗ X X
Oracle (v. 11g) ∗ X X
PostgreSQL (v. 9.3.5) X X X
MySQL (v. 14.14) ∗ X X
SQL Server (v. 12.0) X ∗ ∗
Firebird (v. 2.5.2) X X X

Figure 6.1: Summary of the integrity attacks.

Confidentiality Attacks

DBMS Table updates and Triggers with
integrity constraints owner’s privileges

IBM DB2 (v. 10.5) X X
Oracle (v. 11g) X X
PostgreSQL (v. 9.3.5) X X
MySQL (v. 14.14) X X
SQL Server (v. 12.0) X X
Firebird (v. 2.5.2) X X

Figure 6.2: Summary of the confidentiality attacks.

6.1.1 Integrity Attacks
Our three integrity attacks combine different database features: INSERT, DELETE, GRANT, and

REVOKE commands together with views and triggers. In the first attack, an attacker creates a trigger,
i.e., a procedure automatically executed by the DBMS in response to user commands, that will
be activated by an unaware user with a higher security clearance and will perform unauthorized
changes to the database. The attack requires triggers to be executed under the privileges of the users
activating them. Such triggers are supported by PostgreSQL, SQL Server, and Firebird.

Attack 6.1. Triggers with activator’s privileges. Consider a database with two tables P and
S and two users u1 and u2. The attacker is the user u1, whose goal is to delete the content of S.
The policy is that u1 is not authorized1 to alter S, u1 can create triggers on P , and u2 can read and
modify S and P . The attack is as follows:

1. u1 creates the trigger:
CREATE TRIGGER t ON P AFTER INSERT

DELETE FROM S;
2. u1 waits until u2 inserts a tuple into the table P . The trigger will then be invoked using u2’s

privileges and S’s content will be deleted. �

An attacker can use similar attacks to execute arbitrary commands with administrative privileges.
Despite the threat posed by such simple attacks, the existing countermeasures [4] are unsatisfactory;
they are either too restrictive, for instance completely disabling triggers in the database, or too time
consuming and error prone, namely manually checking if “dangerous” triggers have been created.

In our second attack, an attacker escalates his privileges by delegating the read permission for a
table without being authorized to delegate this permission. The attacker first creates a view over the
table and, afterwards, delegates the access to the view to another user. This attack exploits DBMSs,
such as PostgreSQL, where a user can grant any read permission over his own views. Note that
GRANT and REVOKE commands are write operations, which target the database’s internal configuration
instead of the tables.

Attack 6.2. Granting views. Consider a database with a table S, two users u1 and u2, and the
following policy: u1 can create views and read S (without being able to delegate this permissions),
and u2 cannot read S. The attack is as follows:

1. u1 creates the view: CREATE VIEW v AS SELECT ∗ FROM S.
2. u1 issues the command GRANT SELECT ON v TO u2. Now, u2 can read S through v. However,
u1 is not authorized to delegate the read permission on S. �

This attack exploits several subtleties in the commands’ semantics: (a) users can create views over
all tables they can read, (b) the views are executed under the owner’s privileges, and (c) view’s owners

1As is common in SQL, a user is authorized to execute a command if and only if the policy assigns him the
corresponding permission.
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can grant arbitrary permissions over their own views. These features give u1 the implicit ability to
delegate the read access over S. As a result, the overall system’s behavior does not conform with the
given policy. That is, u1 should not be permitted to delegate the read access to S or to any view
that depends on it. Note that the commands’ semantics may vary between different DBMSs.

In our third attack, an attacker exploits the failure of access control mechanisms to propagate
REVOKE commands.

Attack 6.3. Revoking views. Consider a database with a table S, three users u1, u2, and u3, and
the following policy: u1 can read S and delegate this permission, u2 can create views, and u3 cannot
read S. The attack proceeds as follows:

1. u1 issues the command GRANT SELECT ON S TO u2 WITH GRANT OPTION.
2. u2 creates the view: CREATE VIEW v AS SELECT ∗ FROM S.
3. u2 issues the command GRANT SELECT ON v TO u3.
4. u1 revokes the permission to read S (and to delegate the permission) from u2: REVOKE SELECT

ON S FROM u2. Now, u3 cannot read v because u2, which is v’s owner, cannot read S.
5. u1 grants again the permission to read S to u2: GRANT SELECT ON S TO u2. Now, u3 can again

read v but u2 can no longer delegate the read permission on v. �

This attack succeeds because, in the fourth step, the REVOKE statement does not remove the GRANT
granted by u2 to u3 to read v. This GRANT only becomes ineffective because u2 is no longer authorized
to read S. However, after the fifth step, this GRANT becomes effective again, even though u2 can no
longer delegate the read permission on v. Thus, the policy is left in an inconsistent state, i.e., it con-
tains a privilege that should have been revoked according to the SQL access control model [137,162].

6.1.2 Confidentiality Attacks
We now present two attacks that use INSERT and SELECT commands together with triggers and

integrity constraints. In our fourth attack, an attacker exploits integrity constraint violations to learn
sensitive information. An integrity constraint is an invariant that must be satisfied for a database
state to be considered valid. Integrity constraint violations arise when the execution of an SQL
command leads the database from a valid state into an invalid one.

Attack 6.4. Table updates and integrity constraints. Consider a database with two tables P
and S. Suppose the primary key of both tables is the user’s identifier. Furthermore, the set of user
identifiers in S is contained in the set of user identifiers in P , i.e., there is a foreign key from S to P .
The attacker is the user u whose goal is to learn whether Bob is in S. The security policy is that u
can read P and insert tuples in S. The attacker u can learn whether Bob is in S as follows:

1. He reads P and learns Bob’s identifier.
2. He issues an INSERT statement in S using Bob’s id.
3. If Bob is already in S, then u gets an error message about the primary key’s violation. Alter-

natively, there is no violation and u learns that Bob is not in S. �

Although similar attacks have been identified before [99,143], existing DBMSs are still vulnerable.
In our fifth attack, an attacker learns sensitive information by exploiting the system’s triggers.

The trigger in this attack is executed under the privileges of the trigger’s owner. Such triggers are
supported by IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird.

Attack 6.5. Triggers with owner’s privileges. Consider a database with three tables N , P ,
and T . The attacker is the user u, who wishes to learn whether v is in T . The policy is that u is
not authorized to read the table T , and he can read and modify the tables N and P . Moreover, the
following trigger has been defined by the administrator.

CREATE TRIGGER t ON P AFTER INSERT FOR EACH ROW
IF exists ( SELECT * FROM T WHERE id = NEW.id)

INSERT INTO N VALUES (NEW.id);
The attack is as follows:

1. u deletes v from N .
2. u issues the command INSERT INTOP VALUES (v).
3. u checks the table N . If it contains v’s id, then v is in T . Otherwise, v is not in T . �

This attack exploits that the trigger t conditionally modifies the database. Furthermore, the
attacker can activate t, by inserting tuples in P , and then observe t’s effects, by reading the table N .
He therefore can exploit t’s execution to learn whether t’s condition holds. We assume here that the
attacker knows the triggers in the system. This is, in general, a weak assumption as triggers usually
describe the domain-specific rules regulating a system’s behavior and users are usually aware of them.
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6.1.3 Discussion
Wemanually carried out all five attacks against IBMDB2, Oracle Database, PostgreSQL, MySQL,

SQL Server, and Firebird. Figures 6.1 and 6.2 summarize our findings. None of these systems prevent
the confidentiality attacks. They are however more successful in preventing the integrity attacks. The
most successful is Oracle Database, which prevents two of the three attacks, while Attack 6.1 cannot
be carried out due to missing features. IBM DB2, MySQL, and Firebird prevent just one of the three
attacks, namely Attack 6.2. However, they all fail to prevent Attack 6.3. Note that Firebird also
fails to prevent Attack 6.1. In contrast, Attack 6.1 cannot be carried out against MySQL and IBM
DB2 due to missing features. SQL Server also fails to prevent Attack 6.1; however the remaining two
attacks cannot be carried out due to missing features. PostgreSQL fails to prevent all three attacks.

We argue that the dire state of database access control mechanisms, as illustrated by these
attacks, comes from the lack of clearly defined security properties that such mechanisms ought to
satisfy and the lack of a well-defined attacker model. We therefore develop a formal attacker model
and precise security properties and we use them to design a provably secure access control mechanism
that prevents all the above attacks.

6.2 Attacker Model

We next present our attacker model. In our setting, an attacker is a user, other than the adminis-
trator, with an assigned user account who attempts to violate the security policy. Namely, his goals
are: (1) to read or infer data from the database for which he lacks the necessary SELECT privileges,
and (2) to alter the system state in unauthorized ways, e.g., changing data in relations for which he
lacks the necessary INSERT and DELETE privileges. The attacker can issue any command available
to users and he sees the results of his commands (see Chapter 5 for all supported commands). The
attacker’s inference capabilities are specified using deduction rules.

6.2.1 Formal Attacker Model
We model attackers that interact with the system through SQL commands and infer information

from the system’s behavior by exploiting triggers, views, and integrity constraints. We argue that
database access control mechanisms should be secure with respect to such strong attackers, as this
reflects how (malicious) users may interact with modern databases. Furthermore, any mechanism
secure against such strong attackers is also secure against weaker attackers.

Any user other than the administrator can be an attacker, and we assume that users do not
collude to subvert the system. Note that our attacker model, the security properties in Sections 6.3
and 6.4, and the mechanism we develop in Section 6.5 can all easily be extended to support colluding
users. We also assume that an attacker can issue any command available to the system’s users, and
he knows the system’s operational semantics, the database schema, and the integrity constraints.

We assume that an attacker has access to the system’s security policy, the set of users, and the
definitions of the triggers and views in the system’s state. In more detail, given an M -runtime state
〈db, U, sec, T, V, ctx〉, an attacker can access U , sec, T , and V . Users interacting with existing DBMSs
typically have access to some, although not all, of this information. For instance, in PostgreSQL a
user can read all the information about the triggers defined on the tables for which he has some non-
SELECT privileges. Note that the more information an attacker has, the more attacks he can launch.
Finally, we assume that an attacker knows whether any two of his commands c and c′ have been
executed consecutively by the system, i.e., if there are commands executed by other users occurring
between c and c′. The attacker’s knowledge about the sequential execution of his commands is
needed to soundly propagate his knowledge about the system’s state between his commands. Since
the mechanism we develop in Section 6.5 is secure with respect to this attacker, it is also secure with
respect to weaker attackers who have less information or cannot detect whether their commands have
been executed consecutively.

An attacker model describes what information an attacker knows, how he interacts with the
system, and what he learns about the system’s data by observing the system’s behavior. Since every
user is a potential attacker, for each user u ∈ U we define an attacker model specifying u’s inference
capabilities. To represent u’s knowledge, we introduce judgments. A judgment is a four-tuple 〈r, i, u,
φ〉, written r, i `u φ, denoting that from the run r, which represents the system’s behavior, the user
u can infer that φ holds in the i-th state of r. An attacker model for u is thus a set of judgments
associating to each position of each run, the sentences that u can infer from the system’s behavior.
The idea of representing the attacker’s knowledge using sentences φ is inspired by existing formalisms
for Database Inference Control [40, 72] and Controlled Query Evaluation [36].

Definition 6.1. Let P be an extended configuration, L be the P -LTS, and u ∈ U be a user. A
(P, u)-judgment is a tuple 〈r, i, u, φ〉, written r, i `u φ, where r ∈ traces(L), 1 ≤ i ≤ |r|, and
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DELETE Success
ri = ri−1·〈u, DELETE, R, t〉·s 1 < i ≤ |r| s ∈ ΩM secEx(s) = ⊥ Ex(s) = ∅

r, i `u ¬R(t)

SELECT Success
ri = ri−1·〈u, SELECT, φ〉·s 1 < i ≤ |r| s ∈ ΩM secEx(s) = ⊥ Ex(s) = ∅ res(s) = >

r, i `u φ

Learn INSERT Backward
ri+1 = ri·t·s invoker(last(ri)) = u s ∈ ΩM 1 ≤ i < |r| secEx(s) = ⊥

Ex(s) = ∅ r, i `u ¬ψ r, i+ 1 `u ψ t = 〈id, ow, ev, R′, φ(x), 〈INSERT, R, t〉,m〉
r, i `u φ[x 7→ tpl(last(ri))]

Propagate Backward SELECT
ri+1 = ri·〈u, SELECT, φ〉·s r, i+ 1 `u ψ s ∈ ΩM 1 ≤ i < |r|

r, i `u ψ

Propagate Forward Update Success
r, i− 1 `u φ ri = ri−1·〈u, op, R, t〉·s s ∈ ΩM

1 < i ≤ |r| secEx(s) = ⊥ Ex(s) = ∅ revise(ri−1, φ, ri) = > op ∈ {INSERT, DELETE}
r, i `u φ

Figure 6.3: Example of attacker inference rules, where r, i `u φ denotes that this
judgment holds in AT Ku.

φ ∈ RC bool . A (P, u)-attacker model is a set of (P, u)-judgments. A (P, u)-judgment r, i `u φ holds
in a (P, u)-attacker model A iff r, i `u φ ∈ A. �

For each user u ∈ U , we now define the (P, u)-attacker model AT Ku that we use in the rest of
the chapter. We formalize this model using a set of inference rules, where AT Ku is the smallest set
of judgments satisfying the inference rules. Figure 6.3 shows five representative rules. The complete
formalization of all rules is given in Section 6.8.1. In the following, when we say that a judgment
r, i `u φ holds, we always mean with respect to the attacker model AT Ku.

As we prove in Appendix C, AT Ku is sound with respect to the RC semantics, i.e., if r, i `u φ
holds, then the formula φ holds in the i-th state of r. Intuitively, AT Ku models how u infers
information from the system’s behavior, namely (a) how u learns information from his commands
and their results, (b) how u learns information from triggers, their execution, their interleavings, and
their side effects, (c) how u propagates his knowledge along a run, and (d) how u learns information
from exceptions caused by either integrity constraint violations or security violations. This model is
substantially more powerful than the SELECT-only attacker studied in previous works [131,165,170].

The rules DELETE Success and SELECT Success describe how the user u infers information from
his successful actions, i.e., those actions that generate neither security exceptions nor integrity vi-
olations. In the rules, secEx(s) = ⊥ denotes that there were no security exceptions caused by the
action leading to s, and Ex(s) = ∅ denotes that the action leading to s has not violated the integrity
constraints. After a successful DELETE, u knows that the deleted tuple is no longer in the database,
and after a successful SELECT he learns the query’s result, denoted by res(s).

The rules Propagate Backward SELECT and Propagate Forward Update Success describe
how the user u propagates information along the run. Propagate Backward SELECT states that if
the user u knows that φ holds after a SELECT command, then he knows that φ also holds just before
the SELECT command because SELECT commands do not modify the database state. Propagate
Forward Update Success states that if u knows that φ holds before a successful INSERT or DELETE
command and he can determine that the command’s execution does not influence φ’s truth value,
denoted by revise(ri−1, φ, ri) = >, then he also knows that φ holds after the command.

In our attacker model, we consider a very simple syntactic criterion for revising beliefs. Informally,
the attacker is able to propagate the knowledge of a sentence φ after (or before) an INSERT or
a DELETE action on a table R iff the predicate R does not occur in φ. Formally, the function
revise : traces(L) × RC bool × traces(L) → {>,⊥} captures this belief revision approach and it is
defined as follows:

revise(r, φ, r·act·s) =


> if act = 〈u, op, R, t〉 ∧R 6∈ tables(φ) ∧ op ∈ {INSERT, DELETE}
> if act = 〈id, ow, ev, R′, φ, 〈op, R, t〉,m〉 ∧R 6∈ tables(φ)∧

op ∈ {INSERT, DELETE}
> if act = 〈id, ow, ev, R, φ, 〈op, u, p〉,m〉 ∧ op ∈ {⊕,⊕∗,	}
⊥ otherwise
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r, 2 `u ¬N (v)
DELETE Success

r, 3 `u ¬N (v)
Propagate Forward

Update Success

r, 5 `u N (v)
SELECT Success

r, 4 `u N (v)
Propagate Backward SELECT

r, 3 `u T(v)
Learn INSERT Backward

Figure 6.4: Template Derivation of Attack 6.5 (contains just selected subgoals)

Observe that above we define revise only for the inputs r, φ, r′ such that φ ∈ RC bool is a sentence and
r′ = r·act·s, where act ∈ AD,U ∪ T RIGGERD and s ∈ ΩM . If this is not the case, then revise(r, φ,
r′) = ⊥. Our attacker model, enforcement mechanism, and proofs can be easily extended to support
other criteria for revising beliefs.

Finally, the rule Learn INSERT Backward models u’s reasoning when he activates a trigger that
successfully inserts a tuple in the database. If u knows that immediately before the trigger the formula
ψ does not hold and immediately after the trigger the formula ψ holds, then the trigger’s execution
is the cause of the database state’s change. Therefore, u can infer that the trigger’s condition φ holds
just before the trigger’s execution. Note that invoker(s) denotes the user who fired the trigger that
is executed in the state s, whereas tpl(s) denotes the tuple associated with the action that fired the
trigger that is executed in the state s.

We developed an executable version of our attacker model, available at [86], using the Maude term
rewriting framework [54]. Our executable models can be used for simulating the execution of our op-
erational semantics, as well as computing the information that an attacker can infer from the system’s
behavior. We have executed and validated all of the examples in this chapter using these models.
Example 6.1. Consider the policy described in Attack 6.5. The database D has three tables: N ,
P, and T . The set U is {u, admin} and the policy S contains the following grants: 〈⊕, u, 〈SELECT,
P〉, admin〉, 〈⊕, u, 〈INSERT,P〉, admin〉, 〈⊕, u, 〈DELETE,P〉, admin〉, 〈⊕, u, 〈SELECT,N 〉, admin〉, 〈⊕, u,
〈INSERT,N 〉, admin〉, and 〈⊕, u, 〈DELETE,N 〉, admin〉. Furthermore, the database state db is db(N) =
{v}, db(P) = ∅, and db(T) = {v}, while the only trigger in the system is t = 〈id, admin, INS ,
P,T(x1), 〈INSERT,N , x1〉, O〉. The run r is as follows:

1. u deletes v from N .
2. u inserts v in P. This activates the trigger t, which inserts v in N .
3. u issues the SELECT query N(v).

We used Maude to generate the following run, which illustrates how the system’s state changes. Note
that there are no exceptions during the run.

〈db, U, S, {t}, ∅, c1〉 〈db[N 	 v], U, S, {t}, ∅, c2〉

〈db[P ⊕ v,N 	 v], U, S, {t}, ∅, c3〉〈db[P ⊕ v], U, S, {t}, ∅, c4〉

〈db[P ⊕ v], U, S, {t}, ∅, c5〉

〈u, DELETE, N, v〉

〈u, INSERT,P, v〉
t

〈u, SELECT, N(v)〉

Figure 6.4 models u’s reasoning in Attack 6.5. The user u first applies the SELECT Success rule
to derive r, 5 `u N (v), i.e., he learns the query’s result. By applying the rule Propagate Backward
SELECT to r, 5 `u N (v), he obtains r, 4 `u N (v), i.e., he learns that N (v) holds before the SELECT
query. Similarly, he applies the rule DELETE Success to derive r, 2 `u ¬N (v), and he obtains r,
3 `u ¬N (v) by applying the Propagate Forward Update Success rule. Finally, by applying the
rule Learn INSERT Backward to r, 3 `u ¬N (v) and r, 4 `u N (v), he learns the value of the trigger’s
WHEN condition r, 3 `u T(v). Since the user u should not be able to learn information about T , the
attack violates the intended confidentiality guarantees. We used our executable attacker model [86]
to derive the judgments. �

6.3 Database Integrity

Here we define the first of our security properties: database integrity. Database integrity states
that all actions modifying the system’s state are authorized by the system’s policy. An access control
mechanism providing database integrity prevents non-authorized changes to the system’s state and,
thereby, prevents integrity attacks, such as Attacks 6.1–6.3.

Database integrity requires a formalization of authorized actions. We therefore define the relation
 auth between runtime states and actions, modeling which actions are authorized in a given state.

We first introduce some notation. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,
Γ〉 and f is an M -PDP. We denote by VIEWowner

D the set of all D-views with owner’s privileges,
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i.e., VIEWowner
D = {〈V, o, q,m〉 ∈ VIEWD | m = O} and by PRIVSELECT,VIEWowner

D
D the set of

all SELECT privileges associated with views in VIEWowner
D , i.e., PRIVSELECT,VIEWowner

D
D = {〈SELECT,

V 〉 | V ∈ VIEWowner
D }. Furthermore, given an M -runtime state s = 〈db, U, sec, T, V, c〉 and a REVOKE

command r = 〈	, u, p, u′〉, we denote by applyRev(s, r) the state 〈db, U, revoke(sec, u, p, u′), T, V, c〉
obtained by executing the REVOKE command. Finally, given a query q, a set of views V with owner’s
privileges, and a set of tables T , we write determinesM (T, V, q) to denote that D,Γ ` Q� q, where Q
is the set of queries containing the tables in T and the views in V (see Section 2.2.3 for a formalization
of query determinacy).

We are now ready to formalize the notion of authorized actions. The relation auth⊆ ΩM×(AD,U∪
T RIGGERD), specifying which actions are authorized in a given state, is the smallest relation satis-
fying the inference rules given in Figure 6.5. In the following, let s = 〈db, T, sec, T, V, ctx〉 be a runtime
state. According to the Add User rule, the only authorized ADD USER commands are those issued
by the administrator. In contrast, SELECT commands are always authorized, as they do not mod-
ify the system state. Furthermore, an INSERT, DELETE, CREATE VIEW, or CREATE TRIGGER command
is authorized in two cases: (1) the user executing the command is the administrator (see the rules
Insert-Delete admin, Create View admin, and Create Trigger admin), or (2) the current pol-
icy sec contains a grant g that grants the corresponding privilege to the user executing the command
and such that s auth g holds (see the rules Insert-Delete, Create View, and Create Trigger).

The Revoke rule says that a REVOKE statement is authorized if the resulting state, obtained using
the function applyRev, has a consistent policy, namely one in which all the grants in the policy are
authorized by  auth . The rules Grant-1, Grant-2, Grant-3, Grant-4, and Grant-5, instead,
formalize in which cases a GRANT command is authorized. Specifically, a GRANT command is authorized
if one of the following conditions hold:

• Rule Grant-1: the user executing the command is not the administrator and there is a grant
g (with grant option) that authorizes the command and s auth g.

• Rule Grant-2: the user executing the command is the administrator and the privilege is not
associated with a view with the owner’s privileges.

• Rule Grant-3: the privilege used in the command is a SELECT privilege over a view V in
VIEWowner

D , the user u executing the command is V ’s owner, and u has the SELECT privilege
with grant option over a set of tables and views that determine V .

• Rule Grant-4: the privilege used in the command is a SELECT privilege over a view V in
VIEWowner

D , the user executing the command is the administrator, and V ’s owner has the
SELECT privilege over a set of tables and views that determine V .

• Rule Grant-5: the privilege used in the command is a SELECT privilege over a view with the
activator’s privileges and the user executing the command is the view’s owner.

The rules Grant-3 and Grant-4 use the function hasAccess to decide whether a user has read access
(with or without delegation) to a set of views and tables. Formally, the hasAccess function is defined
as follows:

hasAccess(〈db, U, sec, T, V, c〉, S, u, op) =


> if u 6= admin ∧ ∀v ∈ S.∃u′′ ∈ U, g ∈ sec, op′ ∈ {op,⊕∗}.

g = 〈op′, u, 〈SELECT, v〉, u′′〉∧
〈db, U, sec, T, V, c〉 auth g

> if u = admin ∧ ∀v ∈ S.∃u′′ ∈ U, op′ ∈ {op,⊕∗}.
〈db, U, sec, T, V, c〉 auth 〈op′, u, 〈SELECT, v〉, u′′〉

⊥ otherwise

The above function performs the following check. If the user u is not the administrator, hasAccess
checks that for all views and tables v ∈ S, there is a GRANT g in the current policy that is valid ac-
cording to  auth and that grants the privilege 〈SELECT, v〉 (with or without GRANT OPTION depending
on op) to the user u. In case the user u is the administrator, hasAccess checks that for all views and
tables in v ∈ S, the GRANT 〈op′, admin, 〈SELECT, v〉, u′′〉 is valid according to  auth , where op′ is ⊕ or
⊕∗ depending on op and u′′ is a user in U .

Finally, the rules Execute Trigger-1, Execute Trigger-2, and Execute Trigger-3 regulate
the execution of triggers. According to the rule Execute Trigger-1, a trigger with the owner’s
privileges whose WHEN condition is satisfied is authorized if the trigger’s owner is authorized to execute
the trigger’s action. The Execute Trigger-2 rule says that the execution of a trigger (whose WHEN
condition is satisfied) with the activator’s privileges is authorized if both the invoker and the trigger’s
owner are authorized to execute the trigger’s action according to  auth . Finally, the Execute
Trigger-3 rule says that the execution of triggers whose WHEN condition is not satisfied is always
authorized, as these triggers do not modify the system state. Observe that the action function
instantiates the action given in the trigger’s definition to a concrete action by identifying the user
performing the action and replacing the free variables with values from dom.

We now define database integrity. Intuitively, a PDP provides database integrity iff all the actions
it authorizes are explicitly authorized by the policy, i.e., they are authorized by  auth . This notion
comes directly from the SQL standard, and it is reflected in existing enforcement mechanisms. Recall
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Add User
u ∈ U u′ = admin

〈db, U, sec, T, V, c〉 auth 〈u′, ADD_USER, u〉

Select
u ∈ U q ∈ RC

〈db, U, sec, T, V, c〉 auth 〈u, SELECT, q〉

Insert-Delete
u, u′ ∈ U R ∈ D t ∈ dom|R|

g = 〈op, u, 〈op′, R〉, u′〉 g ∈ sec 〈db, U, sec, T, V, c〉 auth g op′ ∈ {INSERT, DELETE}
〈db, U, sec, T, V, c〉 auth 〈u, op′, R, t〉

Create View
u, u′ ∈ U v ∈ VIEWD g = 〈op, u, 〈CREATE VIEW〉, u′〉 g ∈ sec 〈db, U, sec, T, V, c〉 auth g

〈db, U, sec, T, V, c〉 auth 〈u, CREATE, v〉

Create Trigger
u, u′ ∈ U t = 〈id, ow, ev, R, φ, stmt,m〉

t ∈ T RIGGERD g = 〈op, u, 〈CREATE TRIGGER, R〉, u′〉 g ∈ sec 〈db, U, sec, T, V, c〉 auth g

〈db, U, sec, T, V, c〉 auth 〈u, CREATE, t〉

Insert-Delete admin
R ∈ D t ∈ dom|R| op′ ∈ {INSERT, DELETE}
〈db, U, sec, T, V, c〉 auth 〈admin, op′, R, t〉

Create View admin
v ∈ VIEWD v = 〈id, admin, q,m〉

〈db, U, sec, T, V, c〉 auth 〈admin, CREATE, v〉

Create Trigger admin
t = 〈id, admin, ev, R, φ, stmt,m〉 t ∈ T RIGGERD

〈db, U, sec, T, V, c〉 auth 〈admin, CREATE, t〉

Revoke
u, u′ ∈ U priv ∈ PRIVD s = 〈db, U, sec, T, V, c〉

s′ = 〈db, U, sec′, T, V, c〉 s′ = applyRev(s, 〈	, u, p, u′〉) ∀g ∈ sec′. s′  auth g

〈db, U, sec, T, V, c〉 auth 〈	, u, priv, u′〉

Grant-1
u, u′, u′′ ∈ U

op ∈ {⊕,⊕∗} priv ∈ PRIVD g = 〈⊕∗, u′, priv, u′′〉 g ∈ sec 〈db, U, sec, T, V, c〉 auth g

〈db, U, sec, T, V, c〉 auth 〈op, u, priv, u′〉

Grant-2
u ∈ U op ∈ {⊕,⊕∗} priv ∈ PRIVD \ PRIVSELECT,VIEWownerD

D

〈db, U, sec, T, V, c〉 auth 〈op, u, priv, admin〉

Grant-3
u, owner ∈ U

op ∈ {⊕,⊕∗} priv = 〈SELECT, v〉 v = 〈id, owner , q, O〉 v ∈ V V ′ ⊆ V ∩ VIEWowner
D

T ′ ⊆ D determinesM (T ′, V ′, q) hasAccess(〈db, U, sec, T, V, c〉, V ′ ∪ T ′, owner ,⊕∗)
〈db, U, sec, T, V, c〉 auth 〈op, u, priv, owner〉

Grant-4
u, owner ∈ U op ∈ {⊕,⊕∗}

priv = 〈SELECT, v〉 v = 〈id, owner , q, O〉 v ∈ V owner 6= admin V ′ ⊆ V ∩ VIEWowner
D

T ′ ⊆ D determinesM (T ′, V ′, q) hasAccess(〈db, U, sec, T, V, c〉, V ′ ∪ T ′, owner ,⊕)
〈db, U, sec, T, V, c〉 auth 〈op, u, priv, admin〉

Grant-5
u, owner ∈ U op ∈ {⊕,⊕∗} v ∈ V priv = 〈SELECT, v〉 v = 〈id, owner , q, A〉

〈db, U, sec, T, V, c〉 auth 〈op, u, priv, owner〉

Execute Trigger-1
t = 〈id, ow, ev, R, φ, stmt, O〉

t ∈ T 〈db, U, sec, T, V, c〉 auth action(stmt, ow, tpl(c)) [φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉 auth t

Execute Trigger-2
t = 〈id, ow, ev, R, φ, stmt, A〉 t ∈ T 〈db, U, sec, T, V, c〉 auth action(stmt, invoker(c), tpl(c))

〈db, U, sec, T, V, c〉 auth action(stmt, ow, tpl(c)) [φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉 auth t

Execute Trigger-3
t = 〈id, ow, ev, R, φ, stmt,m〉 t ∈ T [φ[x|R| 7→ tpl(c)]]db = ⊥

〈db, U, sec, T, V, c〉 auth t

Figure 6.5: Definition of the  auth relation.
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that, given a state s, secEx(s) = ⊥ denotes that there were no security exceptions caused by the
action or trigger leading to s.

Definition 6.2. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 and f is an M -
PDP, and let L be the P -LTS. We say that f provides database integrity with respect to P iff for all
reachable states s, s′ ∈ ΩM , if s′ is reachable in one step from s by an action a ∈ AD,U ∪T RIGGERD
and secEx(s′) = ⊥, then s auth a. �

Example 6.2. We consider a run corresponding to Attack 6.1, which illustrates a violation of
database integrity. The database db is such that db(P ) = ∅ and db(S) = {z}, the policy sec
is {〈⊕, u1, 〈CREATE TRIGGER, P 〉, admin〉, 〈⊕, u2, 〈INSERT, P 〉, admin〉, 〈⊕, u2, 〈DELETE, S〉, admin〉, 〈⊕,
u2, 〈SELECT, P 〉, admin〉, 〈⊕, u2, 〈SELECT, S〉, admin〉}, and the set U is {u1, u2, admin}. The run r is
as follows:

1. The user u1 creates the trigger t = 〈id, u1, INS , P,>, 〈DELETE, S, z〉, A〉.
2. The user u2 inserts the value v in P . This activates the trigger t and deletes the content of S,

i.e., the value z.
We used Maude to generate the following run, which illustrates how the system’s state changes. Note
that there are no exceptions during the run.

〈db, U, sec, ∅, ∅, c1〉 〈db, U, sec, {t}, ∅, c2〉

〈db[P ⊕ v], U, sec, {t}, ∅, c3〉〈db[P ⊕ v, S 	 z], U, sec, {t}, ∅, c4〉

〈u1, CREATE, t〉

〈u2, INSERT, P, v〉

t

Access control mechanisms that do not restrict the execution of triggers with activator’s privileges
violate database integrity because they do not throw security exceptions when 〈db[P ⊕ v], U, sec, {t},
∅, c3〉 6 auth t. �

6.4 Data Confidentiality

We now introduce data confidentiality, our second security property. Data confidentiality states
that all information that an attacker can learn by observing the system’s behavior is authorized.
Hence, by preventing the leakage of sensitive data, a mechanism providing data confidentiality pre-
vents confidentiality attacks.

We first introduce indistinguishability and secure judgments, two key notions for data confidential-
ity, together with our security property. Afterwards, we formalize the notion of indistinguishability
that we use in the rest of the chapter. We conclude the section with some examples.

6.4.1 Definition
To model data confidentiality, we first introduce the concept of indistinguishability of runs, which

formalizes the desired confidentiality guarantees by specifying whether users can distinguish between
different runs based on their observations. Formally, a P -indistinguishability relation is an equivalence
relation over traces(L), where P is an extended configuration and L is the P -LTS. Indistinguishable
runs, intuitively, should disclose the same information.

We now define the concept of a secure judgment, which is a judgment that does not leak sensitive
information or, equivalently, one that cannot be used to differentiate between indistinguishable runs.

Definition 6.3. Let P be an extended configuration, L be the P -LTS, and ∼= be a P -indistinguish-
ability relation. A judgment r, i `u φ is secure with respect to P and ∼=, written secureP,∼=(r, i `u φ),
iff for all r′ ∈ traces(L) such that ri ∼= r′, it holds that [φ]db = [φ]db′ , where last(ri) = 〈db, U, sec, T,
V, ctx〉 and last(r′) = 〈db′, U ′, sec′, T ′, V ′, ctx ′〉. �

We are now ready to define data confidentiality. Intuitively, an access control mechanism provides
data confidentiality iff all judgments that an attacker can derive are secure.

Definition 6.4. Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, u ∈ U be a user, A
be a (P, u)-attacker model, and ∼= be a P -indistinguishability relation. We say that f provides data
confidentiality with respect to P , u, A, and ∼= iff secureP,∼=(r, i `u φ) for all judgments r, i `u φ that
hold in A. �
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Figure 6.6: The runs r(db1) and r(db2) are indistinguishable, whereas r(db1)
and r(db3) are not.

6.4.2 Indistinguishability
We now define the indistinguishability relation that we use in the rest of the chapter. This

relation captures what each user can observe (as specified in Section 6.2) and the effects of the
system’s security policy. Let P = 〈〈D,Γ〉, f〉 be an extended configuration, L be the P -LTS, and u
be a user in U . Given a run r ∈ traces(L), the user u is aware only of his actions and not of the actions
of the other users in r. This is represented by the u-projection of r, which is obtained by masking
all sequences of actions that are not issued by u using a distinguished symbol ∗. Specifically, the
u-projection of r is an alternating sequence of states in ΩM and actions in AD,u∪T RIGGERD ∪{∗}
that is obtained from r by (1) replacing each action not issued by u with ∗, (2) replacing each trigger
whose invoker is not u with ∗, and (3) replacing all non-empty sequences of ∗-transitions with a single
∗-transition. For each user u ∈ U , we define the P -indistinguishability relation ∼=P,u. Informally, two
runs r and r′ are ∼=P,u-indistinguishable, denoted r ∼=P,u r

′, iff (1) the labels of the u-projections of
r and r′ are the same, (2) u executes the same actions a1, . . . , an in r and r′, in the same order, and
with the same results, and (3) before each action ai, where 1 ≤ i ≤ n, as well as in the last states of
r and r′, the policy, the views, the triggers, the users, and the data disclosed by the policy are the
same in r and r′.

We remark that there is a close relation between ∼=P,u and existing indistinguishability relations
over database states, such as those in [131, 165] or the one from Section 3.4. For any two ∼=P,u-
indistinguishable runs r and r′, the database states that precede all actions issued by u as well
as the last states in r and r′ are pairwise indistinguishable with respect to existing state-based
notions [131,165].

Example 6.3 illustrates our indistinguishability notion.

Example 6.3. Let the schema, the set of users, the policy, and the triggers be as in Example 6.1.
Consider the following run r(db), parametrized by the initial database state db:

1. u deletes v from N .
2. u inserts v in P. If v is in T , this activates the trigger t, which, in turn, inserts v in N .
3. u issues the SELECT query N(v).

Let db1, db2, and db3 be three database states such that db1(T) = {v}, db2(T) = {j, v}, and
db3(T) = ∅, whereas dbi(N) = {v} and dbi(P) = ∅, for 1 ≤ i ≤ 3. Note that r(db1) is the run
used in Example 6.1. Figure 6.6 depicts how the database’s state changes during the runs r(dbi),
for 1 ≤ i ≤ 3. Gray indicates those tables that the user u cannot read. The runs r(db1) and r(db2)
are indistinguishable for the user u. The only difference between them is the content of the table T ,
which u cannot read. In contrast, u can distinguish between r(db1) and r(db3) because the trigger
has been executed in the former and not in the latter.

Indistinguishability may also depend on the actions of the other users. Consider the runs r′
and r′′ obtained by extending r(db1) respectively with one and two SELECT queries issued by the
administrator just after u’s query. The user u can distinguish between r(db1) and r′ because he
knows that other users interacted with the system in r′ but not in r(db1), i.e., the u-projections have
different labels. In contrast, the runs r′ and r′′ are indistinguishable for u because he only knows
that, after his own SELECT query, other users interacted with the system, i.e., the u-projections have
the same labels. However, he does not know the number of commands, the commands themselves,
or their results. �

We are now ready to formalize the indistinguishability relation ∼=P,u. We first formalize the notion
of u-projection. Afterwards, we define the notion of consistency between u-projections. Finally, we
formalize the indistinguishability relation ∼=P,u.
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Projections

Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 and f is an M -PDP, L be the
P -LTS, and u be a user in U . As already mentioned, the u-projection of a run r is obtained by (1)
replacing each action not issued by u with ∗, (2) replacing each trigger whose invoker is not u with
∗, and (3) replacing all non-empty sequences of ∗-transitions with a single ∗-transition. Note that
the ∗-transitions in the u-projections represent whether u’s actions are executed consecutively or not.
With a slight abuse of notation, we extend all the notation we use for runs also to u-projections. For
instance, r|iu denotes the prefix obtained by truncating r|u at its i-th state. Formally, the u-projection
r|u is defined as c(v(r, u)). The function v takes as input a run r and a user u and returns another
run in which all actions issued by users other than u are replaced with ∗.

v(r, u) =



v(r′, u)·a·s if r = r′·a·s ∧ r′ ∈ traces(L) ∧ s ∈ ΩM ∧ a ∈ AD,u ∧ |r| > 1
v(r′, u)· ∗ ·s if r = r′·a·s ∧ r′ ∈ traces(L) ∧ s ∈ ΩM ∧ a ∈ AD,u′ ∧ u′ 6= u ∧ |r| > 1
v(r′, u)·t·s if r = r′·t·s ∧ r′ ∈ traces(L) ∧ s ∈ ΩM ∧ t ∈ T RIGGERD∧

invoker(last(r′)) = u ∧ |r| > 1
v(r′, u)· ∗ ·s if r = r′·t·s ∧ r′ ∈ traces(L) ∧ s ∈ ΩM ∧ t ∈ T RIGGERD∧

invoker(last(r′)) 6= u ∧ |r| > 1
s if r = s and s ∈ ΩM

The function c takes as input a run r containing ∗-transitions and replaces each sequence of ∗-
transitions with a single ∗-transition. Note that the function c is obtained by repeatedly applying
the function c′ until the computation reaches a fixed point. The function c′ is as follows:

c′(r) =


c′(r′)·a·s if r = r′·a·s ∧ a 6= ∗ ∧ r′ ∈ traces(L) ∧ s ∈ ΩM ∧ |r| > 1
c′(r′)· ∗ ·s if r = r′· ∗ ·s′· ∗ ·s ∧ r′ ∈ traces(L) ∧ s, s′ ∈ ΩM ∧ |r| > 2
r if r = s ∧ s ∈ ΩM
r if r = s· ∗ ·s′ ∧ s, s′ ∈ ΩM

Consistency

We now define the notion of consistency between two u-projections. Observe that our consistency
definition uses the function labels that takes as input a run r and returns as output the sequence of
labels in the run, namely labels(r) is obtained from r by dropping all the states.

Definition 6.5. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 and f is an M -
PDP, L be the P -LTS, and u be a user in U . Furthermore, let r|u and r′|u be the u-projections of the
runs r and r′ in traces(L). We say that r|u and r′|u are consistent iff the following conditions hold:

1. |r|u| = |r′|u|.
2. labels(r|u) = labels(r′|u).
3. triggers(last(r|u)) = ε iff triggers(last(r′|u)) = ε.
4. for all i such that 1 ≤ i ≤ |r|u|, if r|iu = r|i−1

u ·a·s and a 6= ∗, the following conditions hold:
• res(last(r|iu)) = res(last(r′|iu)),
• secEx(last(r|iu)) = secEx(last(r′|iu)),
• if a is a trigger, then acC (last(r|iu)) = acC (last(r′|iu)),
• invoker(last(r|iu)) = invoker(last(r′|iu)),
• triggers(last(r|iu)) = triggers(last(r′|iu)),
• tpl(last(r|iu)) = tpl(last(r′|iu)), and
• Ex(last(r|iu)) = Ex(last(r′|iu)). �

Indistinguishability

Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M -system state, and
u ∈ U be a user. The set permissions(s, u) is permissions(s, u) := {〈⊕, SELECT, O〉 | ∃u′ ∈ U, op ∈
{⊕,⊕∗}. 〈op, u, 〈SELECT, O〉, u′〉 ∈ sec}. We also fix permissions(s, admin) to be D ∪ V since the
administrator has read access to the whole database. We extend permissions to M -states as follows.
Given an M -state s′ = 〈db, U, sec, T, V, c〉, permissions(s′, u) = permissions(〈db, U, sec, T, V 〉, u).

We are now ready to introduce the notion of indistinguishability between two runs. Intuitively,
two runs r and r′ are indistinguishable for a user u iff (1) their u-projections are consistent, and (2)
for each action of the user u as well as for the last states in the two runs, the policy, the triggers, the
views, the users, and the data disclosed by the policy are the same in r and r′.

Definition 6.6. Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, and u be a user.
We say that two runs r and r′ in traces(L) are (P, u)-indistinguishable, written r ∼=P,u r

′, iff
1. r|u and r′|u are consistent,
2. sysState(last(r)) and sysState(last(r′)) are (M,u)-data indistinguishable, and
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3. for all i such that 1 ≤ i ≤ |r|u|−1, if r|i+1
u = r|iu·a·s, a 6= ∗, and s ∈ ΩM , then sysState(last(r|iu))

and sysState(last(r′|iu)) are (M,u)-data indistinguishable.
We say that two M -system states s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 are (M,u)-

data indistinguishable, written s ∼=data
M,u s′, iff (a) U = U ′, (b) sec = sec′, (c) T = T ′, (d) V = V ′,

(e) for all relation schema R ∈ D for which 〈⊕, SELECT, R〉 ∈ permissions(s, u), db(R) = db′(R), and
(f) for all views v ∈ VIEWowner

D for which 〈⊕, SELECT, v〉 ∈ permissions(s, u), db(v) = db′(v). �

Given a run r, we denote by JrKP,u the equivalence class of r defined by ∼=P,u over traces(L).
Similarly, we denote by JsKdata

M,u the equivalence class of s defined by ∼=data
M,u over ΠM .

6.4.3 Examples
Example 6.4 shows that existing PDPs leak sensitive information and therefore do not provide

data confidentiality.

Example 6.4. In Example 6.1, we showed how the user u derives r, 3 `u T(v). The judgment is
not secure because there is a run indistinguishable from r3, i.e., the run r3(db3) in Example 6.3, in
which T(v) does not hold. �

Example 6.5 shows how views may leak information about the underlying tables. Even though
this leakage might be considered legitimate, there is no way in our setting to distinguish between
intended and unintended leakages. If this is desired, data confidentiality can be extended with the
concept of declassification [20, 21].

Example 6.5. Consider a database with two tables T and Z and a view V = 〈v, admin, {x |T (x) ∧
Z(x)}, O〉. The set U is {u, admin} and the policy S is {〈⊕, u, 〈SELECT, T 〉, admin〉, 〈⊕, u, 〈SELECT,
V 〉, admin〉, 〈⊕, u, 〈INSERT, T 〉, admin〉}. Consider the following run r, parametrized by the initial
database state db, where u first inserts 27 into T and afterwards issues the SELECT query V (27). We
assume there are no exceptions in r.

〈db, U, S, ∅, {V }, c1〉 〈db[T ⊕ 27], U, S, ∅, {V }, c2〉

〈db[T ⊕ 27], U, S, ∅, {V }, c3〉

〈u, INSERT, T, 27〉

〈u, SELECT, V (27)〉

We used Maude to generate the runs r(d) and r(d′) with the initial database states d and d′ such
that d(T ) = d(Z) = d′(T ) = ∅ and d′(Z) = {27}. The runs r1(d) and r1(d′) are indistinguishable
for u because they differ only in the content of Z, which u cannot read. After the INSERT, u can
distinguish between r2(d) and r2(d′) by reading V . Indeed, d[T ⊕ 27](V ) = ∅, because d(Z) = ∅,
whereas d′[T ⊕ 27](V ) = {27}. The user u derives r(d′), 1 `u Z(27), which is not secure because
r1(d) and r1(d′) are indistinguishable for u, but Z(27) holds just in the latter. �

In contrast to existing security notions [131,165], we have defined data confidentiality over runs.
This is essential to model and detect attacks, such as those in Examples 6.4 and 6.5, where an
attacker infers sensitive information from the transitions between states. For instance, the leakage
in Example 6.5 is due to the execution of the INSERT command. Although the SELECT command is
authorized by the policy, u can use it to infer sensitive information about the system’s state before
the INSERT execution.

6.5 A Provably Secure PDP

We now present a PDP that provides both database integrity and data confidentiality. We first
explain the ideas behind it using examples. Afterwards, we show that it satisfies the desired security
properties and has acceptable overhead. Finally, we argue that it is more permissive than existing
access control solutions for commands that do not violate our security properties.

Figure 6.7 depicts our PDP f together with the functions fint and fconf . Additional details about
the PDP are given in Section 6.8. The PDP takes as input a state s and an action a and outputs
> iff both fint and fconf authorize a in s, i.e., iff a’s execution neither violates database integrity
nor data confidentiality. Note that our algorithm is not complete in that it may reject some secure
commands. However, from the impossibility results in Chapter 3, it follows that no algorithm can
be complete and provide database integrity and data confidentiality for the relational calculus.

Our PDP is invoked by the database system each time a user u issues an action a to check whether
u is authorized to execute a. The PDP is also invoked whenever the database system executes a
scheduled trigger t: once to check if the SELECT statement associated with t’s WHEN condition is
authorized and once, in case t is enabled, to check if t’s action is authorized.
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B s is a state and a is an action
function f (s, a)

1. return fint(s, a) ∧ fconf (s, a, user(s, a))

B s is a state and a is an action
function fint(s, a)

1. if trg(s) = ε return auth(s, a)
2. else if a = cond(trg(s), s) return >
3. else if a = act(trg(s), s)
4. return auth(s, trg(s))
5. else return ⊥

B s is a state, a is an action, and u is a user
function fconf (s, a, u)

1. switch a
2. case 〈u′, SELECT, q〉 : return secure(u, q, s)
3. case 〈u′, INSERT, R, t〉 : case 〈u′, DELETE, R, t〉 :
4. if leak(a, s, u) ∨ ¬secure(u, getInfo(a), s)
5. return ⊥
6. for γ ∈ Dep(a,Γ)
7. if (¬secure(u, getInfoS(γ, a), s)∨

¬secure(u, getInfoV (γ, a), s))
8. return ⊥
9. case 〈⊕, u′′, pr , u′〉, 〈⊕∗, u′′, pr , u′〉 :

10. return ¬leak(a, s, u)
11. return >

Figure 6.7: The PDP f uses the two subroutines fint and fconf . The former
provides database integrity and the latter provides data confidentiality with
respect to the user user(s, a), which denotes either the user issuing the action,
when the system is not executing a trigger, or the trigger’s invoker.

6.5.1 Enforcing Database Integrity
The function fint takes as input a state s and an action a. If the system is not executing a

trigger, denoted by trg(s) = ε, fint checks (line 1) whether a is authorized with respect to s. In line
2, fint checks whether a is the current trigger’s condition. If this is the case, it returns > because the
triggers’ conditions do not violate database integrity. Finally, the algorithm checks (line 3) whether
a is the current trigger’s action, and if this is the case, it checks whether the current trigger trg(s)
is authorized with respect to s (line 4). The function auth uses a sound and computable under-
approximation of  auth to check if a is authorized with respect to s. Thus, any action authorized
by fint is authorized according to  auth . This ensures database integrity. Note that  auth relies on
query determinacy (see Chapter 2) to decide whether a query is determined by a set of views. Since
determinacy is undecidable [124], in auth we implement a sound under-approximation of it, given in
Section 6.8.2. Our approximation checks syntactically if a query is determined by a set of views.

Example 6.6. Consider a database with three tables: R, T , and Z. The set U is {u, u′, admin} and
the policy S is {〈⊕, u, 〈SELECT, R〉, admin〉, 〈⊕∗, u, 〈SELECT,T〉, admin〉, 〈⊕∗, u, 〈SELECT,Z〉, admin〉}.
There are two views V = 〈v, admin, {x | T (x)∧Z(x)}, O〉 and W = 〈w, u, {x | R(x)∨V (x)}, O〉. The
user u tries to grant to u′ read access toW , i.e., he issues 〈⊕, u′, 〈SELECT,W 〉, u〉. The PDP fint rejects
the command and raises a security exception because u is authorized to delegate the read access only
for T and Z but W ’s result depends also on R, for which u cannot delegate read access. Assume now
that the policy is {〈⊕∗,u,〈SELECT,R〉,admin〉, 〈⊕∗,u,〈SELECT,T〉,admin〉,〈⊕∗,u, 〈SELECT,Z〉,admin〉}.
In this case, fint authorizes the GRANT. The reason is thatW ’s definition can be equivalently rewritten
as {x | R(x) ∨ (T (x) ∧ Z(x))} and u is authorized to delegate the read access for R, T , and Z. �

6.5.2 Enforcing Data Confidentiality
The function fconf , shown in Figure 6.7, takes as input an action a, a state s, and a user u. Note

that any user other than the administrator is a potential attacker. The requirement for fconf is that
it authorizes only those commands that result in secure judgments for u as required by Definition 6.4.
To achieve this, fconf over-approximates the set of judgments that u can derive from a’s execution.
For instance, the algorithm assumes that u can always derive the trigger’s condition from the run,
even though this is not always the case. Then, fconf authorizes a iff it can determine that all u’s
judgements are secure. This can be done by analysing just a finite subset of the over-approximated
set of u’s judgments.

In more detail, fconf performs a case distinction on the action a (line 1). If a is a SELECT command
(line 2), fconf checks whether the query is secure with respect to the current state s and the user
u using the secure procedure. If a is an INSERT or DELETE command (lines 3–8), fconf checks (lines
4–5), using the leak procedure, whether a’s execution may leak sensitive information through the
views that u can read, as in Example 6.5. Afterwards, fconf also checks (lines 4–5) whether the
information u can learn from a’s execution, modelled by the sentence computed by the procedure
getInfo(a), is secure. In line 6–8, fconf computes the set of all integrity constraints that a’s execution
may violate, denoted by Dep(a,Γ), and for all constraints γ, it checks whether the information that
u may learn from γ is secure. The procedure getInfoS (respectively getInfoV ) computes the sentence
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modelling the information learned by u from γ if a is executed successfully (respectively violates γ).
If a is a GRANT command (lines 9–10), fconf checks whether a’s successful execution discloses sensitive
information to u. In the remaining cases (line 11), fconf authorizes a.
Secure judgments. Determining if a given judgment is secure is undecidable for RC (this di-
rectly follows from our results in Chapter 3). Hence, the secure procedure implements a sound and
computable under-approximation of this notion. We now present our solution. Other sound under-
approximations can alternatively be used without affecting fconf ’s data confidentiality guarantees.

Let M = 〈D,Γ〉 be a system configuration, r, i `u φ be a judgment, and s = 〈db, U, sec, T, V, c〉
be the i-th state in r. As a first under-approximation, instead of the set of all runs indistinguishable
from ri, we consider the larger set of all runs r′ whose last state s′ = 〈db′, U, sec, T, V, c′〉 is such that
the disclosed data in db and db′ are the same. Note that if a judgment is secure with respect to this
larger set, it is secure also with respect to the set of indistinguishable runs because the former set
contains the latter. This larger set depends just on the database state db and the policy sec, not on
the run or the attacker model AT Ku. Determining judgment’s security is, however, still undecidable
even on this larger set. We therefore employ a second under-approximation that uses query rewriting.
We rewrite the sentence φ to a sentence φrw such that if r, i `u φ is not secure for the user u, then
[φrw]db = >. The formula φrw is ¬φ>s,u ∧ φ⊥s,u, where φ>s,u and φ⊥s,u are defined inductively over φ. A
formal definition of secure is given in Section 6.8.3.

We now explain how we construct φ>s,u and φ⊥s,u. We assume that both φ and V contain only
views with the owner’s privileges. The extension to the general case is straightforward. First, for
each table or view o ∈ D ∪ V , we create additional views representing any possible projection of o.
The extended vocabulary contains the tables in D, the views in V , and their projections. For instance,
given a table R(x, y), we create the views Rx and Ry representing respectively {y | ∃x.R(x, y)} and
{x | ∃y.R(x, y)}. Second, we compute the formula φ′ by replacing each sub-formula ∃x.R(x, y) in φ
with the view Rx(y) associated with the corresponding projection. Third, for each predicate symbol
R in the formula φ′, we compute the sets R>s,u and R⊥s,u. The set R>s,u (respectively R⊥s,u) contains
all the tables and views K in the extended vocabulary such that (1) K is contained in (respectively
contains) R, and (2) the user u is authorized to read K in s, i.e., there is a grant 〈op, u, 〈SELECT,
K′〉, u′〉 ∈ sec such that either K′ = K or K is obtained from K′ through a projection. The formula
φvs,u, where v ∈ {>,⊥}, is defined as follows:

φvs,u =



∨
S∈R>s,u

S(x) if φ = R(x) and v = >∧
S∈R⊥s,u

S(x) if φ = R(x) and v = ⊥
¬ψ¬vs,u if φ = ¬ψ
ψvs,u ∗ γvs,u if φ = ψ ∗ γ and ∗ ∈ {∨,∧}
Qx.ψv

s,u if φ = Qx.ψ and Q ∈ {∃, ∀}
φ otherwise

The formulae are such that if φ>s,u holds, then φ holds and if ¬φ⊥s,u holds, then ¬φ holds. To compute
the sets R>s,u and R⊥s,u, we check the containment between queries. Since query containment is
undecidable [10], we implement a sound under-approximation of it, described in Section 6.8.3. Other
sound under-approximations can be used as well.

Our φ>s,u and φ⊥s,u rewritings share similarities with the low and high evaluations of Wang et
al. [165]. Both try to approximate the result of a query just by looking at the authorized data.
However, we use φ>s,u and φ⊥s,u to determine a judgment’s security, whereas Wang et al. use evaluations
to restrict the query’s results only to authorized data.

Example 6.7. Consider a database with three tables S, R, and Q, and two views V = 〈v, admin,
{x, y |S(x, y) ∧ (x = 1 ∨ y = 3)}, O〉 and W = 〈w, admin, {x |R(x) ∨ Q(x)}, O〉. The database
state db is db(S) = {(1, 1), (2, 3), (4, 2)}, db(R) = {3}, and db(Q) = {4}, the set U is {u, admin},
and the policy sec is {〈⊕, u, 〈SELECT, V 〉, admin〉, 〈⊕, u, 〈SELECT,W 〉, admin〉}. Let the state s be
〈db, U, sec, ∅, {V,W}, ε〉 and the run r be s. We want to check the security of r, 1 `u φ, where
φ := (∃y. S(2, y))∧ (¬R(5)∨∃y. S(4, y)), for the user u. Figure 6.8 depicts the database state db, the
materializations of the views V and W , and the materializations of the views Sx, Sy, Vx, and Vy in
the extended vocabulary. Gray indicates those tables and views that u cannot read.

The rewriting process, depicted in Figure 6.8, proceeds as follows. We first rewrite the formula φ
as Sy(2)∧(¬R(5)∨Sy(4)). The sets Sy>s,u, Sy

⊥
s,u, R

>
s,u, and R⊥s,u are respectively {Vy}, ∅, ∅, and {W}.

The formulae φ>s,u and φ⊥s,u are respectively Sy(2)>s,u ∧ (¬R(5)⊥s,u ∨ Sy(4)>s,u), which is equivalent to
Vy(2) ∧ (¬W (5) ∨ Vy(4)), and Sy(2)⊥s,u ∧ (¬R(5)>s,u ∨ Sy(4)⊥s,u), which is equivalent to >. They are
both secure, as they depend only on V and W . Furthermore, since φ>s,u holds in s, then φ holds as
well. Finally, φrw is ¬φ>s,u ∧ φ⊥s,u. Since φrw does not hold in s, it follows that r, 1 `u φ is secure. �
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V
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2 3

Views
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4

V = {x, y |S(x, y) ∧ (x = 1 ∨ y = 3)}

W = {x |R(x) ∨Q(x)}

Sx
1
3
2

Extended Vocabulary
Sy
1
2
4

Vx

1
3

Vy

1
2

Sx = {y | ∃x. S(x, y)}

Sy = {x | ∃y. S(x, y)}

Vx = {y | ∃x. V (x, y)}

Vy = {x | ∃y. V (x, y)}

Sy>s,u = {Vy}
Containment Sets

Sy⊥s,u = ∅

R>s,u = ∅

R⊥s,u = {W}

φ := (∃y. S(2, y)) ∧ (¬R(5) ∨ ∃y. S(4, y)) ≡ Sy(2) ∧ (¬R(5) ∨ Sy(4))
Original Sentence

φrw := ¬φ>s,u ∧ φ⊥s,u

Rewriting

φ>s,u := Sy(2)>s,u ∧ (¬R(5)⊥s,u ∨ Sy(4)>s,u) ≡ Vy(2) ∧ (¬W (5) ∨ Vy(4))

φ⊥s,u := Sy(2)⊥s,u ∧ (¬R(5)>s,u ∨ Sy(4)⊥s,u) ≡ >

Figure 6.8: Checking the security of the judgment r, 1 `u (∃y. S(2, y)) ∧ (¬R(5)
∨ ∃y. S(4, y)) from Example 6.7.

6.5.3 Theoretical Evaluation
Our PDP provides the desired security guarantees and its data complexity, i.e., the complexity

of executing f when the action, the policy, the triggers, and the views are fixed, is AC0. This means
that f can be evaluated in logarithmic space in the database’s size, as AC0 ⊆ LOGSPACE , and
evaluation is highly parallelizable. Note that secure’s data complexity is AC0 because it relies on
query evaluation, whose data complexity is AC0 [10]. In contrast, all other operations in f are
executed in constant time in terms of data complexity. Note also that on a single processor, f ’s
data complexity is polynomial in the database’s size. We believe that this is acceptable because the
database is usually very large, whereas the query, which determines the degree of the polynomial, is
small. The proof of Theorem 6.1 is given in Appendix C.

Theorem 6.1. Let P = 〈M, f〉 be an extended configuration, where M is a system configuration
and f is as above. The PDP f (1) provides data confidentiality with respect to P , u, AT Ku, and
∼=P,u, for any user u ∈ U , and (2) provides database integrity with respect to P . Moreover, the data
complexity of f is AC0.

As the Examples 6.8 and 6.9 below show, f is more permissive than existing PDPs for those
actions that violate neither database integrity nor data confidentiality.

Example 6.8. Our PDP is more permissive than existing mechanisms for commands of the form
GRANT SELECT ON V TO u, where V is a view with owner’s privileges, u is a user, and the statement
is issued by the view’s owner o. Such mechanisms, in general, authorize the GRANT iff o is authorized
to delegate the read permission for all tables and views that occur in v’s definition. Consider again
Example 6.6. Our PDP authorizes 〈⊕, u′, 〈SELECT,W 〉, u〉 under the policy S′. However, existing
mechanisms reject it because u is not directly authorized to read V , although u can read the un-
derlying tables. Our PDP also authorizes all the secure GRANT statements authorized by existing
mechanisms. �

Example 6.9. Our PDP is more permissive than the mechanisms used in existing DBMSs for secure
SELECT statements. Such mechanisms, in general, authorize a SELECT statement issued by a user u
iff u is authorized to read all tables and views used in the query. They will reject the query in
Example 6.7 even though the query is secure. Furthermore, any secure SELECT statement authorized
by them will be authorized by our solution as well. Also the PDP proposed by Rizvi et al. [131]
rejects the query in Example 6.7 as insecure. However, our solution and the proposal of Rizvi et
al. [131] are incomparable in terms of permissiveness, i.e., some secure SELECT queries are authorized
by one mechanism and not by the other. �
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Figure 6.9: Example 6.6 – PDP execution time

6.5.4 Implementation
To evaluate the feasibility and security of our approach in practice, we implemented our PDP in

Java. The prototype, available at [86], implements both our PDP and the operational semantics of
our system model. It relies on the underlying PostgreSQL database for executing the SELECT, INSERT,
and DELETE commands. Note that our prototype also handles all the differences between the relational
calculus and SQL. For instance, it translates every relational calculus query into an equivalent SELECT
SQL query over the underlying database. We performed a preliminary experimental evaluation of
our prototype. Our experiments were run on a PC with an Intel i7 processor and 32GB of RAM.
Note that we materialized the content of all the views.

Our evaluation has two objectives: (1) to empirically validate that the prototype provides the
desired security guarantees, and (2) to evaluate its overhead. For (1), we ran the attacks in Section 6.1
against our prototype. As expected, our PDP prevents all the attacks. For (2), we simulated
Examples 6.6 and 6.7 on database states where the number of tuples ranges from 1,000 to 100,000.
Figures 6.9 and 6.10 shows the PDP’s execution time for the Examples 6.6 and 6.7 respectively. Our
results show that our solution is feasible. In more detail, fint ’s execution time does not depend on
the database size, whereas fconf ’s execution time does. We believe that the overhead introduced by
the PDP is acceptable for a proof of concept. Even with 100,000 tuples, the PDP’s running time is
under a second. In Example 6.7, fconf ’s execution time is comparable to the execution time of the
user’s query. As Figure 6.11 shows, fconf ’s query rewriting time does not depend on the database’s
size, whereas fconf ’s query execution time does.

To improve fconf ’s performance, one could strike a different balance between simple syntactic
checks and our query rewriting solution. This, however, would result in more restrictive PDPs.

6.6 Related Work

We compare our work against two lines of research: database access control and information-flow
control. Both of these have similar goals, namely preventing the leakage and corruption of sensitive
information.

6.6.1 Database Access Control

Attacker Models for Database Access Control. Surprisingly, and in contrast to other areas
of information security [66], there does not exist a well-defined attacker model for database access
control. From the literature, we extracted the SELECT-only attacker model, where the attacker uses
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just SELECT commands. A number of access control mechanisms, such as [8,13,26,27,41,90,110,131,
145,150,165], implicitly consider this attacker model. The boundaries of this model are blurred and
the attacker’s capabilities are unclear. For instance, only a few works, such as [165], explicitly state
that update commands are not supported, whereas others [13, 26, 27, 131] ignore what the attacker
can learn from update commands. Works on Inference Control [40, 72, 158] and Controlled Query
Evaluation [36] consider a variation of the SELECT-only attacker, in which the attacker additionally
has some initial knowledge about the data and can derive new information from the query’s results
through inference rules. Note that while [158] supports update commands, it treats them just as a
way of increasing data availability, rather than considering them as a possible attack vector.
Discretionary Database Access Control. Our framework builds on prior research in database
access control [131,165] as well as established notions from database theory, such as determinacy [124]
and instance-based determinacy [107].

Specifically, our notion of secure judgments extends instance-based determinacy from database
states to runs, while data confidentiality extends existing security notions [131,165] to dynamic set-
tings, where both the database and the policy may change. Observe that existing security notions
for the Truman [165] and Non-Truman [131] models are based on SELECT-only attackers and provide
no security guarantees against realistic attackers that can alter the database and the policy or use
advanced SQL features. The same consideration applies to the security criteria we present in Chap-
ter 3. Furthermore, our indistinguishability notion extends the one proposed by Wang et al. [165]
(as well as our indistinguishability notion from Chapter 3) from database states to runs. Finally,
our formalization of  auth relies on determinacy to decide whether the content of a view is fully
determined by a set of other views.

Griffiths and Wade propose a PDP [83] that prevents Attacks 6.2 and 6.3 by using syntactic checks
and by removing all views whose owners lack the necessary permissions. In contrast, we prevent the
execution of GRANT and REVOKE operations leading to inconsistent policies.
Mandatory Database Access Control. Research on mandatory database access control has
historically focused on Multi-Level Security (MLS) [63], where both the data and the users are
associated with security levels, which are compared to control data access. Our PDP extends the SQL
discretionary access control model with additional mandatory checks to provide database integrity
and data confidentiality. In the following, we compare our work with the access control policies and
semantics used by MLS systems.

With respect to policies, our work uses the SQL access control model, where policies are sets of
GRANT statements. In this model, users can dynamically modify policies by delegating permissions. In
contrast, MLS policies are usually expressed by labelling each subject and object in the system with
labels from a security lattice [138]. The policy is, in general, fixed (cf. the tranquillity principle [138]).

With respect to semantics, existing MLS solutions are based on the Truman model [131]: they
transparently modify the commands issued by the users to restrict the access to only the autho-
rized data. In contrast, we use the same semantics as SQL, that is, we execute only the secure
commands. Namely, we adopt the Non-Truman model [131]. We refer the reader to Chapter 3
for a detailed comparison of these two access control models. Operationally, MLS mechanisms use
poly-instantiation [99], which is neither supported by the relational model nor by the SQL standard,
and requires ad hoc extensions [63, 140]. Furthermore, the operational semantics of MLS systems
differs from the standard relational semantics. In contrast, our operational semantics supports the
relational model and is directly inspired by SQL.

The above differences influence how security properties are expressed. Data confidentiality, which
relies on a precise characterization of security based on a possible worlds semantics, is a key component
of the Non-Truman model (and SQL) access control semantics. Similarly, database integrity requires
that any “write” operation is authorized according to the policy and is directly inspired by the SQL
access control semantics. The security properties in MLS systems, in contrast, combine the multilevel
relational semantics [63, 140] with MLS and BIBA properties [138].

MLS systems prevent attacks similar to Attacks 6.4 and 6.5 using poly-instantiated tuples and
triggers [140,149], whereas attacks similar to Attack 6.1 cannot be carried out because triggers with
activator’s privileges are not supported [149]. The SeaView system [63], which combines discretionary
access control and MLS, additionally prevents attacks similar to Attacks 6.2 and 6.3 by relying on
Griffiths and Wade’s PDP [83]. However, these solutions cannot be applied to SQL databases for the
aforementioned reasons.

6.6.2 Information-flow Control
Various authors have applied ideas from information-flow control to databases. Davis and Chen [59]

study how cross-application information flows can be tracked through databases. Other researchers [57,
111,141] present languages for developing secure applications that use databases. They employ secure
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type systems to track information flows through databases. However, they neither model nor prevent
the attacks we identified because they do not account for the advanced database features and the
strong attacker model we study in this chapter.

Schultz and Liskov [143] extend decentralized information-flow control [122] to databases, based
on concepts from multi-level security [63]. They identify one attack on data confidentiality that
exploits integrity constraints. Their solution relies on poly-instantiation [99] and cannot be applied
to SQL databases that do not support multi-level security. Their mechanism neither prevents the
other attacks we identify nor provides provable and precise security guarantees.

Several researchers have studied attacker models in information-flow control [18, 78]. Giacobazzi
and Mastroeni [78] model attackers as data-flow analysers that observe the program’s behaviour,
whereas Askarov and Chong [18] model attackers as automata that observe the program’s events.
They both model passive attackers, who can observe, but do not influence, the program’s execution.
In contrast, our attacker is active and interacts with the database.

6.7 Conclusions

Motivated by practical attacks against existing databases, we have initiated several new research
directions. First, we developed the idea that attacker models should be studied and formalized for
databases. Rather than being implicit, the relevant models must be made explicit, just like when
analyzing security in other domains. In this respect, we presented a concrete attacker model that
accounts for relevant features of modern databases, like triggers and views, and attacker inference
capabilities.

Second, access control mechanisms must be designed to be secure, and provably so, with respect
to the formalized attacker capabilities. This requires research on mechanism design, complemented
by a formal operational semantics of databases as a basis for security proofs. We presented such a
mechanism, proved that it is secure, and built and evaluated a prototype of it in PostgreSQL.

6.8 Technical Details

In Section 6.8.1, we present our full attacker model. Afterwards, we provide further details on
how we enforce database integrity (Section 6.8.2) and data confidentiality (Section 6.8.3). Finally, in
Section 6.8.4 we formalize our enforcement mechanism as a PDP.

6.8.1 Full Attacker Model
In this section, we formalize our attacker model AT Ku. Let P = 〈M, f〉 be an extended con-

figuration, where M = 〈D,Γ〉 is a system configuration and f is an M -PDP, L be the P -LTS, and
u ∈ U be a user. The set AT Ku is the smallest set of judgments satisfying the inference rules in
Figures 6.12–6.24. With a slight abuse of notation, in the rules we use r, i `u φ to denote that this
judgment holds in AT Ku, i.e., r, i `u φ ∈ AT Ku. Note that we redefine here also the rules we
presented before in Figure 6.3.

In our attacker model, we assume that the attacker knows the PDP’s implementation. Hence,
he can learn information from leaks caused by the security decision. The rules in Figure 6.23 say
that whenever a PDP leaks information through its security decision, then the attacker may learn
any sentence that differentiates between the database states. These rules over-approximate what an
attacker may infer from leaks caused by the PDP’s security decision.

In the rules, we use |=fin to denote the standard semantic entailment relation for first-order logic
over finite models. Given a view 〈V, ow, {x | φ},m〉 ∈ VIEWD and a relational calculus formula
ψ, we denote by replace(ψ, 〈V, ow, {x | φ},m〉) the formula ψ′ obtained from ψ by replacing all
occurrences of V (x) with φ(x). Note that ψ and replace(ψ, 〈V, ow, {x | φ},m〉) are semantically
equivalent. Finally, given a database schema D, a state s = 〈db, U, sec, T, V, ctx〉, and an action
a ∈ AD,U ∪ T RIGGERD, we denote by user(s, a) the following function:

user(s, a) =
{

invoker(s) if tr(s) 6= ε
u if tr(s) = ε ∧ u ∈ U ∧ a ∈ AD,u

In the following, we omit some details when dealing with integrity constraints. For instance, when
we refer to functional dependencies of the form ∀x, y, y′, z, z′. (R(x, y, z) ∧ R(x, y′, z′))→ y = y′, we
implicitly assume that |y| = |y′| and |z| = |z′|. Furthermore, when we refer to tuples in R, we use the
notation (v, w, q) to stress that a tuple can be partitioned according to x, y, and z, and we implicitly
assume that |v| = |x|, |w| = |y|, and |q| = |z|. We make similar simplifications for the inclusion
dependencies.
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Propagate Forward SELECT
r, i `u ψ ri+1 = ri·〈u, SELECT, φ〉·s 1 ≤ i < |r| s ∈ ΩM

r, i+ 1 `u ψ

Propagate Forward GRANT/REVOKE
r, i `u ψ ri+1 = ri·〈op, u′, pr , u〉·s 1 ≤ i < |r| op ∈ {⊕,⊕∗,	} s ∈ ΩM

r, i+ 1 `u ψ

Propagate Forward CREATE
r, i `u ψ ri+1 = ri·〈u, CREATE, o〉·s 1 ≤ i < |r| o ∈ T RIGGERD ∪ VIEWD s ∈ ΩM

r, i+ 1 `u ψ

Propagate Backward SELECT
r, i+ 1 `u ψ ri+1 = ri·〈u, SELECT, φ〉·s 1 ≤ i < |r| s ∈ ΩM

r, i `u ψ

Propagate Backward GRANT/REVOKE
r, i+ 1 `u ψ ri+1 = ri·〈op, u′, pr , u〉·s 1 ≤ i < |r| op ∈ {⊕,⊕∗,	} s ∈ ΩM

r, i `u ψ

Propagate Backward CREATE TRIGGER
r, i+ 1 `u ψ ri+1 = ri·〈u, CREATE, o〉·s 1 ≤ i < |r| o ∈ T RIGGERD s ∈ ΩM

r, i `u ψ

Propagate Backward CREATE VIEW
r, i+ 1 `u ψ

ri+1 = ri·〈u, CREATE, o〉·s 1 ≤ i < |r| o ∈ VIEWD s ∈ ΩM ψ′ = replace(ψ, o)
r, i `u ψ′

Figure 6.12: Rules defining how the attacker propagates the knowledge.

Propagate Forward INSERT/DELETE Success
1 < i ≤ |r| r, i− 1 `u φ ri = ri−1·〈u, op, R, t〉·s s ∈ ΩM secEx(sn) = ⊥

Ex(sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉 revise(ri−1, φ, ri) = > op ∈ {INSERT, DELETE}
r, i `u φ

Propagate Forward INSERT Success - 1
1 < i ≤ |r| r, i− 1 `u φ r, i− 1 `u R(t) ri = ri−1·〈u, INSERT, R, t〉·s
s ∈ ΩM secEx(sn) = ⊥ Ex(sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

r, i `u φ

Propagate Forward DELETE Success - 1
1 < i ≤ |r| r, i− 1 `u φ r, i− 1 `u ¬R(t) ri = ri−1·〈u, DELETE, R, t〉·s
s ∈ ΩM secEx(sn) = ⊥ Ex(sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

r, i `u φ

Propagate Backward INSERT/DELETE Success
1 < i ≤ |r| r, i `u φ ri = ri−1·〈u, op, R, t〉·s s ∈ ΩM secEx(sn) = ⊥

Ex(sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉 revise(ri−1, φ, ri) = > op ∈ {INSERT, DELETE}
r, i− 1 `u φ

Propagate Backward INSERT Success - 1
1 < i ≤ |r| r, i `u φ r, i− 1 `u R(t) ri = ri−1·〈u, INSERT, R, t〉·s

s ∈ ΩM secEx(sn) = ⊥ Ex(sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉
r, i− 1 `u φ

Propagate Backward DELETE Success - 1
1 < i ≤ |r| r, i `u φ r, i− 1 `u ¬R(t) ri = ri−1·〈u, DELETE, R, t〉·s

s ∈ ΩM secEx(sn) = ⊥ Ex(sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉
r, i− 1 `u φ

Figure 6.13: Rules regulating how information propagates in case of successful
INSERT and DELETE.
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SELECT Success - 1
1 < i ≤ |r| ri = ri−1·〈u, SELECT, φ〉·s s = 〈db, U, sec, T, V, h, 〈〈u, SELECT, φ〉,>,>, ∅〉, 〈ε, ε, ε, ε〉〉

r, i `u φ

SELECT Success - 2
1 < i ≤ |r| ri = ri−1·〈u, SELECT, φ〉·s s = 〈db, U, sec, T, V, h, 〈〈u, SELECT, φ〉,>,⊥, ∅〉, 〈ε, ε, ε, ε〉〉

r, i `u ¬φ

INSERT Success
1 < i ≤ |r|

ri = ri−1·〈u, INSERT, R, t〉·s s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,>, ∅〉, 〈rS′, t, u, tr〉〉
r, i `u R(t)

INSERT Success - FD
1 < i ≤ |r| ri = ri−1·〈u, INSERT, R, t〉·s

l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,>, E〉, 〈rS′, t, u, tr〉〉
∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′ ∈ Γ \ E t = (v, w, q)

r, l `u ¬∃y, z. R(v, y, z) ∧ y 6= w

INSERT Success - ID
1 < i ≤ |r| ri = ri−1·〈u, INSERT, R, t〉·s

l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,>, E〉, 〈rS′, t, u, tr〉〉
∀x, z. (R(x, z)→ ∃y. S(x, y)) ∈ Γ \ E t = (v, w)

r, l `u ∃y. S(v, y)

DELETE Success
1 < i ≤ |r|

ri = ri−1·〈u, DELETE, R, t〉·s s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,>, ∅〉, 〈rS′, t, u, tr〉〉
r, i `u ¬R(t)

DELETE Success - ID
1 < i ≤ |r| ri = ri−1·〈u, DELETE, R, t〉·s

l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,>, E〉, 〈rS′, t, u, tr〉〉
∀x, z. (S(x, z)→ ∃y.R(x, y)) ∈ Γ \ E t = (v, w)
r, l `u ∀x, z. (S(x, z)→ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w)

INSERT Exception
1 < i ≤ |r| ri = ri−1·〈u, INSERT, R, t〉·s

l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉 E 6= ∅
r, l `u ¬R(t)

DELETE Exception
1 < i ≤ |r| ri = ri−1·〈u, DELETE, R, t〉·s

l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉 E 6= ∅
r, l `u R(t)

INSERT FD Exception
1 < i ≤ |r|

ri = ri−1·〈u, INSERT, R, t〉·s l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉
(∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′) ∈ E t = (v, w, q)

r, l `u ∃y, z. R(v, y, z) ∧ y 6= w

INSERT ID Exception
1 < i ≤ |r|

ri = ri−1·〈u, INSERT, R, t〉·s l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉
∀x, z. (R(x, z)→ ∃y. S(x, y)) ∈ E t = (v, w)

r, l `u ∀x, y. S(x, y)→ x 6= v

DELETE ID Exception
1 < i ≤ |r|

ri = ri−1·〈u, DELETE, R, t〉·s l ∈ {i, i− 1} s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉
∀x, z. (S(x, z)→ ∃y.R(x, y)) ∈ E t = (v, w)

r, l `u ∃z. S(v, z) ∧ ∀y. (R(v, y)→ y = w)

Integrity Constraint
1 ≤ i ≤ |r| γ ∈ Γ

r, i `u γ

View
1 ≤ i ≤ |r| v ∈ last(ri).V r, i `u ψ ψ′ = replace(ψ, v)

r, i `u ψ′

Figure 6.14: Rules defining how the attacker extracts knowledge from the run.
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Rollback Backward - 1
r, i `u φ n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM

t1, . . . , tn ∈ T RIGGERD secEx(sn) = > ∨ Ex(sn) 6= ∅ ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn
sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉 op ∈ {INSERT, DELETE}

r, i− n− 1 `u φ

Rollback Backward - 2
r, i `u φ 1 < i ≤ |r| secEx(s) = > ∨ Ex(s) 6= ∅ op ∈ {INSERT, DELETE}
ri = ri−1·〈u, op, R, t〉·s s = 〈db, U, sec, T, V, h, 〈〈u, op, R, t〉, v, v′, E〉, 〈ε, ε, ε, ε〉〉

r, i− 1 `u φ

Rollback Forward - 1
r, i− n− 1 `u φ n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM

t1, . . . , tn ∈ T RIGGERD secEx(sn) = > ∨ Ex(sn) 6= ∅ ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn
sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉 op ∈ {INSERT, DELETE}

r, i `u φ

Rollback Forward - 2
r, i− 1 `u φ 1 < i ≤ |r| secEx(s) = > ∨ Ex(s) 6= ∅ op ∈ {INSERT, DELETE}
ri = ri−1·〈u, op, R, t〉·s s = 〈db, U, sec, T, V, h, 〈〈u, op, R, t〉, v, v′, E〉, 〈ε, ε, ε, ε〉〉

r, i `u φ

Figure 6.15: Rules regulating how information propagates in case of rollbacks.

Reasoning
1 ≤ i ≤ |r| Φ ⊆ {φ | r, i `u φ} Φ |=fin γ

r, i `u γ

Figure 6.16: Rules regulating the reasoning.

Learn INSERT Backward - 3
ri = ri−1·〈u, INSERT, R, t〉·s 1 < i ≤ |r|

s = 〈db, U, sec, T, V, h, aE, tr〉 secEx(s) = ⊥ Ex(s) = ∅ r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u ¬R(t)

Learn DELETE Backward - 3
ri = ri−1·〈u, DELETE, R, t〉·s 1 < i ≤ |r|

s = 〈db, U, sec, T, V, h, aE, tr〉 secEx(s) = ⊥ Ex(s) = ∅ r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u R(t)

Figure 6.17: Rules describing how the attacker learns facts about INSERT and
DELETE commands.

Propagate Forward Disabled Trigger
r, i− 1 `u φ ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx(s) = ⊥ t = 〈id, ow, ev, R, ψ, act,m〉 r, i− 1 `u ¬ψ[x|R| 7→ tpl(last(ri−1))]
r, i `u φ

Propagate Backward Disabled Trigger
r, i `u φ ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx(s) = ⊥ t = 〈id, ow, ev, R, ψ, act,m〉 r, i− 1 `u ¬ψ[x|R| 7→ tpl(last(ri−1))]
r, i− 1 `u φ

Figure 6.18: Rules regulating the propagation of information through disabled
triggers.
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Learn INSERT Forward
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r|
ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉

secEx(s) = ⊥ Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉
r, i `u R(t)

Learn INSERT FD
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r|
ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉

l ∈ {i, i− 1} secEx(s) = ⊥ Ex(s) = ∅
t = 〈id, ow, ev, R′, φ, act,m〉 ∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′ ∈ Γ t = (v, w, q)

r, l `u ¬∃y, z. R(v, y, z) ∧ y 6= w

Learn INSERT FD - 1
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1·t·s
invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉〉, tr〉 t = (v, w, q)
secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉 ∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′ ∈ Γ \ E

r, i− 1 `u ¬∃y, z. R(v, y, z) ∧ y 6= w

Learn INSERT ID
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉 l ∈ {i, i− 1} secEx(s) = ⊥
Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, z. (R(x, z)→ ∃w. S(x,w)) ∈ Γ t = (v, w)

r, l `u ∃y. S(v, y)

Learn INSERT ID - 1
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1·t·s
invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉〉, tr〉

t = (v, w) secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, z. (R(x, z)→ ∃w. S(x,w)) ∈ Γ \ E
r, i− 1 `u ∃y. S(v, y)

Learn INSERT Backward - 1
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
secEx(s) = ⊥ Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 r, i− 1 `u ψ r, i `u ¬ψ

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))]

Learn INSERT Backward - 2
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
secEx(s) = ⊥ Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 r, i− 1 `u ψ r, i `u ¬ψ

r, i− 1 `u ¬R(t)

Figure 6.19: Extracting knowledge from triggers – part 1.
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Learn DELETE Forward
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r|
ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉

secEx(s) = ⊥ Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉
r, i `u ¬R(t)

Learn DELETE - ID
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉 l ∈ {i, i− 1} secEx(s) = ⊥
Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, z. (S(x, z)→ ∃w.R(x,w)) ∈ Γ t = (v, w)

r, l `u ∀x, z. (S(x, z)→ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w)

Learn DELETE ID - 1
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1·t·s
invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, E〉〉, tr〉

t = (v, w) secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, z. (S(x, z)→ ∃w.R(x,w)) ∈ Γ \ E
r, i− 1 `u ∀x, z. (S(x, z)→ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w)

Learn DELETE Backward - 1
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
secEx(s) = ⊥ Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 r, i− 1 `u ψ r, i `u ¬ψ

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))]

Learn DELETE Backward - 2
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
secEx(s) = ⊥ Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 r, i− 1 `u ψ r, 1 `u ¬ψ

r, i− 1 `u R(t)

Learn GRANT/REVOKE Backward
1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈op, u′′, pr , u′〉,>,>, ∅〉〉, tr〉 secEx(s) = ⊥ Ex(s) = ∅
t = 〈id, ow, ev, R′, φ, act,m〉 u′, u′′ ∈ U op ∈ {⊕,⊕∗,	} last(ri−1).sec 6= last(ri).sec

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))]

Figure 6.20: Extracting knowledge from triggers – part 2.
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Propagate Forward Trigger Action
r, i− 1 `u ψ 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉
Ex(s) = ∅ secEx(s) = ⊥ t = 〈id, ow, ev, R, φ, act,m〉 revise(ri−1, ψ, ri) = >

r, i `u ψ

Propagate Backward Trigger Action
r, i `u ψ 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉
Ex(s) = ∅ secEx(s) = ⊥ t = 〈id, ow, ev, R, φ, act,m〉 revise(ri−1, ψ, ri) = >

r, i− 1 `u ψ

Propagate Forward INSERT Trigger Action
r, i− 1 `u ψ r, i− 1 `u R(t) 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
Ex(s) = ∅ secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉

r, i `u ψ

Propagate Forward DELETE Trigger Action
r, i− 1 `u ψ r, i− 1 `u ¬R(t) 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
Ex(s) = ∅ secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉

r, i `u ψ

Propagate Backward INSERT Trigger Action
r, i `u ψ r, i− 1 `u R(t) 1 < i ≤ |r| ri = ri−1·t·s

invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
Ex(s) = ∅ secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉

r, i− 1 `u ψ

Propagate Backward DELETE Trigger Action
r, i `u ψ r, i− 1 `u ¬R(t) 1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
Ex(s) = ∅ secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉

r, i− 1 `u ψ

Figure 6.21: Rules for propagating knowledge through triggers.
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Trigger FD INSERT Disabled Backward
1 < i ≤ |r| ri = ri−1·t·s

invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx(s) = ⊥ Ex(s) = ∅
t = 〈id, ow, ev, R, φ, act,m〉 action(act, user(last(ri−1), t), tpl(last(ri−1)) = 〈u′, INSERT, R, (v, w, q)〉

r, i− 1 `u ∃y, z.R(v, y, z) ∧ y 6= w ∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′, z′))→ y = y′ ∈ Γ

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger ID INSERT Disabled Backward
1 < i ≤ |r| ri = ri−1·t·s

invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx(s) = ⊥ Ex(s) = ∅
t = 〈id, ow, ev, R, φ, act,m〉 action(act, user(last(ri−1), t), tpl(last(ri−1)) = 〈u′, INSERT, R, (v, w)〉

r, i− 1 `u ∀x, y. S(x, y)→ x 6= v ∀x, z.R(x, z)→ ∃w. S(x,w) ∈ Γ

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger ID DELETE Disabled Backward
1 < i ≤ |r| ri = ri−1·t·s

invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx(s) = ⊥ Ex(s) = ∅
t = 〈id, ow, ev, R, φ, act,m〉 action(act, user(last(ri−1), t), tpl(last(ri−1)) = 〈u′, DELETE, R, (v, w)〉

r, i− 1 `u ∃z. S(v, z) ∧ ∀y. (R(x, y)→ y = w) ∀x, z. S(x, z)→ ∃w.R(x,w) ∈ Γ

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger GRANT Disabled Backward
1 < i ≤ |r| ri = ri−1·t·s

invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx(s) = ⊥ Ex(s) = ∅
t = 〈id, ow, ev, R′, φ, act,m〉 action(act, user(last(ri−1), t), tpl(last(ri−1)) = 〈op, u′′, p, u′〉

u′, u′′ ∈ U op ∈ {⊕,⊕∗} 〈op, u′′, p, u′〉 6∈ last(ri−1).sec last(ri−1).sec = sec

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger REVOKE Disabled Backward
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx(s) = ⊥
Ex(s) = ∅ t = 〈id, ow, ev, R′, φ, act,m〉 action(act, user(last(ri−1), t), tpl(last(ri−1)) = 〈	, u′′, p, u′〉

u′, u′′ ∈ U op ∈ {⊕,⊕∗} 〈op, u′′, p, u′〉 ∈ last(ri−1).sec last(ri−1).sec = sec

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Figure 6.22: Extracting knowledge from disabled triggers.

Learn from deny - actions
r, r′, r′′ ∈ traces(L) a ∈ AD,u s, s′ ∈ ΩM 1 < i ≤ |r| ri = ri−1·a·s

r′ = r′′·a·s′ ri−1 ∼=P,u r
′′ secEx(s) 6= secEx(s′) [φ]last(ri−1).db = > [φ]last(r′′).db = ⊥

r, i− 1 `u φ

Learn from deny - triggers
r, r′, r′′ ∈ traces(L) t ∈ T RIGGERSD s, s′ ∈ ΩM 1 < i ≤ |r|

ri = ri−1·t·s r′ = r′′·t·s′ ri−1 ∼=P,u r
′′ invoker(last(ri−1)) = u invoker(last(r′′)) = u

acC (s) 6= acC (s′) ∨ secEx(s) 6= secEx(s′) [φ]last(ri−1).db = > [φ]last(r′′).db = ⊥
r, i− 1 `u φ

Figure 6.23: Extracting knowledge from the PDP.
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Trigger INSERT FD Exception
1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉, tr〉 secEx(s) = ⊥
t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′) ∈ Ex(s) t = (v, w, q)

r, i− 1 `u ∃y, z. R(v, y, z) ∧ y 6= w

Trigger INSERT ID Exception
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉, tr〉
secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, z. (R(x, z)→ ∃w. S(x,w)) ∈ Ex(s) t = (v, w)

r, i− 1 `u ∀x, y. S(x, y)→ x 6= v

Trigger DELETE ID Exception
1 < i ≤ |r|

ri = ri−1·t·s invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, E〉, tr〉
secEx(s) = ⊥ t = 〈id, ow, ev, R′, φ, act,m〉 (∀x, z. (S(x, z)→ ∃w.R(x,w)) ∈ Ex(s) t = (v, w)

r, i− 1 `u ∃z. S(v, z) ∧ ∀y. (R(v, y)→ y = w)

Trigger Exception
1 < i ≤ |r| ri = ri−1·t·s

invoker(last(ri−1)) = u s = 〈db, U, sec, T, V, h, 〈t, 〈〈u′, SELECT, φ[x 7→ tpl(last(ri−1))]〉,>,>, ∅〉, stmt, tr〉
secEx(s) = > ∨ Ex(s) 6= ∅ t = 〈id, ow, ev, R, φ, act,m〉

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger INSERT Exception
1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t, 〈〈u′, SELECT, φ〉,>,>, ∅〉, 〈〈u′, INSERT, R, t〉, res, aC , E〉, tr〉
secEx(s) = ⊥ Ex(s) 6= ∅ t = 〈id, ow, ev, R′, φ, act,m〉

r, i− 1 `u ¬R(t)

Trigger DELETE Exception
1 < i ≤ |r| ri = ri−1·t·s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t, 〈〈u′, SELECT, φ〉,>,>, ∅〉, 〈〈u′, DELETE, R, t〉, res, aC , E〉, tr〉
secEx(s) = ⊥ Ex(s) 6= ∅ t = 〈id, ow, ev, R′, φ, act,m〉

r, i− 1 `u R(t)

Trigger Rollback INSERT
n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM t1, . . . , tn ∈ T RIGGERD secEx(sn) = > ∨ Ex(sn) 6= ∅
ri = ri−n−1·〈u, INSERT, R, t〉·s1·t1·s2· . . . ·tn·sn sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉

r, i `u ¬R(t)

Trigger Rollback DELETE
n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM t1, . . . , tn ∈ T RIGGERD secEx(sn) = > ∨ Ex(sn) 6= ∅
ri = ri−n−1·〈u, DELETE, R, t〉·s1·t1·s2· . . . ·tn·sn sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉

r, i `u R(t)

Figure 6.24: Extracting knowledge from trigger’s exceptions.
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6.8.2 Enforcing Database Integrity
Here, we define the access control function fint , which models the fint procedure described in

Section 6.5. The function fint is as follows:

fint(s, a) =



> if trigger(s) = ε ∧ s appr
auth a

> if trigger(s) = t ∧ t 6= ε ∧ a = trigCond(s)
> if trigger(s) = 〈id, ow, e, R, φ, st, A〉 ∧ a = trigAct(s)∧

s appr
auth getAction(st, invoker(s), tpl(s)) ∧ s appr

auth getAction(st, ow, tpl(s))
> if trigger(s) = 〈id, ow, e, R, φ, st, O〉 ∧ a = trigAct(s)∧

s appr
auth getAction(st, ow, tpl(s))

⊥ otherwise

The function trigCond(s) (respectively trigAct(s)) returns the condition (respectively the ac-
tion) associated with the trigger trigger(s). If trigger(s) = 〈id, ow, e, R, φ, st, O〉, then trigAct(s) =
getAction(st, ow, tpl(s)) and trigCond(s) = 〈ow, SELECT, φ[x|R| 7→ tpl(s)]〉. If trigger(s) = 〈id, ow,
e, R, φ, st, A〉, then trigAct(s) = getAction(st, invoker(s), tpl(s)) and trigCond(s) = 〈invoker(s),
SELECT, φ[x|R| 7→ tpl(s)]〉.

The relation  appr
auth⊆ ΩM × (AD,U ∪T RIGGERD) is the smallest relation satisfying the inference

rules given in Figure 6.25. Informally,  appr
auth is obtained from  auth by replacing determinacy with

a sound under-approximation. As we show in Appendix C,  appr
auth is a sound and computable under-

approximation of the relation  auth . In the rules, we use a number of auxiliary functions. The most
important ones are:
(a) The aT (respectively aV ) function that takes as input a database state, an operator op in {⊕,
⊕∗}, and a user, and returns the set of tables (respectively views) that the user is authorized
to read (if op = ⊕) or to delegate the read access to other users (if op = ⊕∗) according to our
approximation of  auth . These functions are defined as follows:

aT(〈db,U, sec, T, V, c〉, op, u) = {R ∈ D |
(u = admin ∧ ∃u′ ∈ U, op′ ∈ {⊕∗, op}. 〈db, U, sec, T, V, c〉 appr

auth 〈op′, u, 〈SELECT, R〉, u′〉)∨
∃u′ ∈ U, g ∈ sec, op′ ∈ {⊕∗, op}. g = 〈op′, u, 〈SELECT, R〉, u′〉 ∧ 〈db, U, sec, T, V, c〉 appr

auth g}

aV (〈db,U, sec, T, V, c〉, op, u) = {V ∈ V ∩ VIEWowner
D |

(u = admin ∧ ∃u′ ∈ U, op′ ∈ {⊕∗, op}. 〈db, U, sec, T, V, c〉 appr
auth 〈op′, u, 〈SELECT, V 〉, u′〉)∨

∃u′ ∈ U, g ∈ sec, op′ ∈ {⊕∗, op}. g = 〈op′, u, 〈SELECT, V 〉, u′〉 ∧ 〈db, U, sec, T, V, c〉 appr
auth g}

(b) The apprDet function is used to determine whether a set of tables and a set of views completely
determine the result of a formula φ in all possible database states. Note that the function apprDet
is a sound under-approximation of query determinacy [124].

A sound under-approximation of query determinacy

Here we define our sound under-approximation of query determinacy, implemented in the function
apprDet. In the following, we assume that both the formula φ and the set of views V in the state
s contain just views with owner’s privileges. This is without loss of generality since views with
activator’s privileges are just syntactic sugar (they do not disclose additional information to a user
u other than what he is already authorized to read because they are executed under u’s privileges).

Let M be a system configuration, s = 〈db, U, sec, T, V 〉 be an M -system state, and 〈v, o, q, O〉
be a view with owner’s privileges. We denote by inlineM (〈v, o, q, O〉, s) the view 〈v, o, q′, O〉 where
q′ is obtained from q by replacing all occurrences of views in V with owner’s privileges with their
definitions. Note that inlineM does not compute a fix-point, i.e., if a view’s definition refers to
another view, the latter is not replaced with its definition.

The apprDet function takes as input a system configuration M , a set of tables T , a set of views
with owner’s privileges V , a query φ, and a partial M -state, and returns > if the tables and views in
T and V determine the result of φ. The function is formalized below, and it relies on extend(M, s, V ),
which is the smallest set satisfying the following recurrence relation: extend(M, s, V ) = V ∪{inline(v,
s) | v ∈ extend(M, s, V )}.
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apprDet(T, V, φ, s,M) =



> if ∃〈v, o, q, O〉 ∈ extend(M, s, V ). q = {x | φ(x)}
> if φ = (x = v) ∨ φ = > ∨ φ = ⊥
> if φ = R(x) ∧R ∈ T
> if φ = V ′(x) ∧ ∃u ∈ U , q ∈ RC . 〈V ′, u, q, O〉 ∈ V
> if φ = (ψ ∧ γ) ∧ apprDet(T, V, ψ, s,M) = >∧

apprDet(T, V, γ, s,M) = >
> if φ = (ψ ∨ γ) ∧ apprDet(T, V, ψ, s,M) = >∧

apprDet(T, V, γ, s,M) = >
> if φ = (¬ψ) ∧ apprDet(T, V, ψ, s,M) = >
> if φ = (∃x. ψ) ∧ apprDet(T, V, ψ, s,M) = >
> if φ = (∀x. ψ) ∧ apprDet(T, V, ψ, s,M) = >
⊥ otherwise

Observe that our under-approximation of query determinacy ignores the integrity constraints.
This is always sound since if D, ∅ ` Q� q, then D,Γ ` Q� q.

6.8.3 Enforcing Data Confidentiality
Here, we define the PDP fuconf (s, a), which models the function fconf (s, a, u) from Section 6.5.

The PDP fuconf is shown in Figure 6.26. The function is parametrized by the user u against which
the PDP provides data confidentiality. The mapping between the PDP fuconf and the pseudo-code
shown in Figure 6.7 is immediate.

The PDP fuconf uses a number of auxiliary functions. Recall that the function tr takes as input an
M -state s ∈ ΩM and returns the definition of the trigger that the system is executing. If the system
is not executing any trigger, then tr(s) = ε. Equivalently, tr(s) is the first trigger in the sequence of
triggers returned by triggers(s).

The function tDet takes as input a view v = 〈i, o, {x|φ},m〉 ∈ VIEWD, a state s ∈ ΩM , and a
system configurationM = 〈D,Γ〉 and returns as output the smallest set of tables inD that determines
v, namely the smallest set T ∈ 2D such that apprDet(T, ∅, φ, s,M) holds, where apprDet is defined
in Section 6.8.2. Note that such a set is always unique.

The function noLeak takes as input a state s, an INSERT or DELETE action a, and a user u and it
checks whether the execution of the action a may leak sensitive information through the views that
the user u can read, as shown in Example 6.5. Note that the function noLeak returns > if there is no
leakage of sensitive information and returns ⊥ if the action a may leak sensitive information through
the views the user u can read in the state s. Formally, noLeak(s, 〈u′, op, R, t〉, u) is defined as follows:

> if u′ = u ∧ trigger(s) = ε ∧ ∀v ∈ VIEWD. ((〈⊕, SELECT, v〉 ∈ permissions(s, u)∧
R ∈ tDet(v, s,M))→ (∀o ∈ tDet(v, s,M). 〈⊕, SELECT, o〉 ∈ permissions(s, u)))

> if invoker(s) = u ∧ trigger(s) 6= ε ∧ ∀v ∈ VIEWD. ((〈⊕, SELECT, v〉 ∈ permissions(s, u)∧
R ∈ tDet(v, s,M))→ (∀o ∈ tDet(v, s,M). 〈⊕, SELECT, o〉 ∈ permissions(s, u)))

⊥ otherwise

We now define the Dep, getInfoS , getInfoV , and getInfo functions. The function Dep retrieves
all integrity constraints that may be violated by executing an INSERT or DELETE action. Formally,
Dep(〈u, INSERT, R, t〉,Γ) returns the set containing all the formulae in Γ of the form ∀x, y, y′, z,
z′. (R(x, y, z) ∧R(x, y′, z′))→ y = y′ or ∀x, z.R(x, z)→ ∃w. S(x,w), whereas Dep(〈u, DELETE, R, t〉,
Γ) returns the set containing all the formulae in Γ of the form ∀x, z. S(x, z)→ ∃w.R(x,w).

The function getInfoS returns the sentence capturing what an attacker may learn from the in-
tegrity constraint φ in case an action is executed successfully. The function is defined as follows:

• getInfoS(〈u, INSERT, R, (v, w, q)〉, φRfunct) is the formula ¬∃y, z.R(v, y, z)∧ y 6= w, where φRfunct is
a formula of the form ∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′, z′))→ y = y′.

• getInfoS(〈u, INSERT, R, (v, w)〉, φR,Sincl ) is the formula ∃y. S(v, y), where φR,Sincl is a formula of the
form ∀x, z.R(x, z)→ ∃w. S(x,w).

• getInfoS(〈u, DELETE, R, (v, w)〉, φS,Rincl ) is the formula ∀x, z. (S(x, z)→ x 6= v)∨∃y. (R(v, y)∧ y 6=
w), where φS,Rincl is a formula of the form ∀x, z. S(x, z)→ ∃w.R(x,w).

• getInfoS(act, φ) = > otherwise.
The function getInfoV returns the sentence capturing what an attacker may learn from the

integrity constraint φ in case an action violates the constraint φ. The function is as follows:
• getInfoV (〈u, INSERT, R, (v, w, q)〉, φRfunct) is the formula ∃y, z.R(v, y, z) ∧ y 6= w, where φRfunct is

a formula of the form ∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′, z′))→ y = y′.
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Select
u ∈ U q ∈ RC

〈db, U, sec, T, V, c〉 appr
auth 〈u, SELECT, q〉

Add User
u ∈ U u′ = admin

〈db, U, sec, T, V, c〉 appr
auth 〈u

′, ADD_USER, u〉

Insert-Delete
u, u′ ∈ U R ∈ D t ∈ dom|R| g = 〈op, u, 〈op′, R〉, u′〉

g ∈ sec 〈db, U, sec, T, V, c〉 appr
auth g op ∈ {⊕,⊕∗} op′ ∈ {INSERT, DELETE}

〈db, U, sec, T, V, c〉 appr
auth 〈u, op′, R, t〉

Create View
u, u′ ∈ U

v ∈ VIEWD g = 〈op, u, 〈CREATE VIEW〉, u′〉 g ∈ sec 〈db, U, sec, T, V, c〉 appr
auth g op ∈ {⊕,⊕∗}

〈db, U, sec, T, V, c〉 appr
auth 〈u, CREATE, v〉

Create Trigger
u, u′ ∈ U t = 〈id, ow, ev, R, φ, stmt,m〉 t ∈ T RIGGERD

g = 〈op, u, 〈CREATETRIGGER, R〉, u′〉 g ∈ sec 〈db, U, sec, T, V, c〉 appr
auth g op ∈ {⊕,⊕∗}

〈db, U, sec, T, V, c〉 appr
auth 〈u, CREATE, t〉

Insert-Delete admin
R ∈ D t ∈ dom|R| op′ ∈ {INSERT, DELETE}
〈db, U, sec, T, V, c〉 appr

auth 〈admin, op′, R, t〉

Create View admin
v ∈ VIEWD

〈db, U, sec, T, V, c〉 appr
auth 〈admin, CREATE, v〉

Create Trigger admin
t ∈ T RIGGERD

〈db, U, sec, T, V, c〉 appr
auth 〈admin, CREATE, t〉

Revoke
u, u′ ∈ U priv ∈ PRIVD s = 〈db, U, sec, T, V, c〉

s′ = 〈db, U, sec′, T, V, c〉 s′ = applyRev(s, 〈	, u, p, u′〉) ∀g ∈ sec′. s′  appr
auth g

〈db, U, sec, T, V, c〉 appr
auth 〈	, u, priv, u′〉

Grant-1
u, u′, u′′ ∈ U

op ∈ {⊕,⊕∗} priv ∈ PRIVD g = 〈⊕∗, u′, priv, u′′〉 g ∈ sec 〈db, U, sec, T, V, c〉 appr
auth g

〈db, U, sec, T, V, c〉 appr
auth 〈op, u, priv, u′〉

Grant-2
u ∈ U op ∈ {⊕,⊕∗} priv ∈ PRIVD \ PRIVSELECT,VIEWownerD

D

〈db, U, sec, T, V, c〉 appr
auth 〈op, u, priv, admin〉

Grant-3
u, owner ∈ U op ∈ {⊕,⊕∗}

priv = 〈SELECT, v〉 v = 〈id, owner , q, O〉 v ∈ V T ′ = aT(〈db, U, sec, T, V, c〉,⊕∗, owner)
V ′ = aV (〈db, U, sec, T, V, c〉,⊕∗, owner) apprDet(T ′, V ′, q) = >

〈db, U, sec, T, V, c〉 appr
auth 〈op, u, priv, owner〉

Grant-4
u, owner ∈ U op ∈ {⊕,⊕∗} priv = 〈SELECT, v〉

v = 〈id, owner , q, O〉 v ∈ V owner 6= admin T ′ = aT(〈db, U, sec, T, V, c〉,⊕, owner)
V ′ = aV (〈db, U, sec, T, V, c〉,⊕, owner) apprDet(T ′, V ′, q) = >

〈db, U, sec, T, V, c〉 appr
auth 〈op, u, priv, admin〉

Grant-5
u, owner ∈ U op ∈ {⊕,⊕∗} v ∈ V priv = 〈SELECT, v〉 v = 〈id, owner , q, A〉

〈db, U, sec, T, V, c〉 appr
auth 〈op, u, priv, owner〉

Execute Trigger-1
t = 〈id, ow, ev, R, φ, stmt, O〉

t ∈ T 〈db, U, sec, T, V, c〉 appr
auth getAction(stmt, ow, tpl(c)) [φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉 appr

auth t

Execute Trigger-2
t = 〈id, ow, ev, R, φ, stmt, A〉 t ∈ T 〈db, U, sec, T, V, c〉 appr

auth getAction(stmt, invoker(c), tpl(c))
〈db, U, sec, T, V, c〉 appr

auth getAction(stmt, ow, tpl(c)) [φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉 appr

auth t

Execute Trigger-3
t = 〈id, ow, ev, R, φ, stmt,m〉 t ∈ T [φ[x|R| 7→ tpl(c)]]db = ⊥

〈db, U, sec, T, V, c〉 appr
auth t

Figure 6.25: Definition of the  appr
auth relation.
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f uconf (s, act) =


f uconf ,S(s, act) if act = 〈u′, SELECT, q〉
f uconf ,I,D(s, act) if act = 〈u′, INSERT, R, t〉
f uconf ,I,D(s, act) if act = 〈u′, DELETE, R, t〉
f uconf ,G,R(s, act) if act = 〈op, u′′, p, u′〉 ∧ op ∈ {⊕,⊕∗}
> if u = admin
> otherwise

f uconf ,I,D(s, act) =



secure(u, getInfo(act), s)∧ if act = 〈u, op, R, t〉 ∧ trigger(s) = ε∧
γ∈Dep(act,Γ) secure(u, getInfoS(γ, act), s) ∧noLeak(s, act, u) = >
∧ secure(u, getInfoV (γ, act), s)

⊥ if act = 〈u, op, R, t〉 ∧ trigger(s) = ε
∧ noLeak(s, act, u) = ⊥

secure(u, getInfo(act), s)∧ if invoker(s) = u ∧ trigger(s) 6= ε∧
γ∈Dep(act,Γ) secure(u, getInfoS(γ, act), s) ∧ noLeak(s, act, u) = >
∧ secure(u, getInfoV (γ, act), s)

⊥ if invoker(s) = u ∧ trigger(s) 6= ε
∧ noLeak(s, act, u) = ⊥

> otherwise

f uconf ,S(s, 〈u′, SELECT, q〉) =

{
secure(u, q, s) if u′ = u ∧ trigger(s) = ε
secure(u, q, s) if invoker(s) = u ∧ trigger(s) 6= ε
> otherwise

f uconf ,G(s, 〈op, u′′, p, u′〉) =


⊥ if u′′ = u ∧ u′ = u ∧ trigger(s) = ε ∧ op ∈ {⊕,⊕∗}∧

p = 〈SELECT, O〉 ∧ 〈⊕, SELECT, O〉 6∈ permissions(s, u)
⊥ if u′′ = u ∧ invoker(s) = u ∧ trigger(s) 6= ε ∧ op ∈ {⊕,⊕∗}∧

p = 〈SELECT, O〉 ∧ 〈⊕, SELECT, O〉 6∈ permissions(s, u)
> otherwise

Figure 6.26: Access control function fuconf .
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free(φ ∧ ψ) = free(φ)
M = 〈D,Γ〉 free(φ) 6= ∅

φ ∧ ψ ⊆M φ
Conjunction

free(φ) = free(φ ∨ ψ)
M = 〈D,Γ〉 free(φ) 6= ∅

φ ⊆M φ ∨ ψ Disjunction

M = 〈D,Γ〉 n > 1
free(φ) = {x1, . . . , xn}
free(ψ) = {y1, . . . , yn}
1 ≤ i ≤ n φ ⊆M ψ

∃xi.φ ⊆M ∃yi.φ
Projection

M = 〈D,Γ〉 n > 0
free(φ) = {x1, . . . , xn}
free(ψ) = {y1, . . . , yn}

φ[x1 7→ y1, . . . , xn 7→ yn] = ψ

φ ⊆M ψ
Identity

M = 〈D,Γ〉 |x| > 0
∀x, z. (R(x, z)→ ∃w. S(x,w)) ∈ Γ
∃z.R(x, z) ⊆M ∃w. S(x,w)

Inclusion
Dependency

φ ⊆M γ γ ⊆M ψ
M = 〈D,Γ〉 free(φ) 6= ∅
free(ψ) 6= ∅ free(γ) 6= ∅

φ ⊆M ψ
Transitivity

Figure 6.27: Containment rules.

• getInfoV (〈u, INSERT, R, (v, w)〉, φR,Sincl ) is the formula ∀x, y. S(x, y) → x 6= v, where φR,Sincl is a
formula of the form ∀x, z.R(x, z)→ ∃w. S(x,w).

• getInfoV (〈u, DELETE, R, (v, w)〉, φS,Rincl ) is the formula ∃z. S(v, z) ∧ ∀y. (R(v, y)→ y = w), where
φS,Rincl is a formula of the form ∀x, z. S(x, z)→ ∃w.R(x,w).

• getInfoV (act, φ) = > otherwise.
Finally, the function getInfo, which returns the information an attacker may learn by the successful

execution of an INSERT or DELETE command, is as follows:

getInfo(〈u, op, R, t〉) =
{
¬R(t) if op = INSERT
R(t) if op = DELETE

Checking a judgment’s security

We now define the secure : U ×RC bool ×ΩM → {>,⊥} function that determines whether a given
judgment is secure. In more detail, the secure function is as follows:

secure(u, φ, s) =
{
> if [φrw

s,u]s.db = ⊥
⊥ otherwise

Again, in the following, we assume that both the formula φ and the set of views V in the state s
contain just views with owner’s privileges. The extension to the general case is straightforward.

Before defining the φ>s,u and φ⊥s,u rewritings, we define query containment. Let M = 〈D,Γ〉 be
a system configuration. Given two formulae φ(x) and ψ(y), we write φ ⊆M ψ to denote that φ
is contained in ψ, i.e., ∀db ∈ ΩΓ

D. [{x | φ}]db ⊆ [{y | ψ}]db. Determining whether φ ⊆M ψ holds is
undecidable for the relational calculus [10]. Hence, we develop a sound, under-approximation of query
containment. Figure 6.27 describes the rules defining our under-approximation. For simplicity’s sake,
the rules are defined only for relational calculus formulae that do not use views. To check whether
φ ⊆M ψ holds for two formulae φ and ψ that use views, we first compute the formulae φ′ and ψ′,
obtained by replacing views’ identifiers with their definitions, and then we check whether φ′ ⊆M ψ′

using the rules in Figure 6.27. This preserves containment since φ and ψ are semantically equivalent
to φ′ and ψ′. Observe that in the rules, we assume that there is a total ordering �var over the set of all
possible variable identifiers. This ensures that, given a formula φ, there is a unique non-boolean query
{x | φ} associated with it, where the variables in x are those in free(φ) ordered according to �var .

Given a table or a view O and a sequence of distinct integers i = i1· . . . ·in such that 1 ≤ ij ≤ |O|
for all 1 ≤ j ≤ n, where 0 ≤ n < |O|, the i-projection of O, denoted by Oi, is the formula ∃xi1 , . . . ,
xin . O(x1, . . . , x|O|). Given a database schema D and a set of views V defined over D, we denote by
extVocabulary(D,V ) the extended vocabulary obtained by defining all possible projections of tables
in D and views in V , i.e., for each O ∈ D ∪ V , we define a predicate Oi for each projection ∃xi1 ,
. . . , xin . O(x1, . . . , x|O|) of O. Furthermore, given a relational calculus formula φ over D, we denote
by extVocV,D(φ) the formula obtained by replacing all sub-formulae of the form ∃x.R(x, y) with the
predicates in extVocabulary(D,V ) representing the corresponding projections Ri. Finally, we denote
by inlineD,V (φ), where φ is a relational calculus formula over extVocabulary(D,V ), the formula φ′
obtained by replacing all predicates associated with projections with the corresponding formulae.
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Let S be a predicate in extVocabulary(D,V ) and s be an M -state. We denote by S>s the set of all
projections of tables in D and views in V that are contained in S, i.e., S>s := {R ∈ extVocabulary(D,
V ) |R(x) ⊆M S(y)}2. Similarly, we denote by S⊥s the set of all projections of tables in D and views in
V that contains S, i.e., S⊥s := {R ∈ extVocabulary(D,V ) |S(x) ⊆M R(y)}. Furthermore, we denote
by AUTH s,u the set of all tables and views that u is authorized to read in s, i.e., AUTH s,u := {o | 〈⊕,
SELECT, o〉 ∈ permissions(s, u)}, and by AUTH ∗s,u the set of all the projections obtained from tables
and views in AUTH s,u.

We are now ready to formally define the φ>s,u and φ⊥s,u rewritings.

Definition 6.7. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V, c〉 be an M -state,
u be a user, and φ be a relational calculus sentence over extVocabulary(D,V ).

The function bound takes as input a formula φ, a state s, a user u, a variable identifier x, and a
value v in {>,⊥}. It is inductively defined as follows:

• bound(R(y), s, u, x, v), where R is a predicate symbol in extVocabulary(D,V ), is > iff (a) x
occurs in y, and (b) the set Rvs,u := Rvs ∩AUTH ∗s,u, is not empty.

• bound(y = z, s, u, x, v) is > iff x = y and z is a constant symbol or x = z and y is a constant
symbol.

• bound(>, s, u, x, v) := ⊥.
• bound(⊥, s, u, x, v) := ⊥.
• bound(¬ψ, s, u, x, v) := bound(ψ, s, u, x,¬v), where ψ is a relational calculus formula.
• bound(ψ ∧ γ, s, u, x, v) := bound(ψ, s, u, x, v)∨ bound(γ, s, u, x, v), where ψ and γ are relational

calculus formulae.
• bound(ψ ∨ γ, s, u, x, v) := bound(ψ, s, u, x, v)∧ bound(γ, s, u, x, v), where ψ and γ are relational

calculus formulae.
• bound(∃y. ψ, s, u, x, v), where ψ is a relational calculus formula, is bound(ψ, s, u, x, v)∧bound(ψ,
s, u, y, v) if x 6= y, and bound(∃y. ψ, s, u, x, v) := ⊥ otherwise.

• bound(∀y. ψ, s, u, x, v), where ψ is a relational calculus formula, is bound(ψ, s, u, x, v)∧bound(ψ,
s, u, y, v) if x 6= y, and bound(∀y. ψ, s, u, x, v) := ⊥ otherwise.

The formula φ>s,u is inductively defined as follows:
• R(x)>s,u :=

∨
S∈R>s,u

S(x), where R is a predicate symbol in extVocabulary(D,V ) and R>s,u :=
R>s ∩AUTH ∗s,u.

• (x = v)>s,u := (x = v), where x and v are either variable identifiers or constant symbols.
• (>)>s,u := >.
• (⊥)>s,u := ⊥.
• (¬ψ)>s,u := ¬ψ⊥s,u, where ψ is a relational calculus formula.
• (ψ ∧ γ)>s,u := ψ>s,u ∧ γ>s,u, where ψ and γ are relational calculus formulae.
• (ψ ∨ γ)>s,u := ψ>s,u ∨ γ>s,u, where ψ and γ are relational calculus formulae.
• (∃x. ψ)>s,u, where ψ is a relational calculus formula and x is a variable identifier, is ∃x. ψ>s,u if

bound(ψ, s, u, x,>) = > and (∃x. ψ)>s,u := ⊥ otherwise.
• (∀x. ψ)>s,u, where ψ is a relational calculus formula and x is a variable identifier, is ∀x. ψ>s,u if

bound(ψ, s, u, x,>) = > and (∀x. ψ)>s,u := ⊥ otherwise.
The formula φ⊥s,u is inductively defined as follows:

• R(x)⊥s,u :=
∧
S∈R⊥s,u

S(x), where R is a predicate symbol in extVocabulary(D,V ) and R⊥s,u :=
R⊥s ∩AUTH ∗s,u.

• (x = v)⊥s,u := (x = v), where x and v are either variable identifiers or constant symbols.
• (>)⊥s,u := >.
• (⊥)⊥s,u := ⊥.
• (¬ψ)⊥s,u := ¬ψ>s,u, where ψ is a relational calculus formula.
• (ψ ∧ γ)⊥s,u := ψ⊥s,u ∧ γ⊥s,u, where ψ and γ are relational calculus formulae.
• (ψ ∨ γ)⊥s,u := ψ⊥s,u ∨ γ⊥s,u, where ψ and γ are relational calculus formulae.
• (∃x. ψ)⊥s,u, where ψ is a relational calculus formula and x is a variable identifier, is ∃x. ψ⊥s,u if

bound(ψ, s, u, x,⊥) = > and (∃x. ψ)⊥s,u := > otherwise.
• (∀x. ψ)⊥s,u, where ψ is a relational calculus formula and x is a variable identifier, is ∀x. ψ⊥s,u if

bound(ψ, s, u, x,⊥) = > and (∀x. ψ)⊥s,u := > otherwise. �

Finally, we define the formula φrw
s,u which represents the overall rewritten formula.

Definition 6.8. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V, c〉 be an M -
state, u be a user, and φ be a relational calculus sentence over D. The formula φrw

s,u is defined as
inlineV,D(¬ψ>s,u ∧ ψ⊥s,u), where ψ := extVocV,D(φ). �

2With a slight abuse of notation, we write R(x) ⊆M S(y) instead of inlineD,V (R(x)) ⊆M inlineD,V (S(y)).
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6.8.4 Enforcement Mechanism
Here, we model the PDP f , presented in Section 6.5, which is obtained by composing the PDPs

fint and fuconf presented above. The PDP f is obtained by composing fint and fuconf as follows:

f(s, act) = fint(s, act) ∧ fuser(act,s)
conf (s, act)

We recall that the function user takes as input an action and a state and returns the actual user
executing the action. It is defined as follows, where i denotes the invoker function and tr denotes
the trigger function.

user(act, s) =
{

invoker(s) if trigger(s) 6= ε
u if trigger(s) = ε and act ∈ AD,u
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Chapter 7

Reconciling Database Access Control and
Information-flow Control

Access control formulations suffer from a
number of difficulties. First, because they
are described in terms of a mechanism for
enforcing security, they provide no
guidance in circumstances where those
mechanisms prove inadequate. Second, it is
easy to construct perverse interpretations
of access control policies that satisfy the
letter, but not the intent of the policy, to
the point of being obviously insecure.

John Rushby – Noninterference, transitivity,
and channel-control security policies

Database access control (DBAC) and information-flow control (IFC) share the same goal: pro-
tecting the confidentiality and integrity of sensitive information. However, they have different foun-
dations, security notions, and enforcement mechanisms. In this chapter, we reconcile these two,
seemingly disparate, areas by developing a framework for reasoning about the security of database-
backed programs. First, we reduce database access control to determining whether programs leak
information, thereby providing a way of applying IFC techniques to database access control. Sec-
ond, we develop a security monitor based on a novel combination of information-flow tracking with
concepts from database theory like disclosure lattices and query determinacy.
Structure. We overview the relationships between DBAC and IFC in Section 7.1. In Section 7.2,
we introduce our setting. We present WhileSql in Section 7.3 and our security model in Section 7.4.
In Section 7.5, we present our reduction from DBAC to IFC, whereas we present our IFC mechanism
for securing database-backed applications in Section 7.6. We discuss related work in Section 7.7 and
draw conclusions in Section 7.8. We present some technical details in Section 7.9. The proofs of all
our results are given in Appendix D.

7.1 Overview

Database access control and information-flow control have a similar objective: to protect the
confidentiality and integrity of sensitive information. Yet they typically do so for different components
of a system: databases and applications, respectively. Furthermore, the enforcement techniques used
in these two settings are different. IFC employs techniques ranging from security type systems [135,
163] to multi-execution [64], whereas DBAC mechanisms mostly rely on query rewriting [110, 131,
150,165].

Unfortunately, these mechanisms do not compose naturally. Even if both DBAC and IFC are
in place, application-level information, such as a sensitive context of a function call that executes
a query, is lost at the time of DBAC enforcement. Conversely, database-level information, such as
fine-grained table-level security labels, is lost at the time of IFC enforcement, when information from
the database is manipulated by the application. This poses a challenge of tackling insecurities arising
at component boundaries.

More fundamentally, DBAC and IFC build on different foundations. DBAC’s foundations lie in
database theory and access control, whereas IFC builds on programming language theory. Hence,
the security properties studied in these two settings are quite different.

Despite their differences, IFC and DBAC are starting to overlap in their scopes. Various IFC
approaches [24, 49, 50, 57, 59, 111, 143, 167] have taken databases into account. These approaches
extend IFC foundations with database models and apply standard IFC techniques, such as security
type systems [57,141], symbolic execution [49] or faceted values [167], to track how information flows
through databases with the goal of providing end-to-end security guarantees. In contrast, DBAC
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Database System

• • •

Internal users

Application

•
•
•

External users

Figure 7.1: System model.

mechanisms for databases that support features like triggers or stored procedures [140, 149] face
problems like preventing implicit flows, which are typical of the IFC setting.

Surprisingly, the relationship between DBAC and IFC remains largely unexplored. This gap
hinders the development of both lines of research and limits the integration and re-usability of
existing results and mechanisms. For instance, IFC solutions that support databases [57,59,141,167]
consider only simplified database models that ignore advanced features, which have been studied in
DBAC [140, 149] and can be exploited by attackers. In contrast, DBAC mechanisms could benefit
from existing research in IFC.

7.2 Problem Setting

This section presents the system and attacker models associated with DBAC and IFC. We moti-
vate these models with concrete examples and discuss their security requirements.

7.2.1 System and Attacker Model
Figure 7.1 depicts our system model. The system consists of users that interact with the database

either directly, by issuing SQL commands, or indirectly, by interacting with programs (e.g., web ap-
plications) that, in turn, issue commands to the database. We refer to users directly interacting with
the database as internal users, and we call external users those whose interaction with the database
is mediated by a program. For simplicity, we assume that each internal and external user is uniquely
associated with a user account that is used to retrieve information from the database. Furthermore,
we assume that external users execute all their programs using their own user accounts. Users execute
commands concurrently, and a scheduler mediates the interaction with the database system.

In our system model, the security policy is defined at the database level using access control
policies, which specify the access permissions of each user account for the database tables and views.
The database system has a distinguished user, the administrator, who defines the database schema,
the database’s integrity constraints, and the database’s initial access control policy. We assume that
the users’ commands, the programs, the database schema, and the database configuration, which
consists of the security policy, the views, and the triggers in the system, are publicly known.

To accommodate both DBAC and IFC in the same system model, we consider internal and
external attackers. An internal attacker is a database user, different from the administrator, who
directly issues SQL commands to the database and observes the results of these commands. Namely,
an internal attacker is one of the internal users in Figure 7.1. His goal is learning information about
the tables and views he cannot read. This reflects the usual attacker model adopted in DBAC (see,
for instance, Chapter 6). We call a sequence of commands secure with respect to an internal attacker
if the attacker cannot learn sensitive information by observing the results of his own commands.

We remark that our system model does not include an access control system that enforces the
security policy. This allows us to study the security condition, i.e., what it means, semantically, for
a sequence of commands to be secure, without focusing on the enforcement mechanism, namely an
algorithm that only authorizes commands that satisfy the security condition. We sometimes refer to
sequences of commands as programs.

An external attacker is an external user that cannot directly issue commands to the database,
since communication between the attacker and the database is mediated by a program. An external
attacker, therefore, can only observe the program’s output. He cannot observe the results of the
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queries issued by the program unless these results are part of the program’s output. Securing ap-
plications with respect to this attacker model involves tracking the propagation of data across the
application and database, thus enforcing the security policy in an end-to-end fashion.

The external attacker corresponds to the information-flow setting. As is standard, we say that
a program is secure with respect to an external attacker iff executing the program does not leak
sensitive information to the attacker. For simplicity, we ignore application-level policies for external
users. These can easily be modeled using database tables with appropriate security policies.

7.2.2 Overview of Security Conditions
By using examples, we illustrate the intuition behind our security conditions, which we formalize

in Section 7.4.
Internal Attackers. Consider a movie rental database where the customer Bob pays for a subscrip-
tion to an online media provider like Netflix. Bob is allowed to watch any movie in the table MOVIE
if he has a valid subscription. For simplicity, we model the valid subscription as a read permission
on MOVIE. When the subscription expires (and the policy changes), Bob should no longer be able to
access the movie, even if he has previously streamed a copy of it.

Suppose the database administrator can modify the access control policy of the table MOVIE, and
Bob queries the database to watch the movie. The following program should be considered insecure
as Bob accesses the table MOVIE after the subscription has expired (we write u : q to denote that the
user u executes the command q).

admin : GRANT SELECT ON MOVIE TO Bob (1)
Bob : SELECT ∗ FROM MOVIE (2)

admin : REVOKE SELECT ON MOVIE FROM Bob (3)
Bob : SELECT ∗ FROM MOVIE (4)

The building blocks for our security condition for internal attackers are the attacker knowledge,
the security policy, and the notion of an epoch. The attacker knowledge describes the set of database
states consistent with the attacker’s observations, e.g., the results of database queries issued by the
attacker. The security policy determines the attacker’s initial knowledge, namely the set of databases
the attacker initially considers as possible. An epoch represents a portion of the program’s execution.
Our security condition for internal attackers ensures that the attacker’s knowledge remains constant
inside each epoch, thus satisfying the current security policy.

In our example, epochs are determined by the commands executed by Bob. In particular, the
above program involves two epochs corresponding respectively to the commands (2) and (4). In the
first epoch, Bob is authorized to read the table MOVIE. Hence, his initial knowledge consists of the
content of the table MOVIE. Therefore, after the SELECT command, Bob’s knowledge does not change
as he already knows the content of table MOVIE. In the second epoch, our condition resets Bob’s
initial knowledge and forgets any information that Bob may have learned in the past. Now, Bob is not
authorized to read the table MOVIE. Hence, he considers as possible any value for the table MOVIE.
However, after the SELECT command, Bob learns the content of MOVIE, thus refining his knowledge
and violating the current policy. Our security condition therefore considers the program as insecure.

Our security condition for internal attackers characterizes security with respect to the database
state at the beginning of each epoch. This is in line with current DBAC requirements [131,165] that
interpret the security policy with respect to the current state of the database.
External Attackers. A classical example of an external attacker is a user interacting with a server-
side application that communicates with a database through programming language constructs. The
goal, here, is to track information across application-database boundaries, ensuring that the user
does not learn sensitive information about the initial state of the database. In contrast to internal
attackers, an external attacker can only learn information through output statements and he cannot
observe the results of the queries. Moreover, the attacker has perfect recall in the sense that he
remembers all prior observations.

Consider a web application allowing teaching assistants (TAs) and instructors to grade students’
assignments. The application consists of a server-side application and a database system storing the
grades. The application performs a SELECT query to access the students’ grades and then outputs
them to a TA.

x := SELECT ∗ FROM GRADE

out(TA, x)
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Basic Types
(Table Ids) T ∈ T (Variables) x ∈ Vars (Trigger Ids) tr ∈ TR
(View Ids) V ∈ V (Values) n ∈ Vals (Formulae) ϕ ∈ RC
(Relation Ids) R ∈ T ∪ V (User identifiers) u ∈ UID (Error Messages) em ∈ EM

Syntax
(User Context) uc := OWNER | INVOKER
(Privileges) p := SELECT ON R | INSERT ON T | DELETE ON T | CREATE VIEW | CREATE TRIGGER ON T
(Actions) a := INSERT e1, . . . , en INTO T | DELETE e1, . . . , en FROM T

| GRANT p TO u | GRANT p TO u WITH GRANT OPTION | REVOKE p FROM u
(SQL commands) q := a | SELECT ϕ | ADD USER u | CREATE VIEW V : SELECT ϕ AS uc

| CREATE TRIGGER tr ON T AFTER (INS|DEL) IF ϕ DO a AS uc
(Expressions) e := n | x | ¬e | e1 ⊕ e2
(Statements) c := ε | x← q | x := e | out(u, e) | if e then c1 else c2 | while e do c | c1 ; c2

Figure 7.2: WhileSql’s syntax.

Assume now that while executing this application, the administrator changes the policy by revoking
the read permission on GRADE.

GRANT SELECT ON GRADE TO TA

REVOKE SELECT ON GRADE FROM TA

Finally, assume that the interleaving produced by the executions of the two programs is as follows.
The policy initially allows the TA to learn the grades. Then, the application retrieves the students’
grades using the SELECT query, and, immediately after that, the administrator executes the REVOKE
command, thereby disallowing the TA to learn the grades. The grades are then sent to the TA
through an output command. Although the query was performed at a time when it was allowed by
the policy, the TA learns the grade when this is no longer allowed. Hence, this program should be
considered insecure.

We propose a security condition ensuring that information release is always done in accordance
with the current security policy. Since information release happens through output statements, a
program is considered secure if whenever the attacker learns some information, then (i) the attacker
already learned that information in the past when this was allowed by the policy, or (ii) the current
security policy allows the attacker to learn that information. In this scenario, the TA learns the
grade when this is no longer allowed by the policy and, since he did not learn the grade in the past,
the program is considered insecure. In contrast to internal attackers, the security condition neither
resets the attacker’s knowledge nor forgets any information that the attacker may have learned in
the past. Furthermore, as is common in the IFC setting [24,49,56,143,167], we interpret the security
policy with respect to the initial state of the database.

7.3 WhileSql

WhileSql is a simple language that captures the main features of both programming languages
extended with querying constructs and procedural extensions of the SQL standard, such as Oracle’s
Pl/Sql or Microsoft Transact-Sql. At the same time, it simplifies some subtle aspects of their
semantics, while still capturing the main security-critical features.

7.3.1 Syntax
Figure 7.2 depicts WhileSql’s syntax. Let T, V, and TR be three countably infinite sets repre-

senting table identifiers, view identifiers, and trigger identifiers. Furthermore, let Vars and Vals be
countably infinite sets of variables and values. We assume that all these sets are pairwise disjoint.

As shown in Figure 7.2, a WhileSql program is an imperative program extended with querying
capabilities, i.e., statements of the form x← q. A statement x← q executes the SQL command q and
assigns its result to the variable x. WhileSql supports SQL’s core features, such as SELECT, INSERT,
DELETE, GRANT, and REVOKE commands, as well as advanced database features such as triggers and
views. Additionally, WhileSql programs support assignments and standard control flow statements.
WhileSql also supports out(u, e) statements to output the value of the expression e to the user u.
For simplicity, we assume that all expressions are well-typed and all SQL statements refer either to
tables in the database schema or to previously created views.

WhileSql builds on top of the database operational semantics from Chapter 5. Hence, it sup-
ports the same fragment of SQL supported by the database semantics. We now recall the restrictions
and simplifications inherited from our operational semantics. For SELECT commands, instead of using
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SQL, we rely on the relational calculus. Moreover, we support only INSERT and DELETE commands
that explicitly identify the tuple to be inserted or deleted. More complex INSERT and DELETE com-
mands, as well as UPDATE commands, can be simulated by combining SELECT queries with INSERT
and DELETE commands. Finally, we support only triggers that are executed in response to INSERT
and DELETE commands. We assume that a trigger’s body has the form IF ϕ DO a AS uc, where ϕ is
a boolean query, a is an INSERT, DELETE, GRANT, or REVOKE command, and uc specifies whether the
trigger is executed under the owner’s or the activator’s privileges.

Each SQL command either returns the query result or an error message em ∈ EM . Error messages
indicate whether queries (or triggers) violate security constraints, like a query that is not allowed
by the current security policy, or integrity constraints, such as an INSERT statement that violates a
primary key constraint. Note that error messages are values, i.e., EM ⊆ Vals.

7.3.2 Local Semantics
Here, we define the semantics of a WhileSql program executed in isolation. A WhileSql

program is defined with respect to a system configuration M = 〈D,Γ〉, where D = 〈Σ,dom〉 is a
database schema and Γ is a set of integrity constraints. We assume that dom ⊆ Vals and that only
values in dom are used to construct queries. For simplicity, we fix a configuration M = 〈D,Γ〉 for
the rest of the section.
Databases. WhileSql reuses the database model and the notion of system and runtime states from
Chapter 5. Here, we recall only the main concepts that we use in the rest of the chapter. We refer
the reader to Chapter 5 for more details on security policies and our database model.

A security policy is a finite set of GRANT statements. Given a policy sec and a user u, we denote
by auth(sec, u) the set of all tables and views with the owner’s privileges that u is authorized to read
according to the GRANT statements in sec. A system state is a tuple 〈db, U, sec, T, V 〉 where db is a
database state, U ⊂ UID is a finite set of users, T is a finite set of triggers, V is a finite set of views,
and sec is a security policy. Note that we lift auth from policies to system states, i.e., auth(〈db, U,
sec, T, V 〉, u) = auth(sec, u). A context ctx describes the database’s history, the scheduled triggers
that must be executed, and how to modify the database’s state in case a roll-back occurs. A runtime
state is a tuple 〈s, ctx〉 where s is a system state and ctx is a context. The set of all runtime states
is denoted by ΩM and we denote by ε the empty context. In the following, we use s to refer to both
system states and runtime states whenever this is clear from the context, and we use the notation
〈s, ctx〉 otherwise.
Memories and Configurations. A memory m ∈ Mem is a partial function mapping variables to
values, i.e. Mem : Vars → Vals. A local configuration 〈c,m, 〈s, ctx〉〉 consists of a command c ∈ Com,
a memory m ∈ Mem, and a runtime state 〈s, ctx〉 ∈ ΩM . A local configuration is initial iff its context
ctx is ε and the database state s is an initial database state as defined in Chapter 5. We denote by
Conf the set of all configurations.
Users. Let UID be a countably infinite set representing all user identifiers. In addition to users
in UID, we add a designated user public that can observe only public events (i.e., changes to the
database configuration) and for each user u ∈ UID, we add a user db(u) that represents the internal
user corresponding to u. Hence, the set U of all users is UID ∪ {db(u) | u ∈ UID} ∪ {public}. We
define a partial order �U over U by u1 �U u2 iff u1 = public, u1 = u2, or u2 = db(u1).
Observations. We model program-level and database-level observations. The former are generated
using out statements while the latter are generated by queries. A program-level observation is a
pair 〈u, o〉, where u ∈ UID is a user identifier and o ∈ Vals is a value. A database-level observation,
instead, is a 4-tuple 〈u, q, o, τ〉, where u ∈ {db(u) | u ∈ UID}∪{public}, q is either an SQL command
or a trigger, o is either a value or an SQL command, and τ is a (possibly empty) sequence of database-
level observations. We use τ to represent the observations caused by triggers executed in response
to an SQL command. We write 〈u, q, o〉 instead of 〈u, q, o, τ〉 if τ = ε. We denote by Obs the set of
all observations.
Semantics. Given a user u ∈ UID, the relation→u ⊆ (Com×Mem×ΩM )×Obs×(Com×Mem×ΩM )
formalizes the small-step local operational semantics of WhileSql programs executed by u. A run r
is an alternating sequence of configurations and observations that starts with an initial configuration
and respects the rules defining →u. Given a run r, we denote by ri, where i ∈ N, the run obtained
by truncating r at the i-th state. A trace is an element of Obs∗. The trace τ associated to a run r,
denoted by trace(r), is obtained by concatenating all observations in the run.

As noted above, the operational semantics of SQL statements relies on the operational seman-
tics given in Chapter 5. We use the function JqK(〈s, ctx〉, u) (defined in Section 7.9.1) to connect
WhileSql’s operational semantics with the database operational semantics from Chapter 5. The
function JqK(〈s, ctx〉, u) takes as input an SQL statement q, a runtime state 〈s, ctx〉 ∈ ΩM , and the
user u ∈ UID executing the command, and it returns a tuple 〈〈s, ctx〉′, r, em, τ〉, where 〈s′, ctx ′〉 ∈ ΩM
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E-Skip

〈skip,m, s〉 −→u 〈ε,m, s〉

E-Assign

〈x := e,m, s〉 −→u 〈ε,m[x 7→ JeK(m)], s〉

E-QueryOk
{v1, . . . , vn} = vars(q)

q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]
Jq′K(s, u) = 〈s′, r, ε, τ〉

u′ = Usr(u, q)

〈x← q,m, s〉 〈u
′,q′,r,τ〉−−−−−−→u 〈ε,m[x 7→ r], s′〉

E-QueryEx
{v1, . . . , vn} = vars(q)

q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]
Jq′K(s, u) = 〈s′, r, em, τ〉

em 6= ε

〈x← q,m, s〉 〈db(u),q′,em,τ〉−−−−−−−−−−→u 〈ε,m[x 7→ em], s′〉

E-Out

〈out(u′, e),m, s〉 〈u
′,JeK(m)〉−−−−−−−→u 〈ε,m, s〉

E-IfTrue
JeK(m) = tt

〈if e then c1 else c2,m, s〉 −→u 〈c1,m, s〉

E-IfFalse
JeK(m) = ff

〈if e then c1 else c2,m, s〉 −→u 〈c2,m, s〉

E-WhileTrue
JeK(m) = tt

〈while e do c,m, s〉 −→u 〈c ; while e do c,m, s〉

E-WhileFalse
JeK(m) = ff

〈while e do c,m, s〉 −→u 〈ε,m, s〉

E-Seq
〈c1,m, s〉 τ−→u 〈c′1,m′, s′〉

〈c1 ; c2,m, s〉 τ−→u 〈c′1 ; c2,m′, s′〉

E-SeqEmpty

〈ε ; c,m, s〉 −→u 〈c,m, s〉

Figure 7.3: WhileSql’s local operational semantics.

is the new runtime state, r is q’s result, em is an error message, and τ is a trace of database-level
observations produced by triggers executed in response to q. We also write JeK(m) to denote the
evaluation of an expression e in memory m. It is always clear from context if J·K(·) refers to query or
expression evaluation.

Figure 7.3 depicts the rules defining WhileSql’s local semantics. Most of the rules are standard.
The only non-standard rules are E-QueryOk and E-QueryEx, which regulate the execution of
SQL commands. The rule E-QueryOk models the successful execution of SQL commands. It first
replaces the free variables in the query with their actual values. Afterwards, it executes the query, it
produces the database-level observation associated with the query, and it stores the query result in
the memory. The rule relies on the function Usr(u, q), which takes as input a user u ∈ UID and a
query and returns the user db(u) if q is a SELECT, INSERT, or DELETE command, and public otherwise
(since queries that modify the database’s configuration produce observations that are visible to all
users). The rule E-QueryEx, instead, models the failed execution of a query. The rule executes the
query, retrieves the error message, and stores it in the memory.

7.3.3 Global Semantics
To model realistic scenarios, where attackers and honest users each run their own programs which

may access a common database, we assume that programs do not share memory, whereas the database
is shared. We now present a global semantics capturing the parallel execution of WhileSql programs.
Schedulers. We model a scheduler as an infinite sequence of natural numbers S ∈ Nω. In the global
semantics, we use the scheduler to determine which program has to be executed at each point in the
execution.
Global Configurations. We denote the set of commands together with the executing user by
ComUID = UID×Com and the set of pairs of users and memories as MemUID = UID×Mem. To model
a system state where multiple WhileSql programs run in parallel and share a common database,
we introduce global configurations. A global configuration is a tuple 〈C,M, 〈s, ctx〉,S〉 ∈ GlConf ,
where C ∈ Com∗UID is a sequence of WhileSql programs with the executing users, M ∈ Mem∗UID
is a sequence of memories (one per program in C), 〈s, ctx〉 ∈ ΩM is the runtime state of the shared
database, and S is a scheduler formalizing the interleaving of the programs in C. We consider only
configurations 〈C,M, s,S〉 such that |C| = |M | and for all 1 ≤ i ≤ |C|, C(i) = 〈u, c〉, M(i) = 〈u′,m〉,
and u = u′. Furthermore, a global state is a pair 〈M, s〉, where M ∈ Mem∗UID and s is a system state.
Semantics. The relation −→ ⊆ GlConf ×Obs ×GlConf , shown in Figure 7.4, formalizes the global
operational semantics of a database system that runs multiple WhileSql programs in parallel.
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M-Eval-Step
∀i ∈ {1, . . . , |C|}, u′ ∈ UID. C(i) 6= 〈u′, ε〉 n = 1 + (n′ mod |C|) C(n) = 〈u, c〉 M(n) = 〈u,m〉

|C| = |M | 〈c,m, s〉 τ−→u 〈c′,m′, s′〉 C′ = C(1)· . . . ·C(n− 1)·〈u, c′〉·C(n+ 1)· . . . ·C(|C|)
M ′ = M(1)· . . . ·M(n− 1)·〈u,m′〉·M(n+ 1)· . . . ·M(|C|)

〈C,M, s, n′·S〉 τ−→ 〈C′,M ′, s′,S〉

M-Eval-End
1 ≤ n ≤ |C| ∀n′ < n, u′ ∈ UID. C(n′) 6= 〈u′, ε〉 C(n) = 〈u, ε〉 |C| = |M |

C′ = C(1)· . . . ·C(n− 1)·C(n+ 1)· . . . ·C(|C|) M ′ = M(1)· . . . ·M(n− 1)·M(n+ 1)· . . . ·M(|C|)
〈C,M, s,S〉 τ−→ 〈C′,M ′, s,S〉

Figure 7.4: WhileSql’s global operational semantics

Given a global configuration 〈C,M, s,S〉, the global operational semantics uses the scheduler S to
select which of the programs in C to execute. This is done by extracting the first number n′ from the
scheduler S and identifying the associated program 〈u, c〉 and memory 〈u,m〉 in C andM respectively.
The rule M-Eval-Step identifies the WhileSql program that should be executed according to the
scheduler, it executes one step of the local semantics, and it updates the global state accordingly. The
rule M-Eval-End, instead, removes the terminated programs from the global configuration. Given
a run r, we denote by conf (r) the global configuration in the last state in the run. Furthermore,
trace(r) denotes the trace associated with the run r, and db(r) denotes the database state in the
global configuration conf (r).

7.4 Security Model

Here we formalize the security conditions for internal and external attackers as presented in
Section 7.2. For consistency, we define our security conditions over general WhileSql programs,
noting that internal attackers can execute only programs consisting of sequences of queries. The
security condition for internal attackers characterizes typical database users that may execute SQL
commands and learn information from the database iff the current database policy authorizes them to
do so. In contrast, the security condition for external attackers adopts an end-to-end interpretation
of security policies that accounts for both the database and the application. In particular, if the
program issues a query when authorized by the policy but subsequently outputs the result of that
query when this is forbidden by the policy, our condition rejects the program as insecure.

7.4.1 Preliminaries
Before presenting our security conditions, we introduce some notation.

Equivalence of memories. Given a user u, two sequences of memories M1,M2 ∈ Mem∗UID are
u-equivalent, written M1 ≈u M2, iff |M1| = |M2| and for all 1 ≤ i ≤ |M1|, ui1 = ui2 and if ui1 = u,
then mi

1 = mi
2, where M1(i) = 〈ui1,mi

1〉 and M2(i) = 〈ui2,mi
2〉.

Equivalence of databases. Given two database states db and db′ and a set S of tables and views,
we say that db and db′ are S-equivalent, written db ≈S db′, iff the content of all tables and views
(with owner’s privileges) in S is the same in db and db′. For the indistinguishability notions between
system states, we reuse data-indistinguishability from Chapter 6. Given a user u, two system states
s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 are u-equivalent, written s ≈u s′, iff (1) U = U ′,
(2) sec = sec′, (3) T = T ′, (4) V = V ′, and (5) db ≈auth(sec,u) db′.
Equivalence of global states. Two global states 〈M, s〉 and 〈M ′, s′〉 are u-equivalent for a user
u ∈ UID, written 〈M, s〉 ≈u 〈M ′, s′〉, iff M ≈u M ′ and s ≈u s′. Furthermore, we write 〈M,
s〉 ≈db(u) 〈M ′, s′〉 iff 〈M, s〉 ≈u 〈M ′, s′〉. We denote by [〈M, s〉]≈u the set of all global states 〈M ′, s′〉
such that 〈M ′, s′〉 ≈u 〈M, s〉.
Equivalence of traces. The projection of a trace τ for a user u, written τ�u, is as follows: ε�u = ε,
(〈u′, o〉·τ ′)�u = 〈u′, o〉·τ ′�u if u′ �U u, (〈u′, q, o, τ ′′〉·τ ′)�u = 〈u′, q, o, τ ′′�u〉·τ ′�u if u′ �U u or there
is a u′′ ∈ users(τ ′′) such that u′′ �U u, and (〈u′, o〉·τ ′)�u = (〈u′, q, o, τ ′′〉·τ ′)�u = τ ′�u otherwise,
where users(τ) is the set of all users appearing in the observations in τ . Finally, we say that two
traces τ1 and τ2 are u-progress-insensitive-equivalent, for a user u, written τ1 ∼u τ2, iff τ1�u � τ2�u
or τ2�u � τ1�u.
Knowledge. Following [20], we semantically characterize what an attacker can infer from an exe-
cution as the set of global states that are consistent with an observed trace.
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Definition 7.1. The knowledge Ku(〈M0, s0〉, C,S, τ) of a user u for a global state 〈M0, s0〉, a se-
quence of programs C, a scheduler S, and a trace τ is {〈M, s〉 | s ≈u s0 ∧M ≈u M0 ∧ ∀ctx ′, τ ′, C′,
M ′, s′,S ′. (〈C,M, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S ′〉 ⇒ τ ∼u τ ′)}. �

The knowledge of an attacker u is the set of initial global states that the attacker cannot dis-
tinguish based on the observation of the trace τ�u. Thus, a smaller knowledge set indicates that
u has a more precise knowledge. The definition of the attacker’s knowledge is progress-insensitive,
that is we ignore information leaks due to the progress of computation, e.g., program divergence and
termination [19]. We achieve this by requiring that any execution starting from a u-equivalent global
state only produces traces τ ′ that are progress-insensitive equivalent with the original trace τ .

7.4.2 Internal Attackers
To properly account for internal attackers, we introduce the notion of epoch, which represents a

portion of a run. An internal attacker forgets the accumulated knowledge each time a new epoch
starts. We use epochs to model the non-permanent release of information as is common in database
access control. Intuitively, by forgetting all accumulated knowledge, we prevent any release of infor-
mation whenever that information is considered sensitive, although the same information might have
been non-sensitive in the past or might become non-sensitive in the future.
Epochs. We formalize epochs using an epoch predicate, which is a relation over GlConf × GlConf
that, for each pair of (consecutive) global configuration gc1 and gc2, specifies whether transitioning
from gc1 to gc2 starts a new epoch. Given an epoch predicate E and a (terminating) run r, we
denote by JEK(r) the set of epochs defined by E over the run r. Namely, JEK(C1

τ1−→ . . .
τn−→ Cn+1) =

{C1
τ−→
j
Cj+1}∪ JEK(Cj+1

τj+1−−−→ . . .
τn−→ Cn+1), where 1 ≤ j ≤ n is the smallest natural number such

that 〈Cj , Cj+1〉 ∈ E (if such number exists), and JEK(C1
τ1−→ . . .

τn−→ Cn+1) = {C1
τ1−→ . . .

τn−→ Cn+1}
if there is no j ∈ {1, . . . , n} such that 〈Cj , Cj+1〉 ∈ E. We also introduce selection predicates. These
identify a subset of the epochs in a run that satisfies a given condition. Formally, a selection predicate
is a set of epochs. Given an epoch predicate E, a (terminating) run r, and a selection predicate S,
JE,SK(r) denotes the set JEK(r) ∩ S.

To illustrate the concept of epochs, we now introduce epoch and selection predicates capturing the
attacker model of Chapter 6, where users do not know the commands executed by other users. We
capture this through user-based epochs, which represent portions of a run where a user continuously
interacted with the system, without interleaved commands executed by other users. Note that this
is the notion of epoch used in Section 7.2. We model this using the epoch predicate Euser , which
splits runs into “user sessions”, and the selection predicate Suser

u , which selects only u’s sessions.
Formally, the epoch predicate Euser is defined as follows: 〈〈C,M, s, n·S〉, 〈C′,M ′, s′, n′·S ′〉〉 ∈ Euser

iff C(1 + (n mod |C|)) = 〈u, c〉, C′(1 + (n′ mod |C′|)) = 〈u′, c′〉, and u 6= u′. Additionally, the
selection predicate Suser

u , for a user u, is defined as follows: (〈C1,M1, s1, n1·S1〉
τ1−→ . . .

τk−→ 〈Ck+1,
Mk+1, sk+1, nk+1·Sk+1〉) ∈ Suser

u iff for all 1 ≤ i ≤ k, there is a command c such that Ci(1 + (ni
mod |Ci|)) = 〈u, c〉.
Security Condition. We now define our security condition for internal attackers. Intuitively,
this notion corresponds to an attacker that “forgets” all knowledge whenever the epoch changes.
Otherwise, an attacker’s knowledge remains constant inside each epoch, thus satisfying the security
policy at the beginning of the epoch.

Definition 7.2. A sequence of programs C ∈ Com∗UID is secure with respect to an internal attacker
u ∈ UID for a scheduler S, a system state s0, a sequence of memories M0 ∈ Mem∗UID, an epoch
predicate E, and a selection predicate S iff whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,
Sn〉, for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JE,SK(r), then Kdb(u)(〈Mi,
si〉, Ci,Si, τ) = [〈Mi, si〉]≈u . �

Example 7.1. Consider (a variant of) the program from Section 7.2 where the commands are
scheduled as follows:

GRANT SELECT ON MOVIE TO Bob (1)
x := SELECT ∃x. MOVIE(x) (2)
REVOKE SELECT ON MOVIE FROM Bob (3)
x := SELECT ∃x. MOVIE(x) (4)

Suppose Bob is an attacker who wants to learn whether there are any movies in the table MOVIE.
Abusing notation, we report only Bob’s memory and write m instead of 〈Admin,mAdmin〉·〈Bob,m〉.
Furthermore, we denote by Ci the code at the i-th step in the execution.
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Consider an initial local state 〈m, s〉 such that m(x) = ⊥ and the table MOVIE is empty in s. There
are two user-based epochs for the user Bob: the former corresponds to the execution of line (2), and
the latter corresponds to the execution of line (4). In the first epoch, since the policy allows Bob to
learn the data in the table MOVIE, we have that Kdb(Bob)(〈m, s1〉, C1,S, τ) = {〈m, s〉} where m(x) = ⊥
and s1 = s. Similarly, [〈m, s〉]≈Bob = {〈m, s〉}. The equality holds both before and after the execution
of line (2); the execution of the statement in line (2) does not change Bob’s knowledge since he can
read the table MOVIE. In the second epoch, the security policy prevents Bob from learning the data in
the table MOVIE, hence [〈m3, s3〉]≈Bob = {〈m3, s3〉, 〈m3, s

′
3〉, 〈m3, s

′′
3 〉, . . .}, where s3, s

′
3, s
′′
3 , . . . are all

possible database states and s3 = s. In contrast, after the SELECT statement in line (4), Bob learns
that the table MOVIE is empty. Namely, Kdb(Bob)(〈m3, s3〉, C3,S3, τ) = {〈m3, s3〉}. Since the two sets
are different, the program is rejected as insecure. �

7.4.3 External Attackers
We now formalize our security condition for external attackers. The condition is based on an

attacker-centric view of security. It keeps track of the attacker’s knowledge during a program ex-
ecution and it ensures that the knowledge complies with the current security policy. The security
condition is inspired by existing conditions for information-flow in the presence of dynamic poli-
cies [18,39].
Allowed knowledge. We interpret security policies with respect to the initial global states. The
allowed knowledge Au,sec determines the set of initial global states that a user u considers possible
given a security policy sec. Given a sequence of memoriesM0 ∈ Mem∗UID, a system state s0 = 〈db0, U0,
sec0, T0, V0〉, a security policy sec, and a user u, we define the set Au,sec(M0, s0) as {〈M, s〉 | s ≈sec,u
s0 ∧M ≈u M0}, where 〈db′, U ′, sec′, T ′, V ′〉 ≈sec,u 〈db′′, U ′′, sec′′, T ′′, V ′′〉 iff db′ ≈auth(sec,u) db′′. We
call Au,sec(M0, s0) the allowed knowledge since it represents the knowledge of the initial global state
that the user u is permitted to learn given the policy sec.
Security Condition. We now introduce our security condition.

Definition 7.3. A sequence of programs C ∈ Com∗UID is secure with respect to an external attacker
u ∈ UID for a scheduler S, a system state s0, and a sequence of memories M0 ∈ Mem∗UID iff
whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ−→
n
〈C′,M ′, 〈s′, ctx ′〉,S ′〉, then for all 1 ≤ i ≤ n, Ku(〈M0, s0〉, C,

S, trace(ri−1)) ∩ Au,sec(M0, s0) ⊆ Ku(〈M0, s0〉, C,S, trace(ri)), where the database in r’s (i − 1)-th
configuration is 〈db, U, sec, T, V 〉. �

In a nutshell, the security condition ensures that the attacker’s knowledge after observing trace(ri)
is at most as precise as the previous knowledge combined with the allowed knowledge of the execution
ri−1, i.e., the knowledge increase resulting from observing trace(ri) is allowed by the current policy.

Example 7.2. Consider (a variant of) the program from Section 7.2 and a scheduler S that inter-
leaves the commands as follows.

GRANT SELECT ON GRADE TO Student (1)
x := SELECT ∃x. GRADE(x) (2)
REVOKE SELECT ON GRADE FROM Student (3)
out(Student, x) (4)

The user Student is an attacker who wants to learn whether there are any grades in the table
GRADE. We now show that the program is insecure with respect to Definition 7.3. Abusing notation,
we report only Student’s memory, and we write m instead of 〈Admin,mAdmin〉·〈Student,m〉.

Consider an initial memory m0 such that m0(x) = ⊥ and an initial database state s0 such that
the table GRADE is empty. We write KStudent(〈m0, s0〉, C,S, τi) and AStudent,seci (m0, s0) to denote,
respectively, the attacker’s knowledge and the allowed knowledge after executing the commands up
to line (i), where 0 ≤ i ≤ 4. Let r be the program execution. Initially, since the Student has made
no observations, we have KStudent(〈m0, s0〉, C,S, τ0) = All, where All is the set of all possible initial
database states. Similarly, assuming that the Student is not allowed to access the database initially,
we have AStudent,sec0 (m0, s0) = All. The attacker’s knowledge does not change until the output
statement is executed, since the observations produced by the policy changes are independent of s0.
As a result, the inclusion relation from Definition 7.3 holds trivially for the execution r3, since the
allowed knowledge set can only make the left-hand side smaller. In particular, we have KStudent(〈m0,
s0〉, C,S, τ3) = All and AStudent,sec3 (m0, s0) = All due to the REVOKE statement in line (3). However,
after executing the output statement, the attacker learns that the database was initially empty, i.e.,
KStudent(〈m0, s0〉, C,S, τ4) = {(m0, s0)}. Thus, KStudent(〈m0, s0〉, C,S, trace(r3)) ∩ AStudent,sec3 (m0,
s0) 6⊆ KStudent(〈m0, s0〉, C,S, trace(r4)). Hence, the program is rejected as insecure. �
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7.4.4 Discussion
The security conditions for internal and external attackers are incomparable. Namely, there are

programs that are secure for one condition and insecure for the other one. We now illustrate these
differences using examples.

Consider a simple variation of Example 7.1, where each SQL statement is immediately followed
by an output statement printing the query’s result. This program is insecure for internal attackers
for the same motivations outlined in Example 7.1. Despite that, the program is secure for external
attackers. The second SELECT query would not modify the attacker’s knowledge, since the attacker
learned the content of the table MOVIE when this was allowed by the policy.

Consider now a variation of Example 7.2, where the output statement is replaced by the statement
if x then {out(Student, x); y ← INSERT 1 INTO T} else {out(Student, x); y ← INSERT 1 INTO R}.
This program is insecure for external attackers for the same motivations outlined in Example 7.2.
The program is, however, secure according to our condition for internal attacker (instantiated with
user-based epochs), even though the INSERT commands allows the internal attacker to learn the value
of x. This follows from the fact that the SELECT and the INSERT commands are in different epochs.

7.5 From Database Access Control to Information-flow Control

The security model in Section 7.4 focuses on information-flow control. Given programs c1, . . . , cn
executed by the users u1, . . . , un and an attacker atk, our security conditions can be used to determine
whether the parallel execution of c1, . . . , cn leaks information to atk. This approach relies on two
key assumptions: (1) the users u1, . . . , un interacting with the system are known beforehand, and
(2) the executed programs c1, . . . , cn are fixed and known to all users. Neither of these assumptions,
however, hold for database access control, where any user can potentially interact with the system
and issue arbitrary commands. As a result, neither the users u1, . . . , un nor the code of the programs
c1, . . . , cn, i.e., the queries, are known beforehand. Furthermore, each user may have only a limited
knowledge of other users’ commands. To overcome these restrictions, we now present a reduction
that constructs a database access control mechanism starting from an information-flow enforcement
mechanism for WhileSql programs.

7.5.1 Preliminaries
We first introduce some terminology and notation.

Progress-sensitive security. To properly capture existing DBAC security notions, we focus on
the progress-sensitive versions of our security conditions. The progress-sensitive knowledge PKu(〈M0,
s0〉, C,S, τ) of a user u ∈ U for a global state 〈M0, s0〉, programs C, a scheduler S, and a trace τ
is {〈M, s〉 | s ≈u s0 ∧ M ≈u M0 ∧ ∃ctx ′, τ ′, C′,M ′, s′,S ′. 〈C,M, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,
S ′〉 ∧ τ�db(u) = τ ′�db(u)}. The progress-sensitive variant of Definition 7.2 (respectively Definition 7.3)
is obtained by replacing the knowledge Ku with progress-sensitive knowledge PKu.
Enforcement Mechanisms. An enforcement mechanism is a function ifEnf that takes as inputs
a sequence of programs C ∈ Com∗UID, a sequence of memories M ∈ Mem∗UID, a scheduler S, a user
u, and a system state s0 and returns as output a security decision d ∈ {>,⊥}, where > stands for
“secure” and ⊥ stands for “insecure”. We say that ifEnf is sound for a security condition iff the
condition holds whenever ifEnf returns >.
Database Access Control and Auxiliary Functions. Following Chapter 5, we define a data-
base access control mechanism as a function dbEnf taking as input a system state s, a context ctx
(representing the past history), an SQL command q ∈ Q, and a user u ∈ U and returning a security
decision in {>,⊥}, where > stands for “authorized” and ⊥ stands for “denied”.

According to the operational semantics defined in Chapter 5, a database access control mechanism
can be invoked also during the execution of triggers. We assume that there are (1) a function inTrigger
that inspects the context ctx and determines whether the mechanism has been invoked during the
processing of a trigger, and (2) a function sessUser extracting from ctx the user u′ in whose session the
query q has been executed. These functions can be easily constructed on top of the auxiliary functions
given in Chapter 5. Finally, for simplicity, we assume that the database operational semantics always
stores in the current context ctx the initial system state, and we denote the initial state stored in ctx
by init(ctx). Observe that the operational semantics in Chapter 5 can be trivially extended to store
the initial state in the context, without affecting the results we presented in Chapters 5 and 6.
Simple, query-only programs. A query-only program is a program that contains only sequences
of database queries that do not contain free program variables, i.e., statements of the form x ← q
such that vars(q) = ∅, or skip statements. Furthermore, a program is simple in case it contains
exactly one statement. Hence, a simple query-only program is either skip or x ← q. Finally, given
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a sequence of simple query-only programs C, we denote by #qry(C) the number of statements in C
that are not skip, i.e., the number of query statements in C.
Additional definitions on states and configurations. We say that a global configuration 〈C,M,
s,S〉 is (E,S)-single-epoch, for an epoch predicate E and a selection predicate S, iff JE,SK(r) = {r},
where r is the longest run obtained by starting from 〈C,M, s,S〉.

We say that a global state 〈M, 〈s, ctx〉〉 is reachable iff there is a context ctx ′ such that 〈s, ctx ′〉
is reachable in the LTS defined by the database semantics in Chapter 5, triggers(ctx) = ε, and
triggers(ctx ′) = ε.
Safe programs. Let C be a sequence of simple, query-only programs, 〈M, s〉 be a global state, and
S be a scheduler. We say that C is safe for 〈M, s〉 and S iff 〈C,M, 〈s, ε〉,S〉 τ−→∗ 〈ε, ε, 〈s′, ctx ′〉,S ′〉.
Furthermore, we say that C is safe for S and a set of global states S iff it is safe for any 〈M, s〉 in S.

7.5.2 Reduction
We now present our reduction that builds a DBACmechanism dbEnf starting from an enforcement

mechanism ifEnf . In the following, we represent commands as pairs 〈u, q〉, where u ∈ UID is the
user executing the command and q is the executed query. Furthermore, we denote by 〈u, q〉 the
query that is given as input to dbEnf . In a nutshell, the reduction extracts from the context ctx
all commands 〈u1, q1〉, . . . , 〈un, qn〉 that have already been executed and the initial system state s0.
We associate to each command 〈ui, qi〉 a WhileSql program ci. Furthermore, we construct the
program c associated with the current query 〈u, q〉. Then, dbEnf authorizes 〈u, q〉 iff (1) ifEnf says
that the programs c1· . . . ·cn·c are secure for the internal user u, the initial state s0, and the memories
〈u1,m0〉· . . . ·〈un,m0〉·〈u,m0〉, where JxK(m0) = 0 for all x ∈ Vars, and (2) executing the programs
c1· . . . ·cn·c does not result in producing a security exception.

Reduction 7.1. Let s, ctx, q, and u be respectively the system state, the context, the query, and
the user given as input to the DBAC mechanism. From the context ctx, we extract the sequence L
of all the commands that have been executed from the start of the interaction. Note that L contains
only the commands directly issued by the users, not the commands executed as part of triggers. We
represent each command as a pair 〈u, q〉, where u is the user executing the command and q is the
SQL command itself. Let L′ be the sequence of commands obtained by conditionally appending to
L the current query, i.e., L′ = L·〈u, q〉 if ¬inTrigger(ctx) and L′ = L otherwise. We now construct
a WhileSql program ci ∈ ComUID and a memory mi ∈ MemUID for each query in L′: for each
1 ≤ i ≤ |L′|, the program ci is 〈ui, si〉, where L′(i) = 〈ui, qi〉, xi is a fresh variable, and the statement
si is xi ← qi in case (1) i = |L′| and ¬inTrigger(ctx), or (2) the i-th query in the history has been
successfully executed (i.e., without security exceptions occurring when executing the command or
the triggers executed in response to the command) and si = skip otherwise, and the memory mi is
〈ui, λx ∈ Vars. 0〉. The scheduler S is as follows: S = 0∞. The access control mechanism dbEnf (s,
ctx, q, u) returns > iff (1) ifEnf (c1· . . . ·c|L′|,m1· . . . ·m|L′|,S, sessUser(ctx), init(ctx)) = >, and (2)
〈c1· . . . ·c|L′|,m1· . . . ·m|L′|, 〈init(ctx), ε〉,S〉 τ−→∗ 〈ε, ε, 〈s′, ctx ′〉,S ′〉 and the last observation in τ does
not contain security exceptions. �

To illustrate, consider an history consisting of two queries 〈u1, q1〉 and 〈u2, q2〉, where the for-
mer is authorized and the latter is not authorized, a system state s, and a context ctx such that
inTrigger(ctx) = ⊥. Furthermore, assume that the user u issues the query q. Our reduction first
constructs the programs c1 = 〈u1, x1 ← q1〉, c2 = 〈u2, skip〉, and c = 〈u, x← q〉. Then, it authorizes
〈u, q〉 iff (1) ifEnf says that the sequential execution of the programs c1·c2·c is secure for u given
the memories 〈u1,m0〉·〈u2,m0〉·〈u,m0〉 and the state init(ctx), and (2) the last query (or any of the
associated triggers) does not throw security exceptions. The second condition ensures that the Whi-
leSql’s semantics, which directly embeds the checks on database integrity, agrees with the database
semantics from Chapter 5, which does not contain these checks.

7.5.3 Security Analysis
Here, we connect our security condition for internal attackers to the data confidentiality notion

from Chapter 6.
Stability. A key property for enforcement mechanisms is stability. Informally, an enforcement
mechanism ifEnf is u-stable iff ifEnf ’s security decision depends only on the traces produced by the
user-based epochs associated with the user u but it does not depend on the last statement’s result.
Stability ensures that ifEnf ’s security decision does not leak information.

Two runs r1 and r2 are u-epoch-equivalent, where u ∈ UID, iff there is a bijection µ : JEuser ,
Suser
u K(r1) → JEuser , Suser

u K(r2) such that (1) µ preserves the ordering of epochs, and (2) for all
e1 ∈ JEuser , Suser

u K(r1), the initial configurations in e1 and µ(e1) are indistinguishable for u and the
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traces in e1 and µ(e1) are the same. We say that an enforcement mechanism ifEnf is u-stable iff
ifEnf (C,M,S, u, s) = ifEnf (C′,M ′,S ′, u, s′) whenever: (a) C terminates starting from state 〈M, s〉
and scheduler S and produces run r1 iff C′ terminates starting from state 〈M ′, s′〉 and scheduler S ′ and
produces run r2, (b) the last statement executed in r1 and r2 is the same, and (c) if r1 terminates, then
r′1 and r′2 are u-epoch-equivalent, where r′1 (respectively r′2) is the run obtained from r1 (respectively
r2) by replacing the observation produced by the last statement with ε. Namely, an enforcement
mechanism ifEnf is u-stable iff ifEnf ’s security decision depends only on the traces produced by the
epochs associated with the user u (but it does not depend on the last statement’s result).
Main Result. The main result of this section is that a sound and stable enforcement mechanism
for internal attackers can be used to construct a provably secure DBAC mechanism with respect to
the data confidentiality property and the attacker model from Chapter 6. We prove Theorem 7.1 in
Appendix D.

Theorem 7.1. Let ifEnf be an enforcement mechanism for WhileSql programs and dbEnf be
the mechanism constructed using Reduction 7.1. If for all u ∈ UID, (1) ifEnf is sound for the
progress-sensitive variant of Definition 7.2 given Euser and Suser

u , and (2) ifEnf is u-stable, then
dbEnf provides data confidentiality with respect to the attacker model from Chapter 6.

We remark that Theorem 7.1 presents a way of constructing a provably secure DBAC mechanism
by re-using existing IFC techniques for internal attackers; it is related neither to the security condition
for external attackers (Definition 7.3) nor to the security monitor from Section 7.6. Furthermore,
the theorem highlights the importance of stability, which prevents leaks through the IFC’s security
decision, for the resulting DBAC mechanism’s security. In Section 7.5.5, we show how this result can
be extended to IFC mechanisms for external attackers.

7.5.4 Extending the results to the Truman Model
The operational semantics from Chapter 5 targets the Non-Truman model for DBAC, as do the

SQL standard and many existing database systems. Therefore, both Reduction 7.1 and Theorem 7.1
apply only to the Non-Truman model setting.

We now extend our results to the Truman model. To do so, we develop a technique for deriving a
Truman model mechanism from one in the Non-Truman model. Since the Truman model semantics
has been defined only for SELECT queries [131, 165] and Truman and Non-Truman semantics agree
for boolean queries (see Chapter 3), we focus only on non-boolean SELECT queries.

Reduction 7.2. Let s = 〈db, U, sec, T, V 〉, ctx, q, and u be the system state, the context, the
non-boolean SELECT query, and the user given as input to the database access control mechanism
respectively. Furthermore, let NTdbEnf be a database access control mechanism under the Non-
Truman model semantics. The Truman model mechanism TdbEnf can be constructed as follows:
(1) the mechanism executes the query q = {x | ϕ} over the database db and retrieves the set of
tuples T produced as result, and (2) TdbEnf returns the set of tuples {t ∈ T | NTdbEnf (s, ctx,
SELECT ϕ[x 7→ t], u) = >}, namely it returns only the authorized tuples in q’s result. �

By combining Reductions 7.1 and 7.2, it follows that stability and soundness are enough to ensure
that the resulting DBAC mechanism is secure. We prove this result in Appendix D.

Theorem 7.2. Let ifEnf be an enforcement mechanism for WhileSql programs and dbEnf be the
database access control mechanism for the Truman model semantics constructed using Reductions 7.1
and 7.2. If for all user u ∈ UID,(1) ifEnf is sound with respect to the progress-sensitive variant of
Definition 7.2 given Euser and Suser

u , and (2) ifEnf is u-stable, then dbEnf is secure and sound for
the Truman model, i.e., it satisfies Definitions 3.8 and 3.18.

7.5.5 From internal attackers to external attackers
Reduction 7.1 constructs a provably secure DBAC mechanism starting from a sound IFC mech-

anism for internal attackers. Despite that, most of the existing IFC mechanisms target external
attackers, not internal ones. These IFC mechanisms cannot, therefore, be used with our construc-
tion. To address this, we present a way of using IFC mechanisms that target external attackers to
determine the security of simple query-only programs with respect to internal attackers. By combin-
ing this with Reduction 7.1, we can, therefore, construct provably secure DBAC mechanisms using
sound IFC mechanisms for external attackers as a building block.

Security for internal attackers requires that the attacker’s knowledge remains constant inside each
epoch. Lemma 7.1 states that, for the sequential scheduler, simple query-only programs, and user-
based epochs, if the program corresponding to each epoch is secure, then so is the original program.
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Lemma 7.1. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-
only programs, s be a system state, M ∈ Mem∗UID be a sequence of memories, and u ∈ UID be a
user. Furthermore, let r be the longest run obtained starting from 〈C,M, 〈s, ε〉,S〉. If for all epochs
〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), (1) the sequence of programs
C
dn/2e
i is secure with respect to u for S, si, Md

n/2e
i , Euser , Suser

u for the progress-sensitive variant
of Definition 7.2, and (2) R(〈Ci,Mi, 〈si, ε〉,Si〉, dn/2e) is a (Euser , Suser

u )-single-epoch configuration,
then C is secure with respect to u for S, s, M , Euser , and Suser

u for the progress-sensitive variant of
Definition 7.2, where R(〈C,M, s,S〉,m) denotes the global configuration 〈Cm,Mm, s,S〉.

Before connecting security for internal and external attackers, we introduce a transformation on
global configurations. The transformation ensures that the runs that start from the transformed
configuration (1) leak the same information as those starting from the original configuration, and (2)
do not modify the access control policy associated with the original tables and views. This guarantees
that the allowed knowledge used in the security condition for external attackers does not contribute
to a program’s security.

Definition 7.4. Let 〈D,Γ〉 be a system configuration and 〈C,M, 〈〈db, U, sec, T, V 〉, ctx〉,S〉 be a
global configuration such that 〈db, U, sec, T, V 〉 is a database state in ΩD,Γ and C is a sequence of
simple query-only programs that do not contain ADD USER commands. Furthermore, let D′ be the
database schema obtained by extending D with a predicate symbol TMPR for each predicate symbol
R in D. We denote by T (〈C,M, 〈〈db, U, sec, T, V 〉, ctx〉,S〉) the global configuration 〈C′,M ′, 〈〈db′,
U ′, sec′, T ′, V ′〉, ctx ′〉,S ′〉 over the system configuration 〈D′,Γ〉 defined as follows:

• the sequence of programs C′ ∈ Com|C|+1
UID is as follows:

– C′(0) = 〈admin, x1,1 ← REVOKE TMPR1
1

FROM u1; . . . x1,n1 ← REVOKE TMPR1
n1

FROM
u1; . . . xm,1 ← REVOKE TMPRm1

FROM um; . . . xm,nm ← REVOKE TMPRmnm
FROM um〉, where

u1, . . . , um are all users in U and for each user ui, {Ri1, . . . , Rini} is the set containing all
relation schemas Rij in D such that there is no GRANT 〈op, ui, 〈SELECT, Rij〉, admin〉 ∈ sec,
where op ∈ {⊕,⊕∗}, i.e., {Ri1, . . . , Rini} = {Rij | Rij ∈ D ∧ ¬∃op ∈ {⊕,⊕∗}. 〈op, ui,
〈SELECT, Rij〉, admin〉 ∈ sec},

– C′(i) = 〈ui−1, CREATE TRIGGER tr ON T AFTER ev IF ϕ DO GRANT SELECT ON TMPR TO u AS
uc〉 if ci−1 = CREATE TRIGGER tr ON T AFTER ev IF ϕ DO GRANT SELECT ON R TO u AS uc,
where C(i− 1) = 〈ui−1, ci−1〉,

– C′(i) = 〈ui−1, CREATE TRIGGER tr ON T AFTER ev IF ϕ DO GRANT SELECT ON TMPR TO u
WITH GRANT OPTION AS uc〉 if ci−1 = CREATE TRIGGER tr ON T AFTER ev IF ϕ DO GRANT
SELECT ON R TO u WITH GRANT OPTION AS uc, where C(i− 1) = 〈ui−1, ci−1〉,

– C′(i) = 〈ui−1, CREATE TRIGGER tr ON T AFTER ev IF ϕ DO REVOKE SELECT ON TMPR FROM
u AS uc〉 if ci−1 = CREATE TRIGGER tr ON T AFTER ev IF ϕ DO REVOKE SELECT ON R FROM u
AS uc, where C(i− 1) = 〈ui−1, ci−1〉,

– C′(i) = 〈ui−1, GRANT SELECT ON TMPR TO u〉 if ci−1 = GRANT SELECT ON R TO u, where
C(i− 1) = 〈ui−1, ci−1〉,

– C′(i) = 〈ui−1, GRANT SELECT ON TMPR TO u WITH GRANT OPTION〉 if ci−1 = GRANT SELECT
ON R TO u WITH GRANT OPTION, where C(i− 1) = 〈ui−1, ci−1〉,

– C′(i) = 〈ui−1, REVOKE SELECT ON TMPR FROM u〉 if ci−1 = REVOKE SELECT ON R FROM u,
where C(i− 1) = 〈ui−1, ci−1〉,

– C′(i) = 〈ui−1, CREATE VIEW V : q AS u; CREATE VIEW TMPV : q′ AS u〉 if ci−1 = CREATE
VIEW V : q AS u, where C(i − 1) = 〈ui−1, ci−1〉 and q′ is the query obtained from q by
replacing each predicate symbol R with TMPR, and

– C′(i) = C(i− 1) otherwise,
• the sequence of memories M ′ ∈ Com|M|+1

UID is 〈admin,m0〉·M , where m0 is the memory where
all values are set at 0.

• the runtime state is as follows:
– db′(R) = db(R) and db′(TMPR) = ∅ for all R in D,
– U ′ = U ,
– sec′ = sec ∪ {〈⊕, u, 〈SELECT,TMPR〉, admin〉 | u ∈ U ∧ R ∈ D ∧ ¬∃op ∈ {⊕,⊕∗}. 〈op, u,
〈SELECT, R〉, admin〉} ∪ {〈op, u′, 〈SELECT,TMPR〉, u′′〉 | 〈op, u′, 〈SELECT, R〉, u′′〉 ∈ sec},

– T = {transfTrigger(t) | t ∈ T}, where transfTrigger(t) = t in case t’s action is not a GRANT
or REVOKE command involving a SELECT privilege and transfTrigger(〈id, u, e, R, φ, 〈op, u,
〈SELECT, R〉〉,m〉) = 〈id, u, e, R, φ, 〈op, u, 〈SELECT,TMPR〉〉,m〉 otherwise,

– V ′ = V ∪{transfView(v) | v ∈ V }, where transfView(〈id, o, q,m〉) = 〈TMP id , o, q
′,m〉 and

q′ is the query obtained from q by replacing each predicate symbol R with TMPR, and
– ctx ′ = ctx,

• the scheduler S ′ is S. �
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We also introduce an inverse transformation T −1 that allows one to revert the effects of the
transformation on a system state. The inverse transformation is defined as follows: T −1(〈db, U,
sec, T, V 〉) = 〈db′, U, sec′, T ′, V ′〉, where db′ is obtained by dropping all relation schemas of the
form TMPR, sec′ is obtained by (1) removing from sec all GRANTs associated with SELECT privileges
involving predicate symbols not of the form TMPR, and (2) replacing all occurrences of predicate
symbols of the form TMPR with R, T ′ is obtained by replacing all predicate symbols of the form
TMPR with R in the triggers in T , and V is obtained by dropping all views that refer to predicate
symbols of the form TMPR.

Lemma 7.2 connects the security conditions for external and internal attackers for a single epoch.
Observe that the lemma works for a slightly modified version of the security condition for external
attackers, which supports also database-level users.

Lemma 7.2. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-
only programs (without ADD USER commands), s be a system state, M ∈ Mem∗UID be a sequence of
memories, u ∈ UID be a user, and 〈C′,M ′, 〈s′, ε〉,S ′〉 be the configuration T (〈C,M, 〈s, ε〉,S〉). If
〈C,M, 〈s, ε〉,S〉 is (Euser , Suser

u )-single-epoch and the sequence of programs C′ is secure with respect
to the user db(u) for S ′, s′, and M ′ according to the progress-sensitive variant of Definition 7.3
(extended to handle users in UID ∪ {db(u) | u ∈ UID}), then the sequence of programs C is secure
with respect to the attacker u for S, s, M , Euser , and Suser

u according to the progress-sensitive variant
of Definition 7.2.

We are now ready to introduce Reduction 7.3, which shows how to use an IFC mechanism for
external attackers to construct an IFC mechanism for internal attackers when restricted to the se-
quential scheduler and simple query-only programs.

Reduction 7.3. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-
only programs (without ADD USER commands), s be a system state, M ∈ Mem∗UID be a sequence of
memories, u ∈ UID be a user, and ifEnf be an IFC mechanism for external attackers. The reduction
works as follows. We compute the longest run r that can be obtained by starting from 〈C,M, 〈s, ε〉,S〉
and the set of epochs JEuser , Suser

u K(r). Then, the IFC mechanism ifEnf ′ for internal attackers returns
> iff for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), ifEnf (C′,M ′,
S, u, s′) = >, where T (〈Cdn/2ei ,M

dn/2e
i , 〈si, ctxi〉,Si〉) = 〈C′,M ′, 〈s′, ctx ′〉,S ′〉. �

Finally, Theorem 7.3 states that Reduction 7.3 can be used to construct a sound IFC mechanism
for internal attackers using a sound IFC mechanism for external attackers as a building block.

Theorem 7.3. Let ifEnf be an IFC mechanism that is sound with respect to the progress-sensitive
variant of Definition 7.3 (extended to handle users in UID ∪ {db(u) | u ∈ UID}) and ifEnf ′ be the
mechanism constructed in Reduction 7.3. Then, ifEnf ′ is a sound progress-sensitive IFC mechanism
for internal attackers (for user-based epochs and simple query-only programs that do not contain ADD
USER commands).

Proof. The soundness of the reduction follows from Lemma 7.1, which establish the soundness of
considering the single epochs separately, and Lemma 7.2, which establish the soundness of using a
mechanism for external attackers to check security against internal attackers for a single epoch.

We remark that Theorem 7.3 refers to a slightly extended version of the progress-sensitive variant
of Definition 7.3 that supports also users of the form db(u), where u ∈ UID. Our results can be
immediately extended also to conditions that supports only users in UID by replacing each query
statement x ← q executed by a user u with x ← q;out(u, x). Indeed, this transformation ensures
that all database-level observations are turned into program-level observations, thereby preserving
the attacker’s knowledge.

7.5.6 From progress-sensitive to progress-insensitive security
Theorems 7.1–7.3 refer to the progress-sensitive variants of Definitions 7.2 and 7.3. Our results,

however, can be lifted to the progress-insensitive setting.
Theorem 7.4 states that the progress-sensitive and progress-insensitive definitions coincide for

external attackers for safe programs.

Theorem 7.4. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of
simple query-only programs, and 〈M0, s0〉 be a reachable global state such that C is safe for S and
[〈M0, s0〉]u. Then, C is secure with respect to Definition 7.3 for S, M , s, and u iff C is secure with
respect to the progress-sensitive variant of Definition 7.3 for S, M , s, and u.

Theorem 7.5 states that the progress-sensitive and progress-insensitive definitions coincide for
internal attackers whenever the programs associated with the single epochs are safe.
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Theorem 7.5. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of
simple query-only programs, and 〈M0, s0〉 be a reachable global state such that |C| = |M | and for all
1 ≤ i ≤ |M |, M(i) = 〈ui,mi〉 and C(i) = 〈ui, ci〉. Furthermore, let r be the longest run obtained
starting from 〈C,M0, 〈s0, ε〉,S〉. If Cdn/2ei is safe for S and [〈Mdn/2ei , si〉]u for all 〈Ci,Mi, 〈si, ctxi〉,
Si〉

τ−→
n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then C is secure with respect to Definition 7.2
for S, M , s, u, Euser , and Suser

u iff C is secure with respect to the progress-sensitive variant of
Definition 7.2 for S, M , s, u, Euser , and Suser

u .

We remark that the programs produced by Reductions 7.1 and 7.2 satisfy the following conditions:
(1) each query statement qi produces an output according to the WhileSql’s semantics, (2) the
resulting programs are simple query-only programs, and (3) the programs associated to each epoch
are safe with respect to the epoch’s initial state. Hence, Theorems 7.4 and 7.5 can be used to extend
our results to the progress-insensitive setting.

7.5.7 A note on integrity
In this section, we used a sound IFC mechanism as a building block for constructing a provably

secure DBAC mechanism that satisfies the data confidentiality notion from Chapter 6. Our results,
however, do not extend to database integrity. Even though variants of non-interference can be used
to enforce integrity for programs, the database integrity notion from Chapter 6 directly accounts for
the semantics of SQL access control. As a result, database integrity introduces restrictions, such as
those associated with GRANT and REVOKE commands, that have no immediate formalization in terms
of non-interference.

7.6 Enforcing end-to-end security

This section presents a monitor that provably secures WhileSql programs with respect to ex-
ternal attackers. To achieve end-to-end security across the database and applications, the monitor
must keep track of dependencies at the database level (between queries) and at the program level
(between variables) and ensure that the information released by output statements complies with
the current security policy. To this end, we combine dynamic information-flow tracking with query
determinacy [124] and disclosure lattices [26]. We refer the reader to Chapter 2 for an introduction
to these concepts.

We leverage disclosure lattices to reason about the security of database queries [26]. Given two
sets of queries Q1 and Q2, disclosure lattices provide a precise model for answering the following
questions: (i) Does Q1 reveal more information than Q2? (ii) What combined information is revealed
by Q1 and Q2? (iii) What common information is revealed by Q1 alone and Q2 alone? Observe
that a security policy defines a set of database tables and views that a user is authorized to read.
Hence, policies can be seen as sets of database queries, that is elements of a disclosure lattice. In the
following, we fix a system configuration 〈D,Γ〉, where D = 〈Σ,dom〉.

7.6.1 Preliminaries
Before presenting our security monitor, we define some preliminary concepts.

Predicate queries. A predicate query is a query of the form T (v) where T is a relation schema
in D and v ∈ dom|T |. A predicate query represents a single tuple in the database. We denote by
RC pred the set of all predicate queries.
Query Support. Let q be a query and Q be a set of predicate queries. We say that Q minimally
determines q, denoted minDetD,Γ(Q, q), iff D,Γ ` Q � q, and there is no Q′ ⊂ Q such that D,
Γ ` Q′ � q. The support of q, denoted suppD,Γ(q), is {Q ∈ 2RCpred

| minDetD,Γ(Q, q)}. Informally,
the support of q contains all (minimal) sets of tuples that determine q. For instance, the query
T (1) ∨ R(2) is minimally determined by {T (1), R(2)}. Hence, its support is {{T (1), R(2)}}. For
simplicity, we write supp(q) instead of suppD,Γ(q) when the system configuration 〈D,Γ〉 is clear from
the context.
Well-formed integrity constraints. We say that a set Γ of integrity constraints is well-formed
iff for all predicate queries q ∈ RC pred , suppD,Γ(q) = {{q}}. In the following, we consider only well-
formed system configurations 〈D,Γ〉. Observe that common integrity constraints used in practice,
such as primary key and foreign key constraints, are well-formed. An example of integrity constraint
that is not well-formed is T (1)↔ R(2). Indeed, suppD,{T (1)↔R(2)}(T (1)) = {{T (1)}, {R(2)}}.
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7.6.2 Security monitor
Our enforcement mechanism for external attackers is a dynamic security monitor. It keeps track

of how information flows across the programs and the database, and it terminates the execution
whenever a statement may leak information. For simplicity, we assume there is a single attacker,
represented by the user identifier ATK . Our mechanism can be generalized to support multiple
attackers. We also assume that each user is associated with at most one program and that different
programs use disjoint sets of variable identifiers. In the following, we denote by VarsATK the set of
variables occurring in ATK ’s program and by sec0 the initial security policy.
Security Lattice. Our security monitor uses the determinacy-based disclosure lattice to track
information. To handle both queries and memory variables, we extend the database schema D with
a propositional symbol MEMx for each variable x ∈ Vars occurring in the monitored WhileSql
programs. We denote by Dext the extended database schema. Formally, our security lattice is the
disclosure lattice 〈L,v,t,u,⊥,>〉 defined over Dext , where v = ��Dext ,Γ. Note that we use labels of
the form MEMx to abstractly represent the information initially stored in the program memories,
which does not come from the database.
Monitor States. A monitor state ∆ is a function Vars ∪ RC pred ∪ {pcu | u ∈ UID} → L that
associates each variable identifier and predicate query with a security label. The monitor state also
keeps track of the security level associated with each program’s security context. Since each user u is
executing at most one program, we formalize the security contexts using identifiers of the form pcu,
where u ∈ UID is the user executing the program. For example, ∆(pcBob) captures the security level
of the condition if Bob’s program is executing one of the branches of an if statement. We lift ∆ to
expressions: ∆(e) =

⊔
x∈vars(e) ∆(x), where e is an expression and vars(e) are e’s free variables.

The monitor’s initial state ∆0 is as follows: (a) for each variable x, if x ∈ VarsATK , then ∆0(x) =
MEMx and ∆0(x) = > otherwise, (b) for all T (v) ∈ RC pred , then ∆0(T (v)) = cl(T (v)), and (c) for
all u ∈ UID, ∆0(pcu) = ⊥.
Mapping Queries to Labels. Our security monitor keeps track only of the dependencies between
predicate queries. Hence, we use the function LQ to derive the labels associated with relational
calculus queries: LQ(∆, q) =

⊔
Q∈supp(q)

⊔
q′∈Q ∆(q′). The function associates to a query q the join

of the labels of all predicate queries in q’s support. This ensures that LQ(∆, q) takes into account
the labels of all tuples that may influence q’s results. For instance, given a monitor state ∆, the
query T (1)∧R(2) is associated with the label ∆(T (1))t∆(R(2)), thus capturing the fact that it may
reveal information about both T (1) and R(2). As expected, for predicate queries, LQ(∆, q) = ∆(q).
Mapping Users to Labels. The function LU maps users to labels in our security lattice. Since we
are interested in end-to-end security guarantees, we associate the attacker ATK with the set of tables
and views he is authorized to read according to the current security policy and to the initial policy
sec0 along with the labels associated with all the variables in ATK ’s program. Formally, LU (s, u) = >
for any u 6= ATK and LU (s,ATK) = cl(auth(s,ATK) ∪ auth(sec0,ATK) ∪

⋃
x∈VarsATK

MEMx). To
illustrate, given a security policy sec0 stating that the attacker can read the table T but not the
table R and ignoring the labels associated with variables, LU (s,ATK) =

⊔
v∈dom|T | cl(T (v)), i.e.,

the attacker is authorized to know anything contained in T .
The mapping of queries and users to labels from the disclosure lattice allows one to reason

about information disclosure. For instance, if the above attacker observes the result of the query
q = T (1) ∧ R(2), this violates the security policy. In fact, LQ(∆, q) 6v LU (s,ATK) since cl({T (1),
R(2)}) 6v

⊔
v∈Vals|T | cl(T (v)).

Expansion Process. To correctly handle triggers, our monitor rewrites each SQL command into
WhileSql statements encoding the triggers’ execution. We do so using the expand(s,m, u, x ← q)
function, which takes as input a runtime state s, a memory m, the user u executing the command,
and a command x ← q, and produces as output a sequence of statements modeling the command’s
execution (together with all the triggers executed in response to q). We formalize the expand function
in Section 7.9.3.
Additional Queries and Statements. Our monitor extends the WhileSql syntax and semantics
with two designated queries T⊕e and T	e, and five designated statements asuser(u′, c), dbout(u, v,
o, τ), ‖x← q‖, [c], and set pc to l. The T ⊕e (respectively T 	e) query inserts (respectively deletes)
tuples from the database without firing triggers. The asuser(u′, c) statement is used to execute the
command c as the user u′ (inside the session of the user u executing the asuser(u′, c) command).
The dbout(u, v, o, τ) statement, instead, is used to print database-level events, e.g., policy changes.
Finally, we use ‖x← q‖ to denote queries that have already been through the expansion process. All
the above queries and statements are used during the expansion process.

The main goal of our work is studying the interplay between programs and databases. Therefore,
to avoid timing leaks caused by executing multiple programs in parallel, the monitor’s semantics
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F-Assign
nsu(x, pcu) ∆′ = ∆[x 7→ ∆(pcu) t∆(e)]
〈∆, x := e,m, s〉 u 〈∆′, ε,m[x 7→ JeK(m)], s〉

F-Out
∆(e) t∆(pcu) v LU (s, u′)

〈∆,out(u′, e),m, s〉 〈u
′,JeK(m)〉

u 〈∆, ε,m, s〉

F-Expand
ce = expand(s, x, q, u)

〈∆, x← q,m, s〉 u 〈∆, [ce],m, s〉

F-IfTrue
JeK(m) = tt

c′ = [c1 ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-Select
{v1, . . . , vn} = vars(ϕ) ϕ′ = ϕ[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

q = SELECT ϕ JqK(s, u) = 〈s′, r, ε, ε〉 `ϕ = LQ(∆, ϕ) t
⊔

v∈vars(ϕ)

∆(v) nsu(x, pcu)

〈∆, ‖x← SELECT ϕ‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `ϕ], ε,m[x 7→ r], s′〉

F-UpdateDatabaseOk
v = 〈Je1K(m), . . . , JenK(m)〉 ⊗ ∈ {⊕,	} q = T ⊗ v

JqK(s, u) = 〈s′, r, ε, ε〉 `e =
⊔

1≤i≤n

∆(ei) nsu(T (v), pcu) `e v ∆(T (v)) nsu(x, pcu)

〈∆, ‖x← T ⊗ {e1, . . . , en}‖,m, s〉 u 〈∆[T (v) 7→ ∆(pcu) t `e, x 7→ ∆(pcu) t `e], ε,m[x 7→ r], s′〉

F-UpdateConfigurationOk
{v1, . . . , vn} = vars(q) q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

isCfgCmd(q′) Jq′K(s, u) = 〈s′, r, ε, ε〉 `cmd =
⊔

1≤i≤n

∆(vi)

`cmd v cl(auth(sec0,ATK)) ∆(pcu) v cl(auth(sec0,ATK)) nsu(x, pcu)
〈∆, ‖x← q‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `cmd ], ε,m[x 7→ r], s′〉

Figure 7.5: Security monitor – Selected Rules.
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executes branching statements atomically, i.e., without interleaving the execution of other programs
whenever a program is executing a branching statement. To do so, we introduce statements of the
form [c], which denote that c should be executed atomically. Finally, we use statements of the form
set pc to l, where l ∈ L, to update the label associated with the executing program’s context.
Relaxed no-sensitive upgrade checks. Our enforcement mechanism is a dynamic security moni-
tor. A common technique for preventing implicit leaks of sensitive information in this setting is using
no-sensitive upgrade (NSU) checks [22, 169]. Intuitively, a NSU check restricts the changes only to
the variables whose label is at least that of the current execution’s context, i.e., only for variables x
such that ∆(pcu) v ∆(x). This guarantees that changes to “low” variables never happen in “high”
execution contexts. NSU checks, however, are rather restrictive: they may block executions that do
not leak information. This is particularly relevant for security lattices with many labels, such as our
disclosure lattice, where many labels are simply unrelated and NSU checks often fail.

To address this, we propose a simple relaxation of NSU checks that still prevents leaks of sensitive
information. In particular, our relaxed NSU checks exploit the fact that the initial security policy sec0
can be used to determine which labels can be considered as permanently “low”, no matter how the
policy is modified during the execution. In more detail, given a variable x, the relaxed NSU check is
defined as follows: ∆(pcu) v cl(auth(sec0,ATK))∨∆(pcu) v ∆(x), where sec0 is the initial security
policy. Our relaxed NSU check is satisfied whenever the standard NSU check is. Additionally, our
relaxed NSU check allows flows of informations whenever the security context pcu is permanently
low, i.e., ∆(pcu) v cl(auth(sec0,ATK)). In the following, we denote by nsu(x, pc) the predicate
∆(pc) v cl(auth(sec0,ATK)) ∨∆(pc) v ∆(x), where x is either a variable identifier or a predicate
query, pc is an identifier of the form pcu, and u is a user identifier.

To illustrate, our relaxed NSU check allows changes to a variable x whose label is, say, cl(T (1))
in an execution context such that ∆(pcu) = cl(V (2)) whenever the attacker ATK is authorized to
read both the table T and V with respect to the initial policy sec0. A standard NSU check, instead,
would have prevented the assignment since cl(V (1)) 6v cl(T (1)).
Enforcement Rules. Figure 7.5 presents selected rules associated with the execution of queries.
We present the full operational semantics of our monitor in Section 7.9.2.

The rule F-Assign updates the monitor state whenever there is an assignment. The rule prevents
leaks using relaxed NSU checks. The rule F-Out ensures that the monitor produces only secure
output events. In particular, it prints to the user u′ the value associated with the expression e
only if the security labels associated with the printed information and with the program counter are
authorized to flow to u′, i.e., ∆(e) t∆(pcu) v LU (s, u′). The rule F-IfTrue, instead, executes the
then branch c1 in an if statement and updates the labels associated with pcu based on the label
associated with the if ’s condition. The rule relies on the set pc to l command to reset the label
of pcu when leaving the then branch. Also note that the rule encapsulates both the then branch
c1 and the set pc to l statement inside an atomic statement [c1 ; set pc to l] to prevent internal
timing channels caused by the scheduler. We remark that the above rules implement rather standard
dynamic information-flow tracking [134].

The rule F-Expand ensures that triggers as well as constraint checking is de-sugared into normal
WhileSql code that is handled by the other rules. The rule uses the expand function, which we
formalize in Section 7.9.3. The F-Select rule ensures, using relaxed NSU checks, that query results
are stored only in variables with the proper security labels. The rule, finally, updates the label
associated with the variable storing the query’s result to correctly propagate the flow of information.

The rule F-UpdateConfigurationOk handles configuration commands, i.e., GRANT, REVOKE,
ADD USER, and CREATE commands. Since changes to the configuration are visible to ATK , the rule
ensures that such changes are performed only in contexts that are initially low for the attacker, i.e.,
∆(pcu) v cl(auth(sec0,ATK)). Furthermore, the rule prevents leaks of sensitive information using
the free variables in the commands using the check `cmd v cl(auth(sec0,ATK)). The rule also uses
relaxed NSU checks to ensure that query results are stored only in variables with the proper security
labels. The rule uses the predicate isCfgCmd(q), which returns > iff q is a configuration command.
Finally, the rule F-UpdateDatabaseOk handles queries that modify the database’s content. The
rule ensures that there are no changes to security labels based on secret information using relaxed
NSU checks. Furthermore, the rule keeps track of the labels associated with the information stored
in the database by updating the monitor’s state ∆.

Observe that in WhileSql policy changes generate public events. This eliminates leaks through
authorization channels [17], and no additional checks for such leaks (cf. channel context bounds in [18])
are needed.
Soundness. Theorem 7.6, proven in Appendix D, states that our enforcement mechanism is sound
for external attackers, i.e., it satisfies Definition 7.3 with  as the underlying evaluation relation.
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Theorem 7.6. For all sequences of programs C ∈ Com∗UID, schedulers S, sequences of memories
M ∈ Mem∗UID, and system states s, whenever r = 〈∆0, C,M, 〈s, ε〉,S〉 τ n 〈∆′, C′,M ′, 〈s′, ctx′〉,
S ′〉, then for all 1 ≤ i ≤ n, K ATK (〈M, s〉, C,S, trace(ri−1)) ∩ AATK,sec(M, s) ⊆ K ATK (〈M, s〉, C,S,
trace(ri)), where K ATK refers to Definition 7.1 with  as evaluation relation and the database in r’s
(i− 1)-th configuration is 〈db, U, sec, T, V 〉.

Example 7.3. Let T, V, Z be three tables, t be the trigger defined by the following command:

CREATE TRIGGER t ON T AFTER INS IF V (1) DO INSERT 1 INTO Z AS admin,

and s be a system state containing t. The trigger is executed whenever a tuple is inserted in the table
T , and t inserts 1 in Z if V (1) holds in the database state. The statement x ← INSERT 2 INTO T is
expanded as follows (provided all operations are authorized by the policy and there are no integrity
constraints):

y ← SELECT V (1)
if y then

x← ‖T ⊕ 2‖
z ← ‖Z ⊕ 1‖
dbout(db(ATK), ‖T ⊕ 2‖, x, ε)

else
x← ‖T ⊕ 2‖
dbout(db(ATK), ‖T ⊕ 2‖, x, ε)

Suppose the attacker ATK executes x← INSERT 2 INTO T ;w ← SELECT Z(1);out(ATK , w) from
an initial database state s0 where the tables T and Z are empty and the table V contains a single
record with value 1. We illustrate the behavior of the monitor for the security policy where ATK
cannot read V but can read and modify T and Z. Intuitively, the program is insecure since the
presence of 1 in Z depends (implicitly) on the presence of 1 in V , which ATK cannot read.

Consider the program execution with the initial state s0 as above, and initial monitor state ∆0
such that ∆0(x) = MEMx, ∆0(w) = MEMw, ∆0(y) = ∆0(z) = > (since y and z do not occur in
ATK ’s program), and ∆0(pcATK ) = ⊥. The attacker’s label is LU (s0,ATK) =

⊔
v∈Vals cl(T (v)) t⊔

v∈Vals cl(Z(v)) t cl({MEMx,MEMw}). The monitor would apply the rules F-Expand (explained
above), F-Select, F-IfTrue, F-UpdateDatabaseOk (twice), F-DbOut (not shown), F-SetPc
(not shown), F-Select, and F-Out. The evaluation of the first SELECT statement yields ∆′ =
∆0[y 7→ ∆(V (1)) t ⊥], i.e., ∆′(y) = cl(V (1)). Observe that the SELECT statement is successful
(nsu(x, pcATK ) holds given that ∆0(pcATK ) = ⊥). The evaluation of the boolean condition y yields
∆′ = ∆[y 7→ cl(V (1)), pcATK 7→ cl(V (1))]. For the subsequent database update, the monitor checks
whether nsu(T (2), pcATK ) holds for the monitor state ∆′. Namely, the monitor checks whether
cl(V (1)) v l0 ∨ cl(V (1)) v cl(T (2)) holds, where l0 =

⊔
v∈Vals cl(T (v))t

⊔
v∈Vals cl(Z(v)). Since this

is not the case, the monitor stops the execution and correctly prevents the leakage. �

7.6.3 A note on implementations
While most of the rules defining our monitor’s semantics can be easily implemented in practice,

there are some points that are worth discussing.
Representing the monitor state. The monitor state ∆ associates to each predicate query q a
label l ∈ L. However, the set of predicate queries is infinite. To address this, one can explicitly keep
track only of the labels of those queries that have been involved in INSERT or DELETE operations. This
allows one to always store only a finite number of labels, without affecting the monitor’s security.
Furthermore, each label l may consist of an infinite set of predicate queries. Instead of storing the
predicate queries, one can just store the finite set of queries Q associated with the label l.
Determining the relation between labels. Given two labels l and l′, determining whether l v l′
requires to determine whether a set of queries Q determines another set of queries Q′. However,
query determinacy is undecidable for the relational calculus [124]. To address this, one can use a
sound under-approximation of determinacy to decide whether Q determines Q′, such as the one we
presented in Chapter 6. This defines a sound under-approximation vax of the relation v.
Computing the LQ function. Computing the result of LQ(∆, q) requires to compute the set
suppD,Γ(q). This is challenging for two reasons: (1) the notion of suppD,Γ(q) relies on query deter-
minacy, and (2) suppD,Γ(q) may contain an infinite amount of queries. The first problem can be
addressed by employing a sound over-approximation of query determinacy. Differently from vax,
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computing suppD,Γ(q) requires an over-approximation to preserve the monitor’s security. To address
the second problem one can represent sets of predicate queries using non-boolean queries.
Approximations and precision. While the above points do not impact the monitor’s security,
they can influence its precision and performance. In general, better under- and over-approximations
of determinacy may lead to more precise monitors but may reduce the monitor’s performance. For
example, one may employ relatively simple syntactic under- and over-approximations of determinacy,
such as the one we presented in Chapter 6. This allows the monitor to efficiently compute all the secu-
rity checks. However, these approximations often lead to imprecise results. For instance, the under-
approximation from Chapter 6 is not able to determine that cl(T (1)) v cl((R(1)∨¬R(1))∧T (1)). Al-
ternatively, one may rely on more complex approximations, such as using automated theorem provers,
or even exact solutions for fragments of the relational calculus [124, 127]. While these approaches
may greatly increase the monitor’s precision, they usually have a high computational complexity.

7.7 Related Work

Database Access Control. As we already discussed in Chapters 3 and 6, many security conditions
have been proposed for SELECT-only attackers [26,27,131,165]. These conditions are usually built on
top of well-known database problems, such as determinacy [124], instance-based determinacy [107],
and certain answer [9], and they target a setting where both the database’s content and the policy are
static. Our work, instead, considers a stronger attacker model where malicious users may dynamically
modify the policy as well as exploiting advanced database features. In this respect, the attacker model
considered in this chapter is similar to the one from Chapter 6. We refer the reader to Section 6.6
for an in-depth discussion of DBAC attacker models.

The security conditions we reviewed above often refer to secure DBAC mechanisms. They thus
mix security and enforcement concerns. In contrast, our condition characterize the security of a given
sequence of commands only in terms of the attacker’s knowledge. As a result, our condition provides
a purely semantic characterization of database security in dynamic settings, where both the security
policy and the database’s content may change.

Bender et al. [26,27] introduce disclosure lattices to reason about the security of SELECT queries in
the presence of fine-grained security policies. Specifically, they use a disclosure lattice based on query
homomorphisms limited to a restricted class of queries (filter-project queries) [26, 27]. In contrast,
we exploit a disclosure lattice based on query determinacy to track how information flows across
programs and databases. Observe also that our security condition for internal attackers may serve
as a baseline for justifying soundness of their policy enforcement algorithms.

Since the work we presented in this chapter is based on the operational semantics from Chapter 5
and relies on an attacker model similar to the one from Chapter 6, we refer the reader to Section 6.6
for a detailed comparison with Mandatory Access Control research.
Information-flow Control for database-backed applications. Until recently, little work has
been done on IFC for database-backed applications [24,49,50,57,96,143,167]. In contrast to existing
studies, our work has the following distinguishing features: (1) a realistic model of database systems,
which accounts for advanced database constructs like triggers, views, and dynamic policies, (2) a
security monitor combining information-flow tracking with disclosure lattices, and (3) a soundness
proof of security for a realistic database model. Existing works either consider simple database
models or provide informal soundness arguments.

A recent trend is to integrate database query mechanisms directly inside programming lan-
guages, see, for instance, Microsoft’s Language Integrated Queries (LINQ) [3]. In response to this,
information-flow approaches have been proposed for languages supporting LINQ [24, 141]. Schoepe
et al. [141] propose SeLinq, a secure type system for a subset of the F# language extended with
language integrated queries. Their work builds on the LINQ’s foundations of Cheney et al. [46],
which supports only SELECT queries. Furthermore, they assume that both the database content and
the security policy are static and they support only column-level policies over the database. Balliu
et al. [24], instead, present JsLinq, a framework for securing multi-tier applications. Their work
too builds on the work of Cheney et al. [46]. Hence, it is subject to similar restrictions as SeLinq,
namely it supports only SELECT queries and column-level policies. Observe that JsLinq supports
declassification through escape hatches, which is similar to our use of GRANT commands to delegate
read privileges. In contrast to these approaches, our work adopts a realistic database model, which
accounts for advanced features, and we support dynamic policies. Additionally, we combine dynamic
monitoring with disclosure lattices to track fine-grained tuple-level dependencies, which SeLinq and
JsLinq cannot track.

Corcoran et al. [57] present SeLinks, an extension of the Links programming language [56] that
allows a database and a web application to collaborative enforce security policies using dependent
types. Internally, SeLinks builds on top of the Fable system [155]. In contrast to our work, SeLinks
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targets a rather simple database model that does not support security-critical features like integrity
constraints and triggers, which can be used to leak sensitive information (see Chapter 6).

Sif, developed by Chong et al. [50], is a software framework that allows developers to build secure
web applications. Programmers annotate variables and other data sources with fine-grained labels,
and Sif automatically tracks information flows across the web application to guarantee the absence
of leaks of sensitive information. Sif, however, only provides a limited database support: it requires
the database interface to be annotated with Jif annotations at column-level. Fabric [114], instead,
is a Jif extension for building secure distributed systems. While it considers persistent storage, it
does not provide direct support for databases and for tracking information through them. Compared
to these approaches, our work supports complex dynamic policies defined through GRANT and REVOKE
commands and it tracks dependencies between variables and database tuples.

Schultz and Liskov [143] extend decentralized information-flow control to track information across
database boundaries. Their work is based on concepts from multi-level security and it relies on poly-
instantiation. In contrast to our work, Schultz and Liskov’s approach cannot be directly applied to
most SQL databases, which do not support multi-level security approaches (see Section 6.6 for a
detailed discussion of this topic).

Chlipala [49] introduces UrFlow, a static analysis information-flow tool for the Ur/Web pro-
gramming language. Similarly to our security policies, UrFlow support policies specified using SQL
queries. Huang et al. [96], instead, present WebSSARI, a tool that combines static and runtime
analysis to secure database-backed Php applications. Both UrFlow and WebSSARI consider a
simplistic database model. In contrast, our work targets a realistic database model that supports
advanced security-critical features, like triggers and dynamic policies. Additionally, our security
monitor provide precise security guarantees.

Yang et al. [167] present Jacqueline, a framework for policy-agnostic programming for database-
backed applications. The system combines dynamic information-flow control and faceted values to
secure programs interacting with databases. The database model considered in [167] lacks many of
the advanced features that are supported by our model. Observe also that Jacqueline’s goal is
executing programs in a secure way, not detecting security violations.

Griffin et al. [79] present Hails, a framework for developing web applications that supports
mandatory access control policies. DbTaint [59], instead, enhances database data types with one-
bit taint information. Compared to our approach, these works lack formal security justifications and
advanced database features.
Security Conditions. Our security conditions from Section 7.4 are inspired by existing knowledge-
based conditions for IFC [18, 21, 23]. Our condition for external attackers assumes perfect recall
attackers and considers dynamic policies. The condition is similar to existing knowledge-based notions
that use escape hatches for declassification, such as [21]. However, while escape hatches are often
disclosed permanently [21], we support both GRANT and REVOKE commands. We refer the reader to
Broberg et al. [39] for an extensive survey of IFC and dynamic policies.

Our security condition for internal attackers, instead, targets attackers that reset their knowledge
about the system’s state whenever the epoch changes. In this respect, the notion of non-interference
between updates introduced by Hicks et al. [94], which requires that non-interference holds between
policy updates, can be seen as a special case of our security condition instantiated with permission-
based epochs. Permission-based epochs represent portions of a run where the policy does not change.
We formalize them using the predicate Eperm

u , where u ∈ UID, defined as follows: 〈〈C,M, 〈s, ctx〉,
S〉, 〈C′,M ′, 〈s′, ctx ′〉,S ′〉〉 ∈ Eperm

u iff auth(s, u) 6= auth(s′, u).
Our security conditions in Section 7.4 are progress-insensitive. There are different flavors of

progress-insensitivity in the literature. For instance, Hedin and Sabelfeld [93] present a security con-
dition that differentiate between divergence and termination. Our security conditions, instead, follow
state-of-the-art conditions for dynamic policies [18,39] by not differentiating between divergence and
termination. As a result, our conditions ignore leaks caused by the output trace’s length. Observe,
however, that our condition is subject to brute-forcing leaks similar to those for [93], with known
information-theoretic bounds [19]. Note, however, that the results in Section 7.5 can be applied to
both progress-sensitive and progress-insensitive techniques.
Label Models. The universal lattice introduced by Hunt and Sands [98] is similar in spirit to
our disclosure lattice. The universal lattice allows one to express dependencies between variables,
where the lattice’s elements are sets of variables and the order relationship is set containment. In
contrast, our disclosure lattice allows one to reason about complex dynamic policies in databases
and applications. Observe also that the universal lattice can be embedded inside our disclosure
lattice, by using predicate symbols of the form MEMx for each variable x (see Section 7.6). By
directly combining disclosure lattices with dynamic information-flow tracking, we can track fine-
grained dependencies between variables and queries. Note that these dependencies would be lost
using simpler label models, such as the standard “high” and “low” lattice.
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Bridging DBAC and IFC. As we already mentioned, there are several IFC approaches that support
databases [24,49,50,57,96,143,167]. Despite that, only little work has been done on bridging access
control and information-flow control. To the best of our knowledge, John Rushby’s paper [133]
has been one of the few to formally characterize non-interference and access control in the same
framework. Rushby presented three properties that any system monitored by a secure access control
mechanism should satisfy. Informally, these three requirements are: (1) the output produced by a
user’s action should depend only on the values the user is authorized to read, (2) whenever a user’s
action changes the system’s state, the resulting state must depend only on the values the user is
authorized to read, and (3) whenever a user’s action changes the system’s state, the user should
possess the corresponding write privilege. Rushby proved that, under specific conditions, a system
that satisfies these requirements also satisfies non-interference. Our work can be seen as concretizing
Rushby’s ideas for a specific setting, namely database access control, and execution model, i.e.,
the database operational semantics from Chapter 5. In this respect, we present a reduction for
constructing secure DBAC mechanisms using IFC techniques as a building block, and we provide
a semantic characterization (based only on the attacker’s knowledge) of our data confidentiality
condition from Chapter 6 in terms of non-interference.

7.8 Conclusions

In this chapter, we developed common foundations for database access control and information-
flow control, two previously unconnected research areas. These foundations rely on WhileSql, a
simple imperative language with querying capabilities that builds on top of our database operational
semantics from Chapter 5. We used these foundations to improve both DBAC and IFC.

Specifically, with respect to DBAC, we leveraged our security conditions to develop a general
technique for constructing provably secure access control mechanisms from sound IFC enforcement
mechanisms. This allows the DBAC community to benefit from existing IFC techniques and tools.
Additionally, our security condition for internal attackers provides a semantic characterization for
our data confidentiality notion from Chapter 6.

With respect to IFC, instead, we have developed a novel enforcement mechanism that monitors
how information flows inside applications and across database boundaries. Our monitor combines
dynamic information flow tracking with advanced DBAC concepts like disclosure lattices and query
determinacy. As a result, it can track complex dependencies that depend on the database’s content
and it supports advanced features like dynamic policies and triggers.

7.9 Technical Details

Here we present some technical details about WhileSql and our enforcement mechanism.

7.9.1 From WhileSql to the database operational semantics of Chapter 5
The WhileSql’s operational semantics from Section 7.3 builds on top of the database operational

semantics formalized in Chapter 5. In particular, in the WhileSql semantics, the execution of the
database commands is delegated to the function JqK(s, u), which takes as input an SQL statement
q, a runtime state s ∈ ΩM , and the user u ∈ UID executing the command, and it returns a tuple
〈s′, r, em, τ〉, where s′ ∈ ΩM is the new runtime state, r is q’s result, em is an error message, and τ is
a trace of observation representing the public observations produced by the triggers activated by the
query q. The function JqK(s, u) is defined in Figures 7.7–7.9 and it relies on the transition relation→f

from Chapter 5, where f is a PDP. In the following, we instantiate f to be the PDP fint developed in
Chapter 5. This PDP ensures the integrity of the database, e.g., by avoiding unauthorized changes,
but it does not provide confidentiality guarantees. Furthermore, we re-use various functions from
Chapter 5, e.g., we reuse the functions res, Ex, and secEx to extract the outcomes of the command’s
execution from a runtime state, and we lift the auth function from system states to runtime states,
i.e., auth(〈s, ctx〉, u) is simply auth(s, u).

We remark that JqK(〈s, ctx〉, u) guarantees that the trigger transaction, which has been defined
in Chapter 5, in the resulting runtime state 〈s′, ctx ′〉 is always ε. This, combined with the fact that
the context for initial states is ε, ensures the correct execution of queries. As a consequence of this,
JqK(〈s, ctx〉, u) = JqK(〈s, ctx ′〉, u) for any two contexts ctx, ctx ′ such that the trigger transaction is ε.

For SELECT queries, JqK(s, u) is defined only for boolean queries because the operational semantics
in Chapter 5 supports only boolean queries. We refer the reader to Chapter 5 for a discussion on
how to handle non-boolean queries.

For INSERT and DELETE queries, JqK(s, u) relies on the function toTrace, defined in Figure 7.6,
that takes as input an INSERT or DELETE command q and a trace of the database execution consisting
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toTrace(q, ε) = ε

toTrace(q, s1
t1−→f s2

t2−→f . . .
tn−→f sn+1) = toTrace(q, s1

t1−→f s2)·toTrace(q, s2
t2−→f . . .

tn−→f sn+1)

toTrace(q, s t−→f s′) =



〈public, t, GRANT p TO u〉 if res(s′) = > ∧ acC (s′) = >
∧action(t) = 〈⊕, u, p〉∧
auth(s, u) 6= auth(s′, u)

〈public, t, GRANT p TO u WITH GRANT OPTION〉 if res(s′) = > ∧ acC (s′) = >
∧action(t) = 〈⊕∗, u, p〉∧
auth(s, u) 6= auth(s′, u)

〈public, t, REVOKE p FROM u〉 if res(s′) = > ∧ acC (s′) = >
∧action(t) = 〈	, u, p〉∧
auth(s, u) 6= auth(s′, u)

ε otherwise

Figure 7.6:
Definition of the toTrace function. The functions res and acC are defined
in Chapter 5, the action function takes as input a trigger and returns its action.

only of triggers (throwing neither security nor integrity exceptions) and extracts a trace of public
observations 〈public, q, r〉 associated with the GRANT and REVOKE statements executed by the triggers
in the trace. It also relies on the functions acC and acA that take as input a runtime state and
retrieve the access control decisions associated with the trigger’s condition and the trigger’s action.
We refer the reader to Chapter 5 for a formalization of these functions.

7.9.2 Enforcement Operational Semantics
Here we provide the full operational semantics of our security monitor. In the following, ATK

denotes the user identifier associated with the attacker and sec0 denotes the initial security pol-
icy. Furthermore, we call extended any WhileSql program c that possibly contains the additional
commands introduced in Section 7.6.
Preliminaries. The auxiliary function atomic(c) takes as input an extended WhileSql program
and returns > if there are c′, c′′ such that c = [c′] or c = [c′] ; c′′. The auxiliary function query(c)
takes as input an extended WhileSql program and returns > if there are x, q such that c = x← q
or c = ‖x← q‖. Finally, Figure 7.10 illustrates how the queries of the form T ⊗v, where ⊗ ∈ {⊕,	},
are handled by the underlying database.
Enforcement Rules. Given a user u ∈ UID, the relation u, shown in Figures 7.11–7.14, formalizes
the local operational semantics of our dynamic monitor. Figure 7.15 presents the security monitor
rules for the global semantics. The rules F-Eval-Step and F-Eval-End are similar to the WhileSql
semantics. Additionally, the monitor uses the F-Atomic-Statement rule to handle the atomic
execution of code. Observe that the atomic execution does not consume the scheduler.

7.9.3 Expansion Process
Here we illustrate our expansion process for queries.

Extracting triggers. Our expansion process uses the function triggers : ΩM×Q×U → (T RIGGER×
U ×Q×Q×U ×U)∗ that provides an interface to the database and returns the triggers in the form
of tuples 〈t, u, cond, act, invk, owner〉, where t is the trigger’s identifier, u specifies the user under
which privileges the triggers is to be executed (i.e., u is either the trigger’s owner or the trigger’s
invoker depending on the trigger’s definition), cond specifies t’s WHEN condition, act is t’s action, invk
is the user that fired the trigger, and owner is the trigger’s owner. Note that the variables associated
with the tuple in the original command have already been replaced in both cond and act. Therefore,
if the original command contains program variables, then cond and act may both contain program
variables. Observe that the triggers function can be implemented on top of the functions we defined
in Chapter 5. Given a trigger represented as t = 〈t, u, cond, act, invk, owner〉, we denote by id(t)
the identifier id, by user(t) the user u, by cond(t) the condition cond, by act(t) the action act, by
invoker(t) the invoker invk, and by owner(t) the user owner .
Instrumented Commands. An instrumented command is a pair 〈c, r〉 such that c is an INSERT
command, a DELETE command, or a trigger (represented as specified above using a 4-tuple), and
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JSELECT φK(s, u) =

{
〈s′, res(s′), ε, ε〉 if s 〈u,SELECT,φ〉−−−−−−−→f s′ ∧ ¬secEx(s′)
〈s′, †, 〈SecEx, ∅〉, ε〉 if s 〈u,SELECT,φ〉−−−−−−−→f s′ ∧ secEx(s′)

JADD_USER u′K(s, u) =

{
〈s′, res(s′), ε, ε〉 if s 〈u,ADD_USER,u′〉−−−−−−−−−−→f s′ ∧ ¬secEx(s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s 〈u,ADD_USER,u′〉−−−−−−−−−−→f s′ ∧ secEx(s′)

JCREATE objK(s, u) =

{
〈s′, res(s′), ε, ε〉 if s 〈u,CREATE,obj〉−−−−−−−−→f s′ ∧ ¬secEx(s′)
〈s′, †, 〈SecEx, ∅〉, ε〉 if s 〈u,CREATE,obj〉−−−−−−−−→f s′ ∧ secEx(s′)

JGRANT p TO u′K(s, u) =

{
〈s′, res(s′), ε, ε〉 if s 〈⊕,u,p,u

′〉−−−−−−−→f s′ ∧ ¬secEx(s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s 〈⊕,u,p,u
′〉−−−−−−−→f s′ ∧ secEx(s′)

JGRANT∗ p TO u′K(s, u) =

{
〈s′, res(s′), ε, ε〉 if s 〈⊕

∗,u,p,u′〉−−−−−−−→f s′ ∧ ¬secEx(s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s 〈⊕
∗,u,p,u′〉−−−−−−−→f s′ ∧ secEx(s′)

JREVOKE p FROM u′K(s, u) =

{
〈s′, res(s′), ε, ε〉 if s 〈	,u,p,u

′〉−−−−−−−→f s′ ∧ ¬secEx(s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s 〈	,u,p,u
′〉−−−−−−−→f s′ ∧ secEx(s′)

Figure 7.7: Definition of the JqK(s, u) function – part 1.

JqK(s, u) =



〈s′, r, ε, ε〉 if s
〈u,INSERT,T,t〉
−−−−−−−−−→f s′ ∧ triggers(s′) = ε

〈s′, r, ε, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn ∈ T RIGGER.

s
〈u,INSERT,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . . sn

tn−−→f s′∧
r = res(s1) ∧ Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧

1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧
triggers(s′) = ε ∧ ¬secEx(s′) ∧ Ex(s′) = ∅∧
τ = toTrace(〈u, INSERT, T, t〉, s1

t1−→f . . . sn
tn−−→f s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s
〈u,INSERT,T,t〉
−−−−−−−−−→f s′ ∧ secEx(s′) ∧ triggers(s′) = ε

〈s′, †, 〈IntEx,Ex(s′)〉, ε〉 if s
〈u,INSERT,T,t〉
−−−−−−−−−→f s′ ∧ Ex(s′) 6= ∅ ∧ triggers(s′) = ε

〈s′, †, 〈t, B, IntEx,Ex(s′)〉, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,INSERT,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s′∧

Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧
1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧

acA(s′) ∧ acC(s′) ∧ Ex(s′) 6= ∅ ∧ triggers(s′) = ε∧

τ = toTrace(〈u, INSERT, T, t〉, s1
t1−→f . . .

tn−1−−−→f sn)
〈s′, †, 〈t, W,SecEx, ∅〉, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,INSERT,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s′∧

Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧
1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧
¬acC(s′) ∧ triggers(s′) = ε∧

τ = toTrace(〈u, INSERT, T, t〉, s1
t1−→f . . .

tn−1−−−→f sn)
〈s′, †, 〈t, B,SecEx, ∅〉, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,INSERT,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s′∧

Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧
1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧

acC(s′) ∧ ¬acA(s′) ∧ triggers(s′) = ε∧

τ = toTrace(〈u, INSERT, T, t〉, s1
t1−→f . . .

tn−1−−−→f sn)

Figure 7.8: Definition of the JqK(s, u) function – part 2. Note that
q = INSERT t INTO T .
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JqK(s, u) =



〈s′, r, ε, ε〉 if s
〈u,DELETE,T,t〉
−−−−−−−−−→f s′ ∧ secEx(s′)

〈s′, r, ε, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn ∈ T RIGGER.

s
〈u,DELETE,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . . sn

tn−−→f s′∧
r = res(s1) ∧ Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧

1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧
triggers(s′) = ε ∧ ¬secEx(s′) ∧ Ex(s′) = ∅∧
τ = toTrace(〈u, DELETE, T, t〉, s1

t1−→f . . .
tn−−→f s′)

〈s′, †, 〈SecEx, ∅〉, ε〉 if s
〈u,DELETE,T,t〉
−−−−−−−−−→f s′ ∧ secEx(s′) ∧ triggers(s′) = ε

〈s′, †, 〈IntEx,Ex(s′)〉, ε〉 if s
〈u,DELETE,T,t〉
−−−−−−−−−→f s′ ∧ Ex(s′) 6= ∅ ∧ triggers(s′) = ε

〈s′, †, 〈t, B, IntEx,Ex(s′)〉, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,DELETE,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s′∧

Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧
1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧

acA(s′) ∧ acC(s′) ∧ Ex(s′) 6= ∅ ∧ triggers(s′) = ε∧

τ = toTrace(〈u, DELETE, T, t〉, s1
t1−→f . . .

tn−1−−−→f sn)
〈s′, †, 〈t, W,SecEx, ∅〉, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,DELETE,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s′∧

Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧
1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧
¬acC(s′) ∧ triggers(s′) = ε∧

τ = toTrace(〈u, DELETE, T, t〉, s1
t1−→f . . .

tn−1−−−→f sn)
〈s′, †, 〈t, B,SecEx, ∅〉, τ〉 if ∃s1, . . . , sn ∈ ΩM . ∃t1, . . . , tn−1 ∈ T RIGGER.

s
〈u,DELETE,T,t〉
−−−−−−−−−→f s1

t1−→f s2
t2−→f . . .

tn−1−−−→f sn
t−→f s′∧

Ex(s1) = ∅ ∧ ¬secEx(s1)∧∧
1≤i<n (Ex(si+1) = ∅ ∧ acA(si+1) ∧ acC(si+1))∧

acC(s′) ∧ ¬acA(s′) ∧ triggers(s′) = ε∧

τ = toTrace(〈u, DELETE, T, t〉, s1
t1−→f . . .

tn−1−−−→f sn)

Figure 7.9: Definition of the JqK(s, u) function – part 3. Note that
q = DELETE t FROM T .

JT ⊕ tK(s, u) =


〈s′′, res(s′), ε, ε〉 if s 〈u,INSERT,T,t〉−−−−−−−−→f s′ ∧ ¬secEx(s′) ∧ s = 〈db, U, S, T, V, ctx〉∧

s′′ = 〈db[R⊕ t], U, S, T, V, ctx〉

〈s, †, 〈SecEx, ∅〉, ε〉 if s 〈u,INSERT,T,t〉−−−−−−−−→f s′ ∧ secEx(s′)

JT 	 tK(s, u) =


〈s′′, res(rs′), ε, ε〉 if s 〈u,DELETE,T,t〉−−−−−−−−→f s′ ∧ ¬secEx(s′) ∧ s = 〈db, U, S, T, V, ctx〉∧

s′′ = 〈db[R	 t], U, S, T, V, ctx〉

〈s, †, 〈SecEx, ∅〉, ε〉 if s 〈u,DELETE,T,t〉−−−−−−−−→f s′ ∧ secEx(s′)

Figure 7.10: Definition of the JqK(s, u) function – part 4.
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F-Skip

〈∆, skip,m, s〉 u 〈∆, ε,m, s〉

F-Assign
nsu(x, pcu) ∆′ = ∆[x 7→ ∆(pcu) t∆(e)]
〈∆, x := e,m, s〉 u 〈∆′, ε,m[x 7→ JeK(m)], s〉

F-Out
∆(e) t∆(pcu) v LU (s, u′)

〈∆,out(u′, e),m, s〉 〈u
′,JeK(m)〉

u 〈∆, ε,m, s〉

F-Seq
〈∆, c1,m, s〉 τ u 〈∆′, c′1,m′, s′〉

〈∆, c1 ; c2,m, s〉 τ u 〈∆′, c′1 ; c2,m′, s′〉

F-SeqEmpty

〈∆, ε ; c,m, s〉 u 〈∆, c,m, s〉

F-IfTrue
JeK(m) = tt

c′ = [c1 ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-IfFalse
JeK(m) = ff

c′ = [c2 ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆, if e then c1 else c2,m, s〉 u 〈∆′, c′,m, s〉

F-WhileTrue
JeK(m) = tt

c′ = [c ; while e do c ; set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆,while e do c,m, s〉 u 〈∆′, c′,m, s〉

F-WhileFalse
JeK(m) = ff

c′ = [set pc to ∆(pcu)]
∆′ = ∆[pcu 7→ ∆(e) t∆(pcu)]

〈∆,while e do c,m, s〉 u 〈∆′, c′,m, s〉

Figure 7.11: Security monitor – local operational semantics for assignments,
print, and control flow statements.

F-ExpandedCode
〈∆, c,m, s〉 τ u 〈∆′, c′,m′, s′〉
〈∆, [c],m, s〉 τ u 〈∆′, [c′],m′, s′〉

F-RemoveExpandedCode

〈∆, [ε],m, s〉 u 〈∆, ε,m, s〉

Figure 7.12: Security monitor – local operational semantics for atomic
statements.

F-UpdateLabels

〈∆, set pc to l,m, s〉 u 〈∆[pcu 7→ l], ε,m, s〉

F-AsUser
query(c) 〈∆[pcu′ 7→ ∆(pcu)], c,m, s〉 u′ 〈∆′, c′,m′, s′〉
〈∆,asuser(u′, c),m, s〉 u 〈∆′[pcu′ 7→ ∆(pcu′)], c

′,m′, s′〉

F-DbOut
vars(v) = {v1, . . . , vx} vars(o) = {o1, . . . , oy} τ = τ1· . . . ·τn

vars(τ(1)) = {k1
1, . . . , k

1
m1} . . . vars(τ(n)) = {kn1 , . . . , knmn}

v′ = v[v1 7→ Jv1K(m), . . . , vx 7→ JvxK(m)]
o′ = o[o1 7→ Jo1K(m), . . . , oy 7→ JoyK(m)] τ ′(i) = τ(i)[ki1 7→ Jki1K(m), . . . , kini 7→ JkimiK(m)]

`obs =
⊔

x∈vars(v)

∆(x) t
⊔

x∈vars(o)

∆(x) t
⊔

1≤i≤|τ |

⊔
x∈vars(τ(i))

∆(x)

u′′ =
{
u′ if u′ 6= ATK ∧ u′ 6= public ∧ τ�ATK = ε

ATK otherwise
∆(pcu) t `obs v LU (s, u′′)

〈∆,dbout(u′, v, o, τ),m, s〉 〈u
′,v′,o′,τ ′〉

u 〈∆, ε,m, s〉

Figure 7.13: Security monitor – local operational semantics for the new
commands (set pc, asuser, and dbout).
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F-Expand
ce = expand(s, x, q, u)

〈∆, x← q,m, s〉 u 〈∆, [ce],m, s〉

F-Select
{v1, . . . , vn} = vars(ϕ) ϕ′ = ϕ[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

q = SELECT ϕ JqK(s, u) = 〈s′, r, ε, ε〉 `ϕ = LQ(∆, ϕ) t
⊔

v∈vars(ϕ)

∆(v) nsu(x, pcu)

〈∆, ‖x← SELECT ϕ‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `ϕ], ε,m[x 7→ r], s′〉

F-UpdateDatabaseOk
v = 〈Je1K(m), . . . , JenK(m)〉 ⊗ ∈ {⊕,	} q = T ⊗ v

JqK(s, u) = 〈s′, r, ε, ε〉 `e =
⊔

1≤i≤n

∆(ei) nsu(T (v), pcu) `e v ∆(T (v)) nsu(x, pcu)

〈∆, ‖x← T ⊗ {e1, . . . , en}‖,m, s〉 u 〈∆[T (v) 7→ ∆(pcu) t `e, x 7→ ∆(pcu) t `e], ε,m[x 7→ r], s′〉

F-UpdateConfigurationOk
{v1, . . . , vn} = vars(q) q′ = q[v1 7→ Jv1K(m), . . . , vn 7→ JvnK(m)]

isCfgCmd(q′) Jq′K(s, u) = 〈s′, r, ε, ε〉 `cmd =
⊔

1≤i≤n

∆(vi)

`cmd v cl(auth(sec0,ATK)) ∆(pcu) v cl(auth(sec0,ATK)) nsu(x, pcu)
〈∆, ‖x← q‖,m, s〉 u 〈∆[x 7→ ∆(pcu) t `cmd ], ε,m[x 7→ r], s′〉

Figure 7.14: Security monitor – local operational semantics for database
operations.

F-Eval-Step
∀i ∈ {1, . . . , |C|}, u′ ∈ UID. C(n) 6= 〈u′, ε〉

|C| = |M | n = 1 + (n′ mod |C|) C(n) = 〈u, c〉 M(n) = 〈u,m〉
〈∆, c,m, s〉 τ u 〈∆′, c′,m′, s′〉 ¬atomic(c′) C′ = C(1)· . . . ·C(n− 1)·〈u, c′〉·C(n+ 1)· . . . ·C(|C|)

M ′ = M(1)· . . . ·M(n− 1)·〈u,m′〉·M(n+ 1)· . . . ·M(|C|)
〈∆, C,M, s, n′·S〉 τ 〈∆′, C′,M ′, s′,S〉

F-Atomic-Statement
∀i ∈ {1, . . . , |C|}, u ∈ UID. C(i) 6= 〈u′, ε〉 |C| = |M |

n = 1 + (n′ mod |C|) C(n) = 〈u, c〉 M(n) = 〈u,m〉 〈∆, c,m, s〉 τ u 〈∆′, c′,m′, s′〉
atomic(c′) C′ = C(1)· . . . ·C(n− 1)·〈u, c′〉·C(n+ 1)· . . . ·C(|C|)

M ′ = M(1)· . . . ·M(n− 1)·〈u,m′〉·M(n+ 1)· . . . ·M(|C|)
〈∆, C,M, s, n′·S〉 τ 〈∆′, C′,M ′, s′, n′·S〉

F-Eval-End
1 ≤ n ≤ |C| ∀n′ < n, u′ ∈ UID. C(n′) 6= 〈u′, ε〉 C(n) = 〈u, ε〉 |C| = |M |

C′ = C(1)· . . . ·C(n− 1)·C(n+ 1)· . . . ·C(|C|) M ′ = M(1)· . . . ·M(n− 1)·M(n+ 1)· . . . ·M(|C|)
〈∆, C,M, s,S〉 τ−→ 〈∆, C′,M ′, s,S〉

Figure 7.15: Security monitor – global operational semantics.
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r ∈ {ok, dis, secEx, ex}. Note that both commands and triggers may contain program variables.
Given an instrumented command 〈c, r〉, first(〈c, r〉) = c and second(〈c, r〉) = r.
Constructing the execution paths. Let t be a sequence of commands and triggers. We denote
by paths(t) the following function:

paths(ε) = ∅
paths(c) = {〈c, ok〉, 〈c, secEx〉, 〈c, ex〉} where c is an SQL command
paths(t) = {〈t, ok〉, 〈t, dis〉, 〈t, secEx〉, 〈t, ex〉} where t is a trigger
paths(t·t) = merge(paths(t), paths(t))
merge(S1, S2) = {s1·s2 | s1 ∈ S1 ∧ s2 ∈ S2 ∧ ¬∃s′1, o. (s1 = s′1·〈o, ex〉 ∨ s1 = s′1·〈o, secEx〉)}

Configuration-consistent Execution Paths. The execution paths computed through the paths
function may, in general, contain unfeasible paths. For instance, they may contain commands ter-
minating in a security exception even though this may not happen given the current security policy.
To take this into account, we define the notion of a configuration-consistent execution path. Note
that there is no analogous of configuration-consistent path for integrity exceptions caused by INSERT
and DELETE commands. The reason is that these exceptions depend on the database content and are
directly handled by the expansion process.

In the following, let s be a runtime state, m be a memory, u be a user, t be a sequence of
instrumented commands (i.e., an execution path), c be a database command, and t be a trigger.
Furthermore, given a command (or trigger) o containing program variables, we denote by o(m) the
command (or trigger) obtained from o by replacing all program variables with the corresponding
values in m. The configuration-consistency relation is defined as follows:

1. s,m, u |=cfg 〈c, ok〉 if allowed(s, u, c(m)).
2. s,m, u |=cfg 〈c, ex〉 if allowed(s, u, c(m)) and c is an INSERT or DELETE command.
3. s,m, u |=cfg 〈c, secEx〉 if ¬allowed(s, u, c(m)).
4. s,m, u |=cfg 〈t, ok〉 if allowed(s, u, t(m)).
5. s,m, u |=cfg 〈t, ex〉 if allowed(s, u, t(m)) and t’s action is an INSERT or DELETE command.
6. s,m, u |=cfg 〈t, secEx〉 if ¬allowed(s, u, t(m)).
7. s,m, u |=cfg 〈t, dis〉.
8. s,m, u |=cfg 〈o, r〉·t iff t 6= ε, s,m, u |=cfg 〈o, r〉, r 6= dis, and apply(s, o(m)),m, u |=cfg t.
9. s,m, u |=cfg 〈o, dis〉·t iff t 6= ε, s,m, u |=cfg 〈o, dis〉 and s,m, u |=cfg t.

The above definition relies on the functions allowed and apply, which are formalized in Figures 7.16
and 7.17. Let t be a sequence of commands and triggers (possibly containing program variables), s
be a database state, m be a memory, and u be a user. We denote by consPaths(t, s,¸u) the set of all
configuration-consistent paths derivable from t. Formally, consPaths(t, s,m, u) = {t′ ∈ paths(t) | s,
m, u |=cfg t′}.
Weakest precondition for database updates. We now introduce weakest preconditions for
INSERT and DELETE operations on databases. In the following, we assume that constants are not
used inside predicate symbols. E.g., the formula T (v) is expressed as ∃x. T (x) ∧ x = v. Let φ be a
relational calculus sentence that does not refer to views (for formulae that refer to views, one can first
replace the views with their definitions and later compute the weakest precondition). Furthermore,
we denote by T⊕v (respectively T	v) an insertion (respectively deletion) operation on the database.
Note that v may contain program variables. The weakest precondition of φ given T⊕v, written wp(φ,
T ⊕ v), is obtained by replacing all occurrences of T (x) with (T (x) ∨ x = v). Similarly, the weakest
precondition of φ given T 	 v, written wp(φ, T 	 v), is obtained by replacing all occurrences of T (x)
with (T (x) ∧ x 6= v).
Weakest precondition for execution paths. In Figure 7.18, we extend weakest preconditions
from single INSERT and DELETE commands to sequences of instrumented commands.
Expansion procedure. Finally, the expansion procedure is shown in Figures 7.19 and 7.20. In the
figures, s is a database state, m is a memory, u is a user identifier, and x← q is an SQL command.
Without loss of generality, we assume that x 6∈ free(q) (if this is not the case, one can just introduce
an additional temporary variable). Furthermore, given a list c1· . . . ·cn of WhileSql statements, we
denote by ;(c1· . . . ·cn) the statement c1; c2; . . . ; cn. Similarly, given a list of WhileSql expressions
e1· . . . ·en, we denote by ∧(e1· . . . ·en) the expression e1 ∧ e2 ∧ . . . ∧ en.
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allowed(s, u, SELECT φ) =

{
> if s 〈u,SELECT,φ〉−−−−−−−→f s′ ∧ ¬secEx(s′)
⊥ if s 〈u,SELECT,φ〉−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, GRANT p TO u′) =

{
> if s 〈⊕,u,p,u

′〉−−−−−−−→f s′ ∧ ¬secEx(s′)

⊥ if s 〈⊕,u,p,u
′〉−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, GRANT p TO u′ WITH GRANT OPTION) =

{
> if s 〈⊕

∗,u,p,u′〉−−−−−−−→f s′ ∧ ¬secEx(s′)

⊥ if s 〈⊕
∗,u,p,u′〉−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, REVOKE p FROM u′) =

{
> if s 〈	,u,p,u

′〉−−−−−−−→f s′ ∧ ¬secEx(s′)

⊥ if s 〈	,u,p,u
′〉−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, INSERT v INTO T ) =

{
> if s 〈u,INSERT,T,v〉−−−−−−−−−→f s′ ∧ ¬secEx(s′)
⊥ if s 〈u,INSERT,T,v〉−−−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, DELETE v FROM T ) =

{
> if s 〈u,DELETE,T,v〉−−−−−−−−−→f s′ ∧ ¬secEx(s′)
⊥ if s 〈u,DELETE,T,v〉−−−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, CREATE obj) =

{
> if s 〈u,CREATE,obj〉−−−−−−−−→f s′ ∧ ¬secEx(s′)
⊥ if s 〈u,CREATE,obj〉−−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, ADD USER u′) =

{
> if s 〈u,ADD_USER,u′〉−−−−−−−−−→f s′ ∧ ¬secEx(s′)

⊥ if s 〈u,ADD_USER,u′〉−−−−−−−−−→f s′ ∧ secEx(s′)

allowed(s, u, t) = allowed(s, owner(t), act(t)) if t is a trigger with owner’s privileges

allowed(s, u, t) = allowed(s, invoker(t), act(t)) ∧ allowed(s, owner(t), act(t))
if t is a trigger with activator’s privileges

Figure 7.16: allowed function for the expansion process.

apply(s, u, SELECT φ) = s
apply(s, u, GRANT p TO u′) = s′ where s 〈⊕,u

′,p,u〉−−−−−−−→f s′

apply(s, u, GRANT p TO u′ WITH GRANT OPTION) = s′ where s 〈⊕
∗,u′,p,u〉−−−−−−−→f s′

apply(s, u, REVOKE p FROM u′) = s′ where s 〈	,u
′,p,u〉−−−−−−−→f s′

apply(s, u, INSERT v INTO T ) = s
apply(s, u, DELETE v FROM T ) = s
apply(s, u, CREATE obj) = s′ where s 〈u,CREATE,obj〉−−−−−−−−→f s′

apply(s, u, ADD USER u′) = s where s 〈u,ADD_USER,u′〉−−−−−−−−−→f s′
apply(s, u, t) = apply(s, user(t), act(t)) if t is a trigger

Figure 7.17: apply function for the expansion process. Note that we are
interested only in changes to the database configuration, not to the database
state. Therefore, the function does not update the database on INSERT and
DELETE commands.
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wp(φ, ε) = φ

wp(φ, t′·ic) = wp(wp(φ, ic), t′)
where ic is an instrumented command and t′ is a sequence of instrumented commands

wp(φ, 〈INSERT T INTO e, ok〉) = wp(φ, T ⊕ e)
wp(φ, 〈INSERT T INTO e, ex〉) = wp(φ, T ⊕ e)
wp(φ, 〈INSERT T INTO e, secEx〉) = φ

wp(φ, 〈DELETE T FROM e, ok〉) = wp(φ, T 	 e)
wp(φ, 〈DELETE T FROM e, ex〉) = wp(φ, T 	 e)
wp(φ, 〈DELETE T FROM e, secEx〉) = φ

wp(φ, 〈c, r〉) = φ where c is a SELECT, GRANT, REVOKE, CREATE, or ADD USER command
wp(φ, 〈t, ok〉) = wp(φ, act(t)) where t is a trigger
wp(φ, 〈t, ex〉) = wp(φ, act(t)) where t is a trigger
wp(φ, 〈t, secEx〉) = φ where t is a trigger
wp(φ, 〈t, dis〉) = φ where t is a trigger

Figure 7.18: Weakest precondition for sequences of instrumented commands.

Expansion Procedure.

expand(s,m, u, x← q) = decls(s,m, u, x← q) ; body(s,m, u, x← q)

Shorthands.
tq = triggers(s, u, q) first(〈a, b〉) = a EP s,m,u,q = toList(consPaths(q·tq, s, u))

Γ = {γ1, . . . , γn} are the integrity constraints LΓ = toList(2{γ1,...,γn})

throwsEx(t) = ∃o. (t(|t|) = 〈o, ex〉 ∨ t(|t|) = 〈o, secEx〉) secEx(t) = ∃o. t(|t|) = 〈o, secEx〉

isCfgCmd(q) = > iff q is an GRANT, REVOKE, ADD USER, or CREATE command

isInsDel(q) = > iff q is an INSERT or DELETE command

isSelect(q) = > iff q is a SELECT command

isTrigger(o) = > iff o is a trigger

Computing the expansion’s auxiliary declarations.

decls(s,m, u, x← q) = ;(map(gs,m,u,q, EP s,m,u,q))
gs,m,u,q(t) = hs,m,u,q,t(1); . . . ;hs,m,u,q,t(|t|)

hs,m,u,q,t(i) = ‖xti,γ1 ← SELECT wp(γ1, t
i)‖; . . . ; ‖xti,γn ← SELECT wp(γn, ti)‖

where t(i) is not a trigger and xti,γ1 , . . . , x
t
i,γn are fresh variables

hs,m,u,q,t(i) = ‖xti,cond ← SELECT wp(ϕ, ti−1)‖; ‖xti,γ1 ← SELECT wp(γ1, t
i)‖; . . . ; ‖xti,γn ← SELECT wp(γn, ti)‖

where t(i) is a trigger, ϕ is t(i)’s condition, and xti,cond , x
t
i,γ1 , . . . , x

t
i,γn are fresh variables

Figure 7.19: Expansion process – 1.



7.9. Technical Details 151

Computing the expansion’s body.

body(s,m, u, x← q) = ;(map(ds,m,u,x,q, EP s,m,u,x,q))
ds,m,u,x,q(t) = if conds,m,u,x,q(t) then bodys,m,u,x,q(t) else skip
conds,m,u,x,q(t) = ∧(map(cs,m,u,x,q,t, 1· . . . ·|t|))

cs,m,u,x,q,t(i) = xti,γ1 ∧ . . . ∧ x
t
i,γn where t(i) = 〈c, ok〉 and c is not a trigger

cs,m,u,x,q,t(i) = ¬(xti,γ1 ∧ . . . ∧ x
t
i,γn) where t(i) = 〈c, ex〉 and c is not a trigger

cs,m,u,x,q,t(i) = > where t(i) = 〈c, secEx〉 and c is not a trigger

cs,m,u,x,q,t(i) = xti,cond ∧ xti,γ1 ∧ . . . ∧ x
t
i,γn where t(i) = 〈t, ok〉 and t is a trigger

cs,m,u,x,q,t(i) = xti,cond ∧ ¬(xti,γ1 ∧ . . . ∧ x
t
i,γn) where t(i) = 〈t, ex〉 and t is a trigger

cs,m,u,x,q,t(i) = xti,cond where t(i) = 〈t, secEx〉 and t is a trigger

cs,m,u,x,q,t(i) = ¬xti,cond where t(i) = 〈t, dis〉 and t is a trigger

bodys,m,u,x,q(t) =



x = 〈SecEx, ∅〉; os,m,u,x,q(t) if t(1) = 〈o, secEx〉 and
o is not a trigger

x = 〈id(first(t(|t|))),SecEx, ∅〉 ; os,m,u,x,q(t) if t(|t|) = 〈o, secEx〉 and
o is a trigger

;(map(es,m,u,x,q,t, LΓ)) if t(|t|) = 〈o, ex〉
; (map(bs,m,u,x,q,t, 1· . . . ·|t|)) ; os,m,u,x,q(t) otherwise

bs,m,u,x,q,t(i) = ‖x← T ⊕ e‖ where t(i) = 〈INSERT T INTO e, ok〉

bs,m,u,x,q,t(i) = ‖x← T 	 e‖ where t(i) = 〈DELETE T FROM e, ok〉

bs,m,u,x,q,t(i) = ‖x← q′‖ where t(i) = 〈q′, ok〉, isTrigger(q′) = ⊥, and isInsDel(q′) = ⊥
bs,m,u,x,q,t(i) = asuser(user(t), ‖y ← T ⊕ e‖) where t(i) = 〈t, ok〉, t is a trigger,

act(t) = INSERT T INTO e, and y is a fresh variable
bs,m,u,x,q,t(i) = asuser(user(t), ‖y ← T 	 e‖) where t(i) = 〈t, ok〉, t is a trigger,

act(t) = DELETE T FROM e, and y is a fresh variable
bs,m,u,x,q,t(i) = asuser(user(t), ‖y ← act(t)‖) where t(i) = 〈t, ok〉, t is a trigger,

isInsDel(act(t)) = ⊥, and y is a fresh variable
bs,m,u,x,q,t(i) = skip where t(i) = 〈t, dis〉

es,m,u,x,q,t(Θ) = if
∧
γ∈Θ

¬xt|t|,γ ∧
∧

γ∈Γ\Θ

xt|t|,γ then e′s,m,u,x,q,t(Θ) else skip

e′s,m,u,x,q,t(Θ) =


dbout(db(u), q, 〈IntEx,Θ〉, extr(t));x = 〈IntEx,Θ〉 if |t| = 1
dbout(db(u), q, 〈id(first(t(|t|))), IntEx,Θ〉, extr(t)); if |t| > 1
x = 〈id(first(t(|t|))), IntEx,Θ〉

os,m,u,x,q(t) =



dbout(db(u), q,>, extr(t)) if isInsDel(q) ∧ ¬throwsEx(t)
dbout(db(u), q, 〈SecEx, ∅〉, extr(t)) if isInsDel(q) ∧ secEx(t)

∧|t| = 1
dbout(db(u), q, 〈id(first(t(|t|))),SecEx, ∅〉, extr(t)) if isInsDel(q) ∧ secEx(t)

∧|t| > 1
dbout(public, q, x, ε) if isCfgCmd(q) ∧ ¬throwsEx(t)
dbout(db(u), q, x, ε) if isCfgCmd(q) ∧ throwsEx(t)
dbout(db(u), q, x, ε) if isSelect(q)
skip otherwise

extr(ε) = ε

extr(〈t, r〉·t) =
{
〈public, id(t), act(t)〉·extr(t) if isTrigger(t) ∧ r = ok ∧ isCfgCmd(act(t))
extr(t) otherwise

Figure 7.20: Expansion process – 2.
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Part IV

Conclusions





155

Chapter 8

Conclusion

I hate endings. Just detest them.
Beginnings are definitely the most exciting,
middles are perplexing and endings are a
disaster. . . .The temptation towards
resolution, towards wrapping up the
package, seems to me a terrible trap. Why
not be more honest with the moment? The
most authentic endings are the ones which
are already revolving towards another
beginning. That’s genius.

Sam Shepard

Preventing disclosure of sensitive data is an extremely challenging task. It often requires a careful
configuration of multiple enforcement mechanisms. It may also involve reasoning about security at
different levels, from restricting access to the database’s content to enforcing end-to-end security
requirements on the applications interacting with the database. Therefore, insecure systems may re-
sult from mistakes introduced during several phases of the security engineering process. For instance,
security vulnerabilities may be introduced by inaccurate security requirements, by misconfigured en-
forcement mechanisms, or by mechanisms that fail at providing the desired security guarantees.

In this context, provably secure enforcement mechanisms represent an indispensable component
for database security. By providing precise security guarantees and provably preventing attacks, they
significantly simplify the process of securing databases. Indeed, provably secure mechanisms free the
security engineers from the difficult task of verifying whether a given mechanism, which is often
an off-the-shelf component, correctly provides the desired security guarantees. Hence, the security
engineers can focus on their main duties, namely eliciting the security requirements and formalizing
them using security policies.

In this thesis, we developed solid foundations for access control and inference control for database
systems. We used these foundations to build and verify practical and provably secure enforcement
mechanisms. Specifically, we investigated DBAC and DBIC with respect to three different classes of
attackers of increasing strength. First, we provided theoretical results clarifying the exact limits of
DBAC with respect to SELECT-only attackers. Second, we designed a practical and provably secure
enforcement mechanism that secures databases against SELECT-only attackers with probabilistic rea-
soning capabilities. Finally, we developed a framework for reasoning about database security against
attackers that execute SELECT queries, modify the database’s content and configuration, and exploit
advanced database features like triggers and views. We used this framework to build and verify a
provably secure enforcement mechanism for this class of attackers. We also used it as a starting point
for bridging DBAC with application-level end-to-end security in the form of IFC, and we showed that
each area of research can benefit from reusing concepts and techniques developed by the other.

The work in this thesis opens up a number of future research directions, which we outline below.
Efficient algorithms for probabilistic inference. As shown by our work in Chapter 4, dedicated
inference engines are an essential component for building practical enforcement mechanisms that
effectively secure databases against selected classes of attackers, as the runtime complexity of general-
purpose inference is intractable. In this respect, there are two main open research directions:

1. Tractable inference procedures are needed for other fragments of ProbLog. This would allow
security engineers to model larger classes of attacker models. We remark that there are various
classes of probabilistic models with tractable inference other than poly-tree BNs. For instance,
inference runs in Ptime in the network’s size also for Bayesian Networks with bounded junction-
trees [108]. While bounded junction-trees Bayesian Networks cannot be encoded as acyclic
ProbLog programs, an approach similar to the one we adopted in Chapter 4, i.e., dedicated
syntactic criteria together with a compilation to Bayesian Networks, may be used to derive
other classes of ProbLog programs where inference is tractable.
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2. Approximate inference algorithms are needed to handle programs that do not belong to frag-
ments with efficient inference procedures. To be useful for security purposes, an approximate
algorithm should return an interval [a, b] containing the actual probability, as this would al-
low an enforcement mechanism to check both lower and upper bounds on an attacker’s belief.
While naive approximate algorithms often have a very low precision, further research on the
topic may lead to approximate algorithms with a reasonable efficiency and precision. A par-
ticularly interesting research direction here is investigating how approximate algorithms may
benefit from exact algorithms, e.g., by reusing exact algorithms as sub-routines while analyzing
portions of the overall program.

From a security standpoint, another open challenge is extending our framework to dynamic settings
where the database and the policy change over time. In this respect, one would need to (1) lift attacker
beliefs from databases states to traces, and (2) specify how operations modifying the database’s
content and configuration affect these beliefs.
Attacker models as first-class citizens. We developed the idea that attacker models should be
studied and formalized for databases. Rather than being implicit, the relevant models must be made
explicit, just like when analyzing security in other domains. The SELECT-only attacker model, the class
of attackers expressible using AtkLog, and the attacker model we developed in Chapter 6 are just
a few examples of attackers. Reasoning about database security requires, however, a large library of
attacker models, each one capturing an attacker with different capabilities (attackers that can interact
only through applications, attackers with direct database access, attackers with external knowledge,
and so on). Studying and formalizing realistic classes of attackers is an important research direction
for database security, which unfortunately has received only little attention so far. We remark
that this library of attackers should be complemented with a family of provably secure enforcement
mechanisms. In this way, a security engineer could just select an enforcement mechanism that
provides the desired guarantees against a given attacker model.
Integration between DBAC and IFC. Our work in Chapter 7 opens research opportunities for
both access control and information-flow control. For DBAC, our reduction allows the development
of provably secure DBAC mechanisms starting from IFC solutions. From a theoretical standpoint, an
interesting open problem is extending our reduction to work for larger fragments of SQL. On a more
practical side, it would be interesting to use our reduction to construct practical DBAC mechanisms
using state-of-the-art IFC techniques. For IFC, instead, it would be interesting to study how other
common IFC techniques, such as secure type systems or secure multi-executions, could be extended
and benefit from a closer integration with databases.
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Appendix A

Proofs for Chapter 3

Proof of Theorem 3.3. We prove the decidability of AGREEERC using Lemma 3.1, where the
fragments are F = ERC and F ′ = BSRRC. We divide the proof in four steps. First, we define some
preliminary notation. Next, we provide a formula φ′INDIST(S,db) not in the BSRRC fragment that
encodes the indistinguishability relation. Afterwards, we show that φ′INDIST(S,db) can be equivalently
rewritten as a BSRRC-formula φINDIST(S,db). Finally, we prove that the conditions 2 and 3 of
Lemma 3.1 are met, and therefore we derive the decidability result.
Step 1. Let D be a database schema, S be an ERC-security policy over D, and db be a state in ΩD.
Let t be a tuple, and y = 〈y1, . . . , yn〉 be a tuple of free variables such that |t| = |y|. The formula
θq,S(y, t), where S is an ERC -policy, q is a non-boolean ERC -query such that there is a constraint
for q in S, x is a tuple of variables, and t is a tuple of values in dom such that |y| = |t|, is defined
as follows:

θ{x|ψ},S(y, t) :=
∧

i∈{1,...,|t|}
∧t(i)6=†

(ψSq,i[x 7→ y] ∧ y(i) = t(i)) ∧
∧

i∈{1,...,|t|}
∧t(i)=†

¬ψSq,i[x 7→ y].

The formula θq,S(y, t) enforces that the tuple v associated with the values of the variables x is such
that maskS,s,q(v) = t, where q is a non-boolean ERC-query.

Given a tuple of variables x, we denote by yx the tuple of variables y1, . . . , y|x|.
Step 2. The formula φ′INDIST(S,db) encoding the indistinguishability relation is as follows:

ψS,{x|ψ},db := ∃=|AuthS,{x|ψ}(db)|yx. (ψ[x 7→ yx] ∧ ψS{x|ψ}[x 7→ yx])

γ{x|ψ},S,db,t := ∃≥cardS,db,{x|ψ}(t)yx. (ψ[x 7→ yx] ∧ ψS{x|ψ}[x 7→ yx] ∧ θ{x|ψ},S(yx, t))

φ′INDIST(S,db) :=
∧

〈q,φ〉∈ROW

(ψS,q,db ∧
∧

t∈IndS,q(db)

γq,S,db,t).

Observe that |AuthS,q(db)| = Σt∈IndS,q(db)cardS,db,q(t) for any security policy S and any non-boolean
query q such that S contains a constraint for q. Therefore, although in γq,S,db,t we used counting
quantifiers with the ≥ operator, the whole formula φ′INDIST(S,db) can be satisfied iff all the count-
ing quantifiers are satisfied exactly with equality. Furthermore, note also that if S = 〈∅, ∅〉, then
φ′INDIST(S,db) := >. The formula φ′INDIST(S,db) encodes the indistinguishability relation. The encod-
ing, however, is not in the BSRRC fragment.

Correctness: We now prove the correctness of the encoding φ′INDIST(S,db). Let D be a database
schema, S = 〈ROW ,COL〉 be a security policy, and db, db′ be two states in ΩD. We now show that
[φ′INDIST(S,db)]db′ = > iff db ∼=S db′. Without loss of generality, we assume that S 6= 〈∅, ∅〉. If this is
not the case, the claim trivially holds.
(⇒). We show that [φ′INDIST(S,db)]db′ = > implies db ∼=S db′. Let 〈q, φ〉 ∈ ROW be a constraint.
From [φ′INDIST(S,db)]db′ = >, it follows that [ψS,q,db∧

∧
t∈IndS,q(db) γq,S,db,t]

db′ = >. From [ψS,q,db]db′ =
>, it follows that |AuthS,q(db)| = |AuthS,q(db′)|. Let t be a tuple in IndS,q(db). From [γq,S,db,t]

db′ = >,
it follows that there are at least cardS,db,q(t) tuples v in AuthS,q(db′) such that maskS,db′,q(v) = t.
Note also that, as said before, |AuthS,q(db)| = Σt∈IndS,q(db)cardS,db,q(t). Therefore, for each t ∈
IndS,q(db), there are exactly cardS,db,q(t) tuples v in AuthS,q(db′) such that maskS,db′,q(v) = t. From
this, it follows that there is a bijection f from AuthS,q(db) to AuthS,q(db′) such that maskS,db,q(t) =
maskS,db′,q(f(t)) for all t ∈ AuthS,q(db). Hence, [φINDIST(S,db)]db′ = > implies db ∼=S db′.

(⇐). We show that db ∼=S db′ implies [φ′INDIST(S,db)]db′ = >. Let 〈q, φ〉 ∈ ROW be a constraint.
From db ∼=S db′, it follows that |AuthS,q(db)| = |AuthS,q(db′)|, and therefore [ψS,q,db]db′ = >. From
db ∼=S db′, it also follows that for each t ∈ IndS,q(db), there are exactly cardS,db,q(t) tuples v in
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AuthS,q(db′) such that maskS,db,q(v) = t, and thus [
∧
t∈IndS,q(db) γq,S,db,t]

db′ = >. From [ψS,q,db]db′ =
> and [

∧
t∈IndS,q(db) γq,S,db,t]

db′ = >, it follows that [φ′INDIST(S,db)]db′ = >. Hence, db ∼=S db′ implies
[φ′INDIST(S,db)]db′ = >.
Step 3. We now show that there is a formula φINDIST(S,db) ∈ BSRRC that is equivalent to
φ′INDIST(S,db′). Let D be a database schema, S be a security policy over D, s be a state, q be a
non-boolean query such that there is a constraint on q in S, and t be a tuple. We first show that
there is a BSRRC formula equivalent to ψS,q,db. Afterwards, we show that there is a BSRRC for-
mula equivalent to γq,S,db,t. Finally, we show that, under some weak assumptions, φ ∧ ψ ∈ BSRRC
if φ, ψ ∈ BSRRC. In the following, we denote logical equivalence by ≡. Our proof mainly exploits
the equivalence (Q x. φ) op ψ ≡ Q x. (φ op ψ), where Q ∈ {∀, ∃} and op ∈ {∧,∨}, if x is not a
free variable in ψ. Without loss of generality, we assume that the quantified variables used in the
authorization constraints and in the queries have unique variable identifiers.

We now show that all the formulae of the form of ψS,q,db can be equivalently rewritten as BSRRC
formulae if S is an ERC -policy. Let m be a natural number and ∃z. ψ(z, x) and ∃y. φ(y, x) be two
ERC formulae. Figure A.1 shows that all the formulae of the form of ψS,q,s can be equivalently
rewritten as BSRRC formulae if S is an ERC -policy.1 Note that the last formula in Figure A.1 is
in the BSRRC fragment. Since ψS,q,s has the same form as the formula ψ used in the derivation, it
follows that ψS,q,db can be equivalently rewritten as a BSRRC -formula.

Let ψ and φ be two formulae in the BSRRC fragment such that the free variables of ψ are not
used as quantified variables in φ and vice versa. Then, ψ ∧φ is in BSRRC as shown by the following
derivation.

ψ ∧ φ = ∃x.∀y.ψ′(x, y, z) ∧ ∃r.∀s.φ′(r, s, z)
≡ ∃x.(∀y.ψ′(x, y, z) ∧ ∃r.∀s.φ′(r, s, z))
≡ ∃x.∃r.(∀y.ψ′(x, y, z) ∧ ∀s.φ′(r, s, z))
≡ ∃x.∃r.∀y.(ψ′(x, y, z) ∧ ∀s.φ′(r, s, z))
≡ ∃x.∃r.∀y.∀s.(ψ′(x, y, z) ∧ φ′(r, s, z))
≡ ∃x, r.∀y, s.(ψ′(x, y, z) ∧ φ′(r, s, z))

In a similar way, we can prove that ψ ∨φ is in the BSRRC fragment for all ψ, φ ∈ BSRRC such that
the free variables of ψ are not used as quantified variables in φ and vice versa.

To prove that γq,S,s,t can be rewritten as an equivalent BSRRC formula, we first show, in Fig-
ure A.2, that given an ERC -security policy S, all formulae of the form of θq,S(y, t) can be equivalently
rewritten as BSRRC formulae with free variables y. The last formula in Figure A.2 is in the BSRRC
fragment. Observe that ψ, ψSq , and θq,S(y, t) are BSRRC formulae, and that the quantified variables
in one of the formulae are not free in the others (and vice versa). The conjunction of them is again
a BSRRC formula δ(y), and therefore

γq,S,db,t = ∃≥my.δ(y)

≡ ∃y1, . . . , ym.(
∧

i∈{1,...,m}

δ(yi) ∧
∧

i,j∈{1,...,m}∧i6=j

yi 6= yj)

Both
∧
i∈{1,...,m} δ(ti) and

∧
i,j∈{1,...,m}∧i6=j yi 6= yj are BSRRC formulae (and quantified variables

in one of the formulae are not free variables in the other one), and therefore also their conjunction is
a BSRRC formula. Moreover, since a BSRRC formula is of the form ∃x.∀y.φ(x, y, z), then also the
formula ∃z1, . . . , zm.∃x.∀y.

∧
i
φ(x, y, zi) is a BSRRC formula, and therefore γq,S,db,t ∈ BSRRC.

Since ψS,q,db and γq,S,db,t can be equivalently rewritten as BSRRC formulae, and since φ′INDIST(S,db)
is obtained from ψS,q,db and γq,S,db,t only by conjunctions, there is a BSRRC -formula φINDIST(S,db)
that is equivalent to φ′INDIST(S,db) in the BSRRC fragment.
Step 4. Finally, we prove that for any ERC formula ψ and any ERC-policy S then:

1. φINDIST(S,db) ∧ ψ ∈ BSRRC, and
2. φINDIST(S,db) ∧ ¬ψ ∈ BSRRC.

The first case is simple since both φINDIST(S,db) and ψ are BSRRC sentences, and therefore also their
conjunction can be rewritten as a BSRRC sentence. In the second case we can apply the following

1In case m = 0, the resulting formula ∃=0x. (∃y.φ(y, x)) can be rewritten as an equivalent formula of the form
∀x, y. ¬φ(y, x) which is in the BSRRC fragment.
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ψ = ∃=mx.(∃z.ψ(z, x) ∧ ∃y.φ(y, x))
≡ ∃x1, . . . , xm.

(
∧

i∈{1,...,m}

(∃z.ψ(z, xi) ∧ ∃y.φ(y, xi)) ∧
∧

i,j∈{1,...,m}∧i6=j

xi 6= xj∧

∀xm+1.(¬(∃z.ψ(z, xm+1) ∧ ∃y.φ(y, xm+1)) ∨
∨

i∈{1,...,m}

xi = xm+1))

≡ ∃x1, . . . , xm.(∃y1, . . . , ym, z1, . . . , zm.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi))) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

∀xm+1.(¬(∃z.ψ(z, xm+1) ∧ ∃y.φ(y, xm+1)) ∨
∨

i∈{1,...,m}

xi = xm+1))

≡ ∃x1, . . . , xm.(∃y1, . . . , ym, z1, . . . , zm.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi))) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

∀xm+1.(∀z.¬ψ(z, xm+1) ∨ ∀y.¬(φ(y, xm+1)) ∨
∨

i∈{1,...,m}

xi = xm+1))

≡ ∃x1, . . . , xm.(∃y1, . . . , ym, z1, . . . , zm.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi))) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

∀xm+1.(∀y, z.(¬ψ(z, xm+1) ∨ ¬φ(y, xm+1) ∨
∨

i∈{1,...,m}

xi = xm+1)))

≡ ∃x1, . . . , xm.(∃y1, . . . , ym, z1, . . . , zm.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi))) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

∀xm+1, y, z.(¬ψ(z, xm+1) ∨ ¬φ(y, xm+1) ∨
∨

i∈{1,...,m}

xi = xm+1))

≡ ∃x1, . . . , xm.∃y1, . . . , ym, z1, . . . , zm.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi)) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

∀xm+1, y, z.(¬ψ(z, xm+1) ∨ ¬φ(y, xm+1) ∨
∨

i∈{1,...,m}

xi = xm+1))

≡ ∃x1, . . . , xm.∃y1, . . . , ym, z1, . . . , zm.∀xm+1, y, z.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi)) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

∧ (¬ψ(z, xm+1) ∨ ¬φ(y, xm+1) ∨
∨

i∈{1,...,m}

xi = xm+1))

≡ ∃x1, . . . , xm, y1, . . . , ym, z1, . . . , zm.∀xm+1, y, z.

(
∧

i∈{1,...,m}

(ψ(zi, xi) ∧ φ(yi, xi)) ∧
∧

i,j∈{1,...,m}∧i 6=j

xi 6= xj∧

(¬ψ(z, xm+1) ∨ ¬φ(y, xm+1) ∨
∨

i∈{1,...,m}

xi = xm+1))

Figure A.1: Derivation for the ψS,q,s formula.
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ψ(y, t) =
∧

i∈{1,...,n}

∃j.(φi(j, y) ∧ y(i) = t(i)) ∧
∧

j∈{1,...,m}

¬∃z.φj(z, y)

≡ ∃j1, . . . , jn.(
∧

i∈{1,...,n}

φi(ji, y) ∧ y(i) = t(i)) ∧
∧

j∈{1,...,m}

∀z.¬φj(z, y)

≡ ∃j1, . . . , jn.(
∧

i∈{1,...,n}

φi(ji, y) ∧ y(i) = t(i)) ∧ ∀z1, . . . , zm.
∧

j∈{1,...,m}

¬φj(zj , y)

≡ ∃j1, . . . , jn.(
∧

i∈{1,...,n}

φi(ji, y) ∧ y(i) = t(i) ∧ ∀z1, . . . , zm.
∧

j∈{1,...,m}

¬φj(zj , y))

≡ ∃j1, . . . , jn.∀z1, . . . , zm.(
∧

i∈{1,...,n}

φi(ji, y) ∧ y(i) = t(i) ∧
∧

j∈{1,...,m}

¬φj(zj , y))

Figure A.2: Derivation for the θq,S(y, t) formula.

derivation:

γ = ∃x.∀y.φ(x, y) ∧ ¬(∃z.ψ(z))
≡ ∃x.∀y.φ(x, y) ∧ ∀z.¬ψ(z)
≡ ∃x.(∀y.φ(x, y) ∧ ∀z.¬ψ(z))
≡ ∃x.∀y, z.(φ(x, y) ∧ ¬ψ(z))

Therefore we can rewrite φINDIST(S,db) ∧ ¬ψ to an equivalent BSRRC formula.
Given a non-boolean query q, a state db, and a security policy S, the sets AuthS,q(db) and

IndS,q(db) are finite and can be computed just by evaluating the constraints in S for all the tuples
in [q]db. Similarly, we can trivially compute the value cardS,db,q(t) for any t ∈ IndS,q(db). Note that
given a state s and a security policy S, we can implement a computable algorithm that produces the
formula φ′INDIST(S,db). It is easy to see that the rewriting from φ′INDIST(S,db) to the BSRRC -formula
φINDIST(S,db) can be done in a systematic way in a finite number of operations. Therefore, we can
implement a computable algorithm that, given a state db, an ERC -policy S, and an ERC -formula
ψ, produces the BSRRC -formulae φ′INDIST(S,db), φINDIST(S,db) ∧ ψ, and φINDIST(S,db) ∧ ¬ψ.

Since all the conditions of Lemma 3.1 are satisfied, then AGREEERC is decidable. �

Proof of Theorem 3.7. We apply Lemma 3.3 to the ERC fragment, i.e., F = F ′ = ERC . From
Theorem 3.3, it follows that AGREEERC is decidable. We therefore need only an encoding of φT,ψ(x)
for any finite multi-set T and any ψ(x) ∈ ERC. In the following, given a multi-set of tuples T in M
and a tuple t ∈ T , let Kt,T be the multi-set {t′ | t′ ∈ T ∧ t v t′}.

Let T be a multi-set of masked and unmasked tuples, and let ψ(x) ∈ ERC be a formula with free
variables x such that |x| = |t| for all t ∈ T . The formula φT,ψ(x) is given by:

φT,ψ(x) :=
∧
t∈T

∃≥|Kt,T |x. (ψ(x) ∧
∧

i∈{1,...,|x|}∧t(i)6=†

x(i) = t(i)).

Note that φT,ψ(x) can be equivalently rewritten as an ERC -sentence as follows:

φT,ψ(x) :=
∧
t∈T

∃x1, . . . , x|K
t,T
|.(

∧
i∈{1,...,|K

t,T
|}

(
∧

l∈{1,...,|x|}∧t(l) 6=†

xi(l) = t(l))∧

∧
i∈{1,...,|K

t,T
|}

ψ(xi) ∧
∧

i,j∈{1,...,|K
t,T
|}∧i 6=j

xi 6= xj).

In the formula above, |xi| = |x| for all i ∈ {1, . . . , |Kt,T |}. Note that if T = ∅, then the encoding is
> since ∅ � K for any K ∈ N .

Given a finite multi-set T , and a tuple t ∈ T , the multi-set Kt,T is finite and can be computed
trivially. Therefore, given a multi-set T and an ERC-formula ψ(x), we can implement a computable
algorithm that produces the ERC-formula φT,ψ(x). Since all the conditions of Lemma 3.3 are satisfied,
then SUBSUMEERC is decidable.

Correctness: Here we prove the correctness of the encoding φT,ψ(x) given above. We now show
that given a state db in ΩD, [φT,ψ(x)]db = > iff T � [{x | ψ(x)}]db.
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(⇒). From [φT,ψ(x)]db = >, it follows that for each t ∈ T there are at least |Kt,T | tuples v ∈ [{x |
ψ(x)}]db such that t v v. Therefore, we can define a mapping f from T to [{x | ψ(x)}]db such that
t v f(t) for all t ∈ T . Moreover, from the definition of Kt,T , it follows that for each t ∈ T , T contains
exactly |Kt,T | tuples t

′ such that t v t′. Therefore, it is easy to see that there is a mapping f ′ from
T to [{x | ψ(x)}]db such that t v f ′(t) for all t ∈ T that is also injective. Therefore, T � [{x|ψ(x)}]s.
(⇐). From T � [{x | ψ(x)}]db, it follows that for each t ∈ T there are at least |Kt,T | tuples
v ∈ [{x | ψ(x)}]db such that t v v. Therefore, [φT,ψ(x)]db = >. �

Proof of Theorem 3.10. We first introduce some additional results that we use in the proof of
Theorem 3.10. There is no encoding of φT,ψ(x) in the ERC fragment, but there is an encoding in
an extension of the ERC fragment called ERC+. We first introduce this extension, and afterwards
we show that AGREEERC+ is decidable for all ERC policies, i.e., the problem is decidable for all
database schemas, all ERC-policies, and all ERC+-queries.

We first introduce the ERC fragment, the dual of the ERC -fragment.

Definition A.1. ERC: Let D be a database schema. The formula φ(z) := ∀x. ψ(x, y) is an
ERC-formula over D iff ψ is a quantifier-free RC formula over D. �

Then, the ERC+ fragment is defined as follows:

Definition A.2. ERC+: Let D be a database schema. An ERC+ formula over D is inductively
defined as follows.

1. φ is an ERC+ formula over D, where φ is an ERC -formula over D.
2. φ is an ERC+ formula over D, where φ is an ERC -formula over D.
3. φ op ψ is an ERC+ formula over D, where φ is an ERC -formula over D, ψ is an ERC -formula

over D, and op ∈ {∧,∨}.
�

Observe that ERC ⊂ ERC+ ⊂ BSRRC . As a result, the encoding presented in Theorem 3.3 can
be used to prove the decidability of the AGREE problem for the ERC+ fragment. Note that this
result holds just for ERC -policies, not for all ERC+-policies.

Theorem A.1. AGREEERC+ is decidable for all ERC-policies.

Proof. The steps from 1 to 3 are the same as in the proof of Theorem 3.3 because we consider only
ERC-policies. We just change slightly the fourth step.
Step 4: We prove that for any ERC+-sentence γ and any ERC-policy S then:

1. φINDIST(S,db) ∧ γ ∈ BSRRC, and
2. φINDIST(S,db) ∧ ¬γ ∈ BSRRC.

From the fact that γ is of the form φ op ψ, where φ ∈ ERC and ψ ∈ ERC, it follows that both γ
and ¬γ are in BSRRC because φ is a sentence of the form ∃x.φ(x) and ψ is a sentence of the form
∀x.φ(x). From this and φINDIST(S,db) ∈ BSRRC, it follows that φINDIST(S,db) ∧ γ ∈ BSRRC, and
φINDIST(S,db) ∧ ¬γ ∈ BSRRC.

It is easy to see that we can implement a computable algorithm that, given a state db, an
ERC -security policy S, and an ERC+-formula ψ, produces the BSRRC -formulae φ′INDIST(S,db),
φINDIST(S,db) ∧ ψ, and φINDIST(S,db) ∧ ¬ψ.

Since all the conditions of Lemma 3.1 are met, AGREEERC+ is decidable for all ERC-policies.

We are now ready to prove that EQUALERC is decidable (i.e., Theorem 3.10). In this proof, we
apply Lemma 3.4 to the ERC and ERC+ fragments, i.e., F = ERC and F ′ = ERC+. Let ψ(x) be
an ERC-formula with free variables x and T be a set of tuples such that |x| = |t| for all t ∈ T . For
EQUALERC the encoding is as follows:

AT_LEASTT,ψ(x) :=
∧
t∈T

∃x.(ψ(x) ∧ x = t)

AT_MOSTT,ψ(x) := ∀x.(ψ(x)⇒
∨
t∈T

x = t)

φT,ψ(x) := AT_LEASTT,ψ(x) ∧AT_MOSTT,ψ(x)

Note that if T = ∅, then φT,ψ(x) := ∀x.¬ψ(x) ∈ ERC.
Observe that AT_LEASTT,ψ(x) can be equivalently rewritten as an ERC-formula, whereas

AT_MOSTT,ψ(x) can be equivalently rewritten as an ERC-formula, and therefore φT,ψ(x) can be
equivalently rewritten as an ERC+-sentence. Moreover, it is easy to see that given an ERC formula
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ψ(x) and a set of tuples T we can compute the encoding φT,ψ(x). Therefore from Lemma 3.4 and
Theorem A.1, it follows that EQUALERC is decidable.

Correctness: We now prove the correctness of the encoding φT,ψ(x) given above.
(⇒). We prove that [φT,ψ(x)]db = > implies T = [{x | ψ(x)}]db. From [φT,ψ(x)]s = >, it follows
that [AT_LEASTT,ψ(x)]db = > and [AT_MOSTT,ψ(x)]db = >. From the former, it follows that
T ⊆ [{x | ψ(x)}]db, and from the latter, it follows that T ⊇ [{x | ψ(x)}]db. Hence, T = [{x | ψ(x)}]db.
(⇐). We prove that T = [{x | ψ(x)}]db implies [φT,ψ(x)]db = >. From T = [{x | ψ(x)}]s, it follows
that [AT_LEASTT,ψ(x)]s = > and [AT_MOSTT,ψ(x)]s = >. Hence, [φT,ψ(x)]s = >. �
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Appendix B

Proofs for Chapter 4

B.1 Acyclicity of the ground graph

In this section we show that the ground graph of an acyclic program is a forest of poly-trees.

B.1.1 Proofs about Annotations
Here we prove that the ordering, disjointness, and uniqueness annotations capture the desired

semantic properties.

Lemma B.1. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a
(Σ,dom)-ProbLog program. Furthermore, let ≺ be the following relation over pairs of predicate
symbols in Σ: a ≺ b iff b ∈ reach(a) and a 6∈ reach(b). The relation ≺ is a strict partial order and it
is well-founded.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a (Σ,dom)-
ProbLog program. Furthermore, let ≺ be the following relation over pairs of predicate symbols in
Σ: a ≺ b iff b ∈ reach(a) and a 6∈ reach(b).
≺ is a strict partial order. To show that≺ is a strict partial order we must show that≺ is irreflexive
and transitive. For irreflexivity, let a be a predicate symbol and assume, for contradiction’s sake, that
a ≺ a holds. From this, a ∈ reach(a) and a 6∈ reach(a), leading to a contradiction. For transitivity,
let a, b, c be three predicate symbols such that a ≺ b and b ≺ c. From a ≺ b, b ∈ reach(a) and
a 6∈ reach(b). From b ≺ c, c ∈ reach(b) and b 6∈ reach(c). From b ∈ reach(a) and c ∈ reach(b), it
follows that c ∈ reach(a) (since reach(b) ⊆ reach(a)). From b ≺ c, reach(c) ⊂ reach(b). From this
and a 6∈ reach(b), it follows that a 6∈ reach(c). From c ∈ reach(a) and a 6∈ reach(c), a ≺ c.
≺ is well-founded. To show that ≺ is well-founded, it is enough to show that there is no infinite
descending sequence of elements. Assume, for contradiction’s sake, that this is not the case. Namely,
there is an infinite sequence of predicate symbols a0, a1, . . . such that for all i ∈ N, ai+1 ≺ ai. We
now consider the first n + 1 elements, where n is the number of predicate symbols in Σ. Then, we
have the descending chain an+1 ≺ an ≺ . . . ≺ a1 ≺ a0. Observe that all n + 1 elements have to be
distinct (due to the irreflexivity and transitivity of ≺). This however contradicts the fact that we
have at most n different predicate symbols.

Proposition B.1. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a
(Σ,dom)-ProbLog program. If we can derive the annotation ORD(A) from p, then if pr1(a1, a2),
pr2(a2, a3), . . . , prn−1(an−1, an) are in ground(p) and {pr1, . . . , prn−1} ⊆ A, then a1 6= an.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a (Σ,dom)-
ProbLog program. Furthermore, we assume that (1) we can derive ORD(A) from p, (2) pr1(a1,
a2), . . . , prn−1(an−1, an) are in ground(p), and (3) {pr1, . . . , prn−1} ⊆ A. Let ≺ be the strict partial
order over predicates in Σ defined in Lemma B.1. We lift ≺ over sets of predicate symbols as follows:
A ≺ B iff there is a bijection µ from A to B such that (1) there exists a ∈ A such that a ≺ µ(a), (2)
a ≺ µ(a) or a = µ(a) for all a ∈ A, and (3) A 6= B. We now prove, by induction over ≺, that the
transitive closure of the unions of the relations induced by pr1, . . . , prn−1 over ground(p) is a strict
partial order over dom|pr|/2. From this, it follows that if pr1(a1, a2), pr2(a2, a3), . . . , prn−1(an−1, an)
are in ground(p), then a1 6= an.
Base Case. For the base case, assume that for all a ∈ A, there is no predicate symbol a′ (different
from a) such that a′ ≺ a. From this and ORD(A) can be derived from p, it follows that (1) for all
pr ∈ A, there is no rule r in p such that pred(head(r)) = pr and body(r) 6= ∅, and (2) the transitive
closure of the relation R =

⋃
pr∈A{(c, v) | ∃r ∈ p. ((head(r) = pr(c, v) ∨ ∃v′. head(r) = v′::pr(c, v)) ∧

body(r) = ∅) ∧ |c| = |v| = |pr|/2} is strict partial order. From this and {(c, v) | ∃pr ∈ A. pr(c,
v) ∈ ground(p) ∧ |c| = |v| = |pr|/2} ⊆ R, it follows that the transitive closure of the union of the
relations induced by pr over ground(p) is a strict partial order over dom|pr|/2.
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Induction Step. Assume that the claim holds for all A′ ≺ A. We now prove that it holds also for A.
From the fact that ORD(A) can be derived from p, it follows that there is an annotation ORD(A′)
and two distinct predicate symbols pr ∈ Σ and pr ′ ∈ A′ such that

1. ORD(A′) can be derived from p,
2. |pr | = |pr ′|,
3. A = (A′ \ {pr ′}) ∪ {pr},
4. pr ′ 6∈

⋃
a∈A reach(a), and

5. for all rules r in p such that pred(head(r)) = pr, there are sequences of variables x and y such
that head(r) = pr(x, y), pr ′(x, y) ∈ body(r), and |x| = |y|.

There are two cases:
• There are no rules in p such that pred(head(r)) = pr. In this case, the claim trivially holds

from (1) and the induction hypothesis.
• There exists at least one rule in p such that pred(head(r)) = pr. From this and (5), head(r) =

pr(x, y) and pr ′(x, y) ∈ body(r). Hence, pr ′ ≺ pr (since pr ′ 6∈ reach(pr) and pr ∈ reach(pr ′)).
From this, (3), and (4), it follows that A′ ≺ A. We now prove that also the relation induced
by A over ground(p) is a strict partial order over dom|pr|/2. Since pr ∈ A, A = (A′ \ {pr1}) ∪
{pr}, pr1 ∈ A′, and ORD(A) can be derived from p, it follows that for all rules r in p such
that pred(head(r)) = pr, there are sequences of variables x and y and an i ∈ N such that
head(r) = pr(x, y), body(r, i) = pr1(x, y), and |x| = |y|. From this, it follows that the {(v,
w) | pr(v, w) ∈ ground(p)} ⊆ {(v, w) | pr1(v, w) ∈ ground(p)}. From A′ ≺ A and the induction
hypothesis, it follows that the transitive closure of

⋃
pr′∈A′{(v, w) | pr ′(v, w) ∈ ground(p)} is a

strict partial order over dom|pr′|/2. From this, pr1 ∈ A′, A = (A′ \ {pr1})∪ {pr}, pr1 ∈ A′, and
{(v, w) | pr(v, w) ∈ ground(p)} ⊆ {(v, w) | pr1(v, w) ∈ ground(p)}, it follows that the transitive
closure of

⋃
pr′∈A{(v, w) | pr ′(v, w) ∈ ground(p)} is a strict partial order over dom|pr′|/2. This

completes the proof of our claim.
This completes the proof.

Proposition B.2. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be
a (Σ,dom)-ProbLog program. If DIS(pr , pr ′) can be derived from p, then there is no tuple v such
that pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p).

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a (Σ,dom)-
ProbLog program. Furthermore, we assume that DIS(pr , pr ′) can be derived from p. Furthermore,
let ≺ be the strict partial order defined in Lemma B.1. We lift ≺ to pairs of predicate symbols as
follows: (a, b) ≺ (a′, b′) iff (1) a = a′ and b ≺ b′, (2) a ≺ a′ and b = b′, or (3) a ≺ a′ and b ≺ b′.
We prove, by induction over ≺, that whenever we can derive DIS(pr , pr ′) from p, there is no tuple
v such that pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p).
Base Case. Let (pr , pr ′) be a pair in Σ2 such that there is no (pr1, pr ′1) ≺ (pr , pr ′) and DIS(pr , pr ′)
can be derived from p. From this, it follows that (1) there are no rules r ∈ p such that body(r) 6= ∅ and
pred(head(r)) = pr or pred(head(r)) = pr ′, and (2) the sets A = {c | pr(c) ∈ p ∨ ∃v′. v′::pr(c) ∈ p}
and A′ = {c | ∃r ∈ p. head(r) = pr ′(c) ∨ ∃v′. v′::pr ′(c) ∈ p} are disjoint. From this, it follows that
there is no tuple v such that pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p).
Induction Step. Assume that there is no tuple v such that pr1(v) ∈ ground(p) and pr ′1(v) ∈
ground(p) for any (pr1, pr ′1) ≺ (pr , pr ′) such that DIS(pr1, pr ′1) can be derived from p. We now
prove that there is no tuple v such that pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p). There are three
cases:

• There are no rules r ∈ p such that body(r) 6= ∅ and pred(head(r)) = pr , the annotation DIS(pr ,
pr ′1) can be derived from p, pr ′1 6∈ reach(pr ′), pr ′ 6= pr ′1, and for all rules r ∈ p such that
head(r) = pr ′(x), pr ′1(x) ∈ body(r). From this, (pr , pr ′1) ≺ (pr , pr ′). From (pr , pr ′1) ≺ (pr ,
pr ′), DIS(pr , pr ′) can be derived from p, and the induction’s hypothesis, it follows that there
is no tuple v such that pr(v) ∈ ground(p) and pr ′1(v) ∈ ground(p). Furthermore, the relation
associated with pr ′ is a subset of the relation associated to pr ′1. Therefore, there is no tuple v
such that pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p).

• There are no rules r ∈ p such that body(r) 6= ∅ and pred(head(r)) = a′, the annotation DIS(pr1,
pr ′) can be derived from p, pr1 6∈ reach(pr), pr 6= pr1, and for all rules r ∈ p such that
head(r) = pr(x), pr1(x) ∈ body(r). From this, (pr1, pr ′) ≺ (pr , pr ′). From (pr1, pr ′) ≺ (pr ,
pr ′), DIS(pr1, pr ′) can be derived from p, and the induction’s hypothesis, it follows that there
is no tuple v such that pr1(v) ∈ ground(p) and pr ′(v) ∈ ground(p). Furthermore, the relation
associated with pr is a subset of the relation associated to pr1. Therefore, there is no tuple v
such that pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p).

• The annotation DIS(pr1, pr ′1) can be derived from p, {pr1, pr ′1}∩ (reach(pr)∪ reach(pr ′)) = ∅,
pr1 6= pr , pr ′1 6= pr ′, and for all rules r ∈ p, if head(r) = pr(x), pr1(x) ∈ body(r) and if
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head(r) = pr ′(x), pr ′1(x) ∈ body(r). From this, (pr1, pr ′1) ≺ (pr , pr ′). From (pr1, pr ′1) ≺ (pr ,
pr ′), DIS(pr1, pr ′1) can be derived from p, and the induction’s hypothesis, it follows that there
is no tuple v such that pr1(v) ∈ ground(p) and pr ′1(v) ∈ ground(p). Furthermore, the relation
associated with pr is a subset of the relation associated with pr1 and the relation associated
with pr ′ is a subset of the relation associated with pr ′1. Therefore, there is no tuple v such that
pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p).

This completes the proof of our claim.

Proposition B.3. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p
be a (Σ,dom)-ProbLog program. If UNQ(pr ,K) can be derived from p, then for all tuples pr(v),
pr(w) ∈ ground(p), if v(i) = w(i) for all i ∈ K, then v = w.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain and p be a (Σ,dom)-
ProbLog program. Furthermore, we assume that UNQ(pr ,K) can be derived from p. Finally, let
≺ be the strict partial order defined in Lemma B.1. We prove, by induction over ≺, that for all
annotations UNQ(pr ,K) that can be derived from p, and all tuples pr(v), pr(w) ∈ ground(p), if
v(i) = w(i) for all i ∈ K, then v = w. Without loss of generality, in the following we assume that
K 6= {1, . . . , |pr |}. If this is not the case, then our claim holds trivially.
Base Case. Let pr be a predicate such that there is no pr ′ ≺ pr . From this and UNQ(pr ,K) can be
derived from p, it follows that there are no rules r in p such that body(r) 6= ∅ and pred(head(r)) = pr ,
and for all w, v in A = {c | pr(c) ∈ p ∨ ∃v.v::pr(c) ∈ p}, if v(i) = w(i) for all i ∈ K, then v = w.
From this and {c | pr(c) ∈ ground(p)} ⊆ A, it follows that for all tuples pr(v), pr(w) ∈ ground(p), if
v(i) = w(i) for all i ∈ K, then v = w.
Induction Step. Assume that the claim holds for any pr ′ ≺ pr and K ⊆ {1, . . . , |pr |} such that
UNQ(pr ,K) can be derived from p (we denote this induction hypothesis as (♣)). We now prove
that the claim holds for pr as well. Without loss of generality, we assume that there is at least one
rule r such that body(r) 6= ∅ and pred(head(r)) = pr (otherwise the proof is trivial). Assume, for
contradiction’s sake, that there are two ground atoms pr(v), pr(w) ∈ ground(p) such that v(i) = w(i)
for all i ∈ K but v 6= w. There are two cases:

• pr(v) and pr(w) are generated by two ground instances of the same rule r. From v 6= w,
it follows that there is j 6∈ K such that v(j) 6= w(j). From this and the fact that both
atoms are generated by the same rule r, it follows that there is a variable x such that x ∈
{x(i) | i 6∈ K} and x = x(j), where x = args(head(r)). From this, it follows that x ∈⋃
l∈bound(head(r),K,body+(r),µ′) vars(l). We claim that the value of x is determined by the values

of the variables whose positions are in K. From this and the fact that v and w agree on all
values whose positions are in K, it follows that v = w, leading to a contradiction.
We now prove our claim that the value of x is determined by the values of the variables whose
positions are in K. The value of the variable x is determined by the grounding of one of the
atoms in bound(head(r),K, body+(r), µ′). We first slightly modify the definition of bound. We
denote by bd0(h,K,L, µ′) the function

⋃
b(y)∈L∧b 6∈reach(pr)∧b6=pr∧
u(y,µ′(b))⊆u(args(h),K)

{b(y)} and by bdi(h,K,L, µ′),

where i > 0, the function bdi−1(h,K,L, µ′) ∪
⋃

b(y)∈L∧b 6∈reach(pr)∧b 6=pr∧
∃l′∈boundi−1(h,K,L,µ′).(u(y,µ′(b))⊆vars(l′))

{b(y)}.

It is easy to see that (1) bound(head(r),K, body+(r), µ′) =
⋃
i∈N bdi(h,K,L, µ′), and (2) the

fixpoint is always reached in a finite number of steps (bounded by |body+(r)|). We now prove
by induction on i that the groundings of the literals in bdi(h,K,L, µ′), where L = body+(r), is
always determined by the values of the variables in u(args(head(r)),K). From this, our claim
immediately follows. For the base case, let i = 0. Then, for any literal b(y) ∈ bd0(h,K,L, µ′), it
follows that (a) b 6∈ reach(pr), (b) b 6= pr , and (c) u(y, µ′(b)) ⊆ u(args(head(r)),K). From this,
L = body+(r), and pred(head(r)) = pr , it follows that b ≺ pr . From this, UNQ(b, µ′(b)) can be
derived from p, and the induction’s hypothesis (♣), it follows that the variables in UNQ(b, µ′(b))
uniquely determine the grounding of b(y). From this and u(y, µ′(b)) ⊆ u(args(head(r)),K), it
follows that the variables in u(args(head(r)),K) uniquely determine the grounding of b(y).
For the induction’s step, assume that the claim hold for all j < i (we denote this induction
hypothesis as (♠)). Let b(y) ∈ bdi(h,K,L, µ′) (without loss of generality, b(y) 6∈ bdi−1(h,K,
L, µ′)). From this, it follows that b ≺ pr (since b 6∈ reach(pr), b 6= pr , and pr ∈ reach(b))
and there is an l′ ∈ boundi−1(h,K,L, µ′) such that u(y, µ′(b)) ⊆ vars(l′). From the induction
hypothesis (♠), it follows that the grounding of l′ is directly determined by the grounding of
the values of the variables in u(args(head(r)),K). Furthermore, from b ≺ pr , UNQ(b, µ′(b)) can
be derived from p, and the induction hypothesis (♣), it follows that the values of the variables
in u(y, µ′(b)) uniquely determine the grounding of b(y). Therefore, the values of the variables
in u(args(head(r)),K) uniquely determine the grounding of b(y). This completes the proof of
the claim.
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• pr(v) and pr(w) are generated by ground instances of two different rules r1 and r2. From
this, UNQ(pr ,K) can be derived from p, and K 6= {1, . . . , |pr |}, it follows that there is a value
i ∈ K such that args(head(r1))(i) ∈ dom, args(head(r2))(i) ∈ dom, and args(head(r1))(i) 6=
args(head(r2))(i). Therefore, there is an i ∈ K such that v(i) 6= w(i). This contradicts the fact
that v(i) = w(i) for all i ∈ K.

This completes the proof of our claim.

B.1.2 Proofs about Propagation Maps
Here we prove some results about propagation maps.

Lemma B.2. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,
dom)-ProbLog program, r be a rule in p, and l be the i-th literal in body(r). Furthermore, let µ be
the (r, l)-vertical map. Given a rule r′ ∈ ground(p, r), then b(j) = h(µ(j)) for any j such that µ(j)
is defined, where h = args(head(r′)) and b = args(body(r′, i)).

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, r be a rule in p, and l be the i-th literal in body(r). Furthermore, let µ be the
(r, l)-vertical map and r′ ∈ ground(p, r). From the definition of ground(p, r), it follows that there is an
assignment Θ from variables to elements in dom such that r′ = rΘ. From this, b(j) = Θ(args(l)(j))
and h(µ(j)) = Θ(args(head(r))(µ(j))). Note that from the definition of (r, l)-vertical map it follows
that args(l)(j) = args(head(r))(µ(j)). From this, b(j) = h(µ(j)) whenever µ(j) is defined.

Lemma B.3. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, r be a rule in p, l be the i-th literal in body(r), and l′ be the j-th literal in body(r).
Furthermore, let µ be the (r, l, l′)-horizontal map. Given a rule r′ ∈ ground(p, r), then b1(k) =
b2(µ(k)) for any k such that µ(k) is defined, where b1 = args(body(r′, i)) and b2 = args(body(r′, j)).

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, r be a rule in p, l be the i-th literal in body(r), and l′ be the j-th literal
in body(r). Furthermore, let µ be the (r, l, l′)-horizontal map and r′ ∈ ground(p, r). From the
definition of ground(p, r), it follows that there is an assignment Θ from variables to elements in dom
such that r′ = rΘ. From this, b1(j) = Θ(args(l)(j)) and b2(µ(j)) = Θ(args(l′)(µ(j))). Note that
from the definition of (r, l, l′)-vertical map it follows that args(l)(j) = args(l′)(µ(j)). From this,
b1(j) = b2(µ(j)) whenever µ(j) is defined.

Proposition B.4. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a
(Σ,dom)-ProbLog program, P = pr1

r1,i1−−−→ . . .
rn−1,in−1−−−−−−−→ prn be a directed path in graph(p), and

ν : N → N be a mapping. Furthermore, let P ′ = a1
r1,s1,i1−−−−−→ a2

r2,s2,i2−−−−−→ . . .
rn−1,sn−1,in−1−−−−−−−−−−−→ an

be a directed path in gg(p) corresponding to P . If P ν-downward links to l, where l is the k-th
literal in rj, then b1(m) = v2(ν(m)) whenever ν(m) is defined, where b1 = args(body(s1, i1)) and
v2 = args(body(sj , k)).

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, P = pr1

r1,i1−−−→ . . .
rn−1,in−1−−−−−−−→ prn be a directed path in graph(p), and ν : N→ N

be a mapping. Furthermore, let P ′ = a1
r1,s1,i1−−−−−→ a2

r2,s2,i2−−−−−→ . . .
rn−1,sn−1,in−1−−−−−−−−−−−→ an be a directed

path in gg(p) corresponding to P . Assume that P ν-downward links to l, where l is the k-th literal
in rj . From this, it follows that the function µ := µ′ ◦µj ◦ . . . ◦µ1 satisfies µ(m) = ν(m) for all m for
which ν(k) is defined, where for 1 ≤ h ≤ j, µh is the vertical map connecting body(rh, ih) and rh, and
µ′ is the horizontal map connecting body(rj+1, ij+1) with l. By repeatedly applying Lemma B.2 to
the rules in P ′, we have that b1(m) = bj(φ(m)) whenever φ(m) is defined, where b1 = args(body(s1,
i1)), bj = args(body(sj , ij)), and φ = µj ◦ . . . ◦ µ1. Moreover, by applying Lemma B.3, we have that
bj(m) = v2(µ′(m)) whenever µ′(m) is defined, where bj = args(body(sj , ij)) and v2 = args(body(sj ,
k)). Therefore, we have that b1(m) = v2(µ(m)) whenever µ′(m) is defined (by composing the
previous results). From this and µ(m) = ν(m) for all m for which ν(m) is defined, it follows that
b1(m) = v2(ν(m)) whenever µ′(m) is defined.

Proposition B.5. Let dom be a finite domain, 〈Σ,dom〉 be a database schema, p be a (Σ,dom)-
ProbLog program, P = pr1

r1,i1−−−→ . . .
rn−1,in−1−−−−−−−→ prn be a directed path in graph(p), and ν : N→ N

be a mapping. Furthermore, let P ′ = a1
r1,s1,i1−−−−−→ a2

r2,s2,i2−−−−−→ . . .
rn−1,sn−1,in−1−−−−−−−−−−−→ an be a directed

path in gg(p) corresponding to P . If P ν-upward links to l, where l is the k-th literal in rj, then
bn(m) = v2(ν(m)) whenever ν(m) is defined, where bn = args(head(rn−1)) and v2 = args(body(sj , k)).
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Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, P = pr1

r1,i1−−−→ . . .
rn−1,in−1−−−−−−−→ prn be a directed path in graph(p), and ν : N→ N

be a mapping. Furthermore, let P ′ = a1
r1,s1,i1−−−−−→ a2

r2,s2,i2−−−−−→ . . .
rn−1,sn−1,in−1−−−−−−−−−−−→ an be a directed

path in gg(p) corresponding to P . Assume that P ν-upward links to l, where l is the k-th literal
in rj . From this, it follows that the function µ := µ′−1 ◦ µ−1

j+1 ◦ . . . ◦ µ
−1
n−1 satisfies µ(k) = ν(k)

for all k for which ν(k) is defined, where µh is the (rh, body(rh, ih))-vertical map, for j < h ≤
n − 1, and µ′ is the (rj , l)-vertical map. By repeatedly applying Lemma B.2 to the rules in P ′, we
obtain that bj+1(φ−1(m)) = bn(m) whenever φ−1(m) is defined, where bj+1 = args(body(sj+1, ij+1)),
bn = args(head(sn−1)), and φ−1 = µ−1

j+1 ◦ . . . ◦ µ
−1
n−1. Furthermore, by applying Lemma B.2 to

the (rj , l)-vertical map, we have that v2(µ′−1(m)) = bj+1(m) whenever µ′−1(m) is defined, where
bj+1 = args(head(sj)) and v2 = args(body(sj , k)). From this and µ(m) = ν(m) for all m for which
ν(m) is defined, it follows that bn(m) = v2(ν(m)) whenever ν(m) is defined.

B.1.3 Proofs about Connected Rules
We now prove that, for strongly connected rules, the grounding of a rule’s head uniquely deter-

mines the grounding of the rule’s body (Proposition B.6), whereas for weakly connected rules the
grounding of one of the atoms in the body determines the rule’s grounding (Proposition B.7).

Proposition B.6. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a
(Σ,dom)-ProbLog program, r be a rule in p, and T be the template containing all annotations
that can be derived from p. If r is strongly connected for T , then for all r1, r2 ∈ ground(p, r), if
head(r1) = head(r2), then r1 = r2.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, r be a rule in p, and T be the template containing all annotations that can be
derived from p. Furthermore, we assume that there are join trees J1, . . . , Jn such that (a) the trees
cover all literals in body(r), and (b) for each 1 ≤ i ≤ n, Ji is strongly connected for T . Finally, let
r1, r2 ∈ ground(p, r) be two ground rules such that head(r1) = head(r2). Assume, for contradiction’s
sake, that r1 6= r2. Therefore, there is a position 1 ≤ i ≤ |body(r)| such that body(r1, i) 6= body(r2,
i). Let J = 〈N,E, root, λ〉 be one of the join trees that cover l = body(r, i). We claim that the
grounding of head(r) determines the grounding of all literals in J . From this, it follows that body(r1,
i) = body(r2, i) leading to a contradiction.

We now prove our claim that the grounding of head(r) determines the grounding of all literals in
J . Let V (J, i) be the set of all the nodes in J at distance at most i from the root root. Furthermore,
we denote by ground(r, r′, J, i) the set {body(r′, j) | body(r, j) ∈ V (J, i)}. We prove, by induction on i,
that for all i and all ground rules r1 and r2 instances of r, if head(r1) = head(r2), then ground(r, r1, J,
i) = ground(r, r2, J, i). From this, it follows that the grounding of head(r) determines the grounding
of all literals in J .
Base case. For i = 0, there is a j such that V (J, 0) = {body(r, j)}. From this, it follows that
ground(r, r1, J, 0) = {body(r1, j)} and ground(r, r2, J, 0) = {body(r2, j)}. Furthermore, anc(J, body(r,
j)) = ∅. There are two cases depending on whether body(r, j) is a positive literal or not:

1. If body(r, j) is a positive literal of the form a(x), then body(r1, j) = a(c1) and body(r2, j) = a(c2).
From the fact that J is strongly connected for T , it follows that there is a set of variables K ⊆
{i | x(i) ∈ support(a(x))} such that UNQ(a,K) ∈ T . From support(a(x)) = vars(head(r))∪{x |
(x = c) ∈ cstr(r)∧c ∈ dom} and head(r1) = head(r2), it follows that the values assigned to the
variables associated to the indexes in K are the same in r1 and r2. From this, UNQ(a,K) ∈ T ,
T has been derived from p, {a(c1), a(c2)} ⊆ ground(p), and Proposition B.3, it follows c1 = c2
and ground(r, r1, J, 0) = ground(r, r2, J, 0).

2. If body(r, j) is a negative literal of the form ¬a(x), then body(r1, j) = ¬a(c1) and body(r2,
j) = ¬a(c2). From the fact that J is strongly connected for T , it follows that vars(¬a(x)) ⊆
support(¬a(x)). From this, support(¬a(x)) = vars(head(r))∪{x | (x = c) ∈ cstr(r)∧c ∈ dom},
and head(r1) = head(r2), it follows that the values of the variables in support(¬a(x)) are the
same in r1 and r2. From this, it follows that c1 = c2 and ground(r, r1, J, 0) = ground(r, r2, J, 0).

Induction Step. Assume that for all j < i and all ground rules r1, r2 ∈ ground(p, r), if head(r1) =
head(r2), then ground(r, r1, J, j) = ground(r, r2, J, j). We now show that ground(r, r1, J, i) = ground(r,
r2, J, i). Assume, for contradiction’s sake, that this is not the case, namely ground(r, r1, J, i) 6=
ground(r, r2, J, i). From the definition of ground(r, r′, J, i), it follows that ground(r, r1, J, i) = ground(r,
r1, J, i − 1) ∪ {body(r1, j) | body(r, j) ∈ V (J, i) \ V (J, i − 1)} and ground(r, r2, J, i) = ground(r, r2,
J, i − 1) ∪ {body(r2, j) | body(r, j) ∈ V (J, i) \ V (J, i − 1)}. From this, the induction’s hypothesis,



170 Appendix B. Proofs for Chapter 4

and ground(r, r1, J, i) 6= ground(r, r2, J, i), it follows that {body(r1, j) | body(r, j) ∈ V (J, i) \ V (J,
i − 1)} 6= {body(r2, j) | body(r, j) ∈ V (J, i) \ V (J, i − 1)}. Therefore, there is a j such that body(r,
j) ∈ V (J, i) \ V (J, i − 1) and body(r1, j) 6= body(r2, j). There are two cases, depending on whether
body(r, j) is a positive literal:

1. If body(r, j) = a(x), then body(r1, j) = a(c1), body(r2, j) = a(c2), and c1 6= c2. From the fact
that J is strongly connected for T , it follows that there is a set of variables K ⊆ {i | x(i) ∈
support(a(x))} such that UNQ(a,K) ∈ U . From support(a(x)) = vars(head(r))∪{x | (x = c) ∈
cstr(r) ∧ c ∈ dom} ∪

⋃
l∈V (J,i−1) vars(l), ground(r, r1, J, i − 1) = ground(r, r2, J, i − 1) (from

the induction’s hypothesis), and head(r1) = head(r2), it follows that the values assigned to the
variables associated to the indexes in K are the same in r1 and r2. From this, UNQ(a,K) ∈ T ,
T has been derived from p, {a(c1), a(c2)} ⊆ ground(p), and Proposition B.3, it follows that
c1 = c2 leading to a contradiction.

2. If body(r, j) = ¬a(x), then body(r1, j) = ¬a(c1), body(r2, j) = ¬a(c2), and c1 6= c2. From the
fact that J is strongly connected for T , it follows that vars(¬a(x)) ⊆ support(a(x)). From
support(a(x)) = vars(head(r)) ∪ {x | (x = c) ∈ cstr(r) ∧ c ∈ dom} ∪

⋃
l∈V (J,i−1) vars(l),

ground(r, r1, J, i− 1) = ground(r, r2, J, i− 1) (from the induction’s hypothesis), it follows that
the values assigned to the variables in support(a(x)) are the same in r1 and r2. From this, it
follows that c1 = c2 leading to a contradiction.

Since both cases lead to a contradiction, ground(r, r1, J, i) = ground(r, r2, J, i).

Proposition B.7. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a
(Σ,dom)-ProbLog program, r be a rule in p, and T be the template containing all annotations
derived from p. If r is weakly connected for T , then for all r1, r2 ∈ ground(p, r), if there is an
1 ≤ i ≤ |body(r)| such that body(r1, i) = body(r2, i), then r1 = r2.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
ProbLog program, r be a rule in p, and T be the template containing all annotations derived from
p. Furthermore, we assume that r is weakly connected for T , namely there is a join tree J = 〈N,E,
root, λ〉 such that (a) J is weakly connected for T , (b) N ⊆ body+(r), and (c) all literals in body(r)\N
are (r,U , N)-strictly guarded. Let r1, r2 ∈ ground(p, r) be two ground rules such that there is an
1 ≤ i ≤ |body(r)| such that body(r1, i) = body(r2, i), and let l be the literal body(r, i). There are two
cases:

1. body(r, i) ∈ N . Given a node n in a join tree J , we denote by adjacent(n, i), where i ∈ N, the
sub-tree obtained by considering only the nodes reachable from n using at most i edges. We
claim that for all j and all nodes in adjacent(l, j), the corresponding ground atoms in r1 and
r2 are the same. From this and the fact that there is a j such that adjacent(l, j) = J , it follows
that for all i ∈ {j | body(r, j) ∈ N}, body(r1, i) = body(r2, i). From this and the fact that
the literals in body(r) \ N are (r, T , N)-strictly guarded, it follows that for all i ∈ {j | body(r,
j) ∈ body(r) \ N}, body(r1, i) = body(r2, i) (since vars(l) ⊆

⋃
l′∈N∩body+(r) vars(l′) ∪ {x | (x =

c) ∈ cstr(r) ∧ c ∈ dom} for any literal l in body(r) \N). Therefore, body(r1) = body(r2).
2. body(r, i) 6∈ N . From this and the fact that r is weakly connected, it follows that there a j

such that body(r, j) = a(x), body(r, j) ∈ N , and a UNQ(a,K) ∈ T such that {x(i) | i ∈ K} ⊆
vars(body(r, i)). From this, T has been derived from p, body(r1, i) = body(r2, i), {body(r1, j),
body(r2, j)} ⊆ ground(p), and Proposition B.3, it follows that body(r1, j) = body(r2, j). We
proved above that if body(r1, j) = body(r2, j) and body(r, j) ∈ N , then body(r1) = body(r2).
Therefore, body(r1) = body(r2).

From vars(head(r)) ⊆
⋃
l∈body+(r) vars(l) and body(r1) = body(r2), it follows that head(r1) = head(r2).

Therefore, r1 = r2.
We now prove, by induction on j, that for all j and all nodes in adjacent(l, j), the corresponding

ground atoms in r1 and r2 are the same.
Base Case. The sub-tree adjacent(l, 0) contains only the node l = body(r, i). Since body(r1, i) =
body(r2, i), the claim holds for the base case.
Induction step. Assume now that the claim holds for all j′ < j. We now prove that the claim holds
also for j. The sub-tree adjacent(l, j) is obtained by extending adjacent(l, j − 1) with either edges of
the form n1

L1−−→ n′1, where n′1 ∈ adjacent(l, j − 1), or n′2
L2−−→ n2, where n′2 ∈ adjacent(l, j − 1). In

both cases, from the induction hypothesis, the ground literals corresponding to n′1 and n′2 are l′1 and
l′2 and they are the same in r1 and r2. From the definition of weakly connected join tree, there are
variables K1 ⊆ L1 and K2 ⊆ L2 such that UNQ(pred(n1),K1) ∈ T and UNQ(pred(n2),K2) ∈ T .
From this, T has been derived from p, the fact that the value of K1 and K2 are fixed by l′1 and l′2,
and Proposition B.3, it follows that the ground atoms corresponding to n1 and n2 are the same in
r1 and r2 (because the values in K1 and K2 determines all values in n1 and n2).
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B.1.4 Acyclicity Proof
We now prove our first key result, namely that the ground graph associated to an acyclic ProbLog

program is a forest of poly-trees, i.e., its undirected version does not contain simple cycles (which are
cycles without repetitions of edges and vertices other than the starting and ending vertices).

Theorem B.1. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, and p be a
(Σ,dom)-acyclic ProbLog program. The graph gg(p) is a forest of poly-trees, i.e., its undirected
version does not contain simple cycles.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, and p be a (Σ,dom)-
acyclic ProbLog program. We prove that the undirected version of gg(p) is acyclic. Assume, for
contradiction’s sake, that this is not the case, namely there is a simple cycle C := n1 → n2 → . . .→
nk → n1 in the undirected version of gg(p). There are two cases: (1) there is a directed simple cycle
in gg(p) that directly corresponds to C, or (2) there are n directed and reversed paths P1, . . . , Pn
in gg(p) that induce a simple cycle C in the undirected version of gg(p) (and P1· . . . ·Pn does not
correspond to any directed simple cycle in gg(p)). From the first case, it follows that there is a
directed cycle in graph(p), whereas from the second case, it follows that there is an undirected cycle
in graph(p).
Directed Cycle. Assume that C := n1 → n2 → . . . → nk → n1 directly corresponds to a directed
cycle in gg(p). Then, the cycle has form a1(c1) r1,s1,i1−−−−−→ a2(c2) . . . an(cn) rn,sn,in−−−−−→ an+1(cn+1), where
n = k and an+1(cn+1) = a1(c1). From this, it follows that there are rules r1, . . . , rn and ground rules
s1, . . . , sn such that: (1) there is a directed cycle a1

r1,i1−−−→ a2
r2,i2−−−→ . . .

rn−1,in−1−−−−−−−→ an
rn,in−−−→ a1 in p’s

dependency graph graph(p), and (2) for all 1 ≤ i ≤ n, si ∈ ground(p, ri) and head(si) = ai+1(ci+1).
From this, it follows that p’s dependency graph graph(p) contains a directed cycle C′ = a1

r1,i1−−−→
a2

r2,i2−−−→ . . .
rn−1,in−1−−−−−−−→ an

rn,in−−−→ a1. Note that C′ may contain loops (i.e., it is not simple). Since p
is acyclic and C′ is a directed cycle in graph(p), it follows that there is a directed unsafe structure
S that covers C′ and is T -guarded, where T is the template containing all annotations that can
be derived from p. Without loss of generality, we assume that S = C′. From S covers C′ and
S is T -guarded, it follows that there is an ordering annotation ORD(O) ∈ T such that there are
integers 1 ≤ y1 < y2 < . . . < ye = n, literals o1(x1), . . . , oe(xe) (where oj ∈ O and |xj | = |oj |),
a non-empty set K ⊆ {1, . . . , |pr1|}, and a bijection ν : K → {1, . . . , |o1|/2} such that for each

0 ≤ k < e, (1) pryk
ryk ,iyk−−−−−→ . . .

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν-downward connects to ok+1(xk+1), and

(2) pryk+1−1

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν

′-upward connects to ok+1(xk+1), where ν′(i) = ν(x) + |o1|/2

for all 1 ≤ i ≤ |o1|/2, and y0 = 1. By applying Proposition B.4 and Proposition B.5 to the paths

pryk
ryk ,iyk−−−−−→ . . .

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 , which ν-downward connects to ok+1(xk+1), for each 0 ≤

k < e, it follows that (1) ground atoms o1(b1, b2), . . . , oe(b|K|, b|K|+1) are in ground(p), and (2) for
all 1 ≤ w ≤ |pr|/2, both b1(w) = args(body(s1, i1))(ν(w)) and b|K|+1(w) = args(head(sn))(ν′(w))
hold. From this, ORD(O) ∈ T , T has been derived from p, and Proposition B.1, it follows that
b1 6= b|K|+1. From this and b1(w) = args(body(s1, i1))(ν(w)) and b|K|+1(w) = args(head(sn))(ν′(w))
for all 1 ≤ w ≤ |pr|/2, it follows that body(s1, i1) 6= head(sn). This contradicts head(sn) = a(c1) and
body(s1, i1) = a(c1) (which directly follows from the existence of the cycle C).
Undirected Cycle. Assume that C does not directly correspond to any directed simple cycle in
gg(p). From this, it follows that there are n directed and reversed paths P1· . . . ·Pn in gg(p) such that
P1, . . . , Pn correspond to the simple cycle C in the undirected version of gg(p). From this, it follows
that P1· . . . ·Pn form an undirected cycle in gg(p). Therefore:

1. For 1 ≤ j ≤ n such that Pj is a directed path, there is a directed path Dj := a1
r1,i1−−−→

a2
r2,i2−−−→ . . .

rnj−1,inj−1
−−−−−−−−→ anj in p’s dependency graph graph(p), where Pj is a1(c1) r1,s1,i1−−−−−→

a2(c2) . . . anj−1(cnj−1)
rnj−1,snj−1,inj−1
−−−−−−−−−−−−−→ anj (cnj ).

2. For 1 ≤ j ≤ n such that Pj is a reversed path, there is a reversed path Dj := a1
r1,i1←−−−

a2
r2,i2←−−− . . .

rnj−1,inj−1
←−−−−−−−− anj in p’s dependency graph graph(p), where Pj is a1(c1) r1,s1,i1←−−−−−

a2(c2) . . . anj−1(cnj−1)
rnj−1,snj−1,inj−1
←−−−−−−−−−−−−− anj (cnj ).

3. D1· . . . ·Dn form an undirected cycle in graph(p).
4. D1· . . . ·Dn is not a directed cycle. Indeed, if D1· . . . ·Dn is a directed cycle, then either C

would correspond to a directed simple cycle in gg(p) (contradicting our assumption that C
does not directly correspond to any directed simple cycle in gg(p)) or C would contain loops
(contradicting our assumption that C is a simple cycle).
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Since p is acyclic and D1· . . . ·Dn forms an undirected cycle in graph(p) that is not a directed cycle,
it follows that there is an unsafe structure S that covers D1· . . . ·Dn and is T -guarded, where T is
the set of all annotations derived from p. We assume that there are values i, a, b, c such that:

1. S = 〈Da, Db, Dc, U〉,
2. a = i, b = (i+ 1)%n, and c = (i+ 2)%n (i.e., Pa, Pb, and Pc are adjacent in the cycle), and
3. U is the undirected path containing all Di’s that are different from Da, Db, and Dc.

Note that the previous assumption is without loss of generality. Since S covers C, we can always
pick the paths in gg(p) inducing C in such a way that they match the guarded structure S.

Let Pa be a1(a1) r1,s1,i1−−−−−→ a2(a2) r2,s2,i2−−−−−→ . . .
rna−1,sna−1,ina−1−−−−−−−−−−−−−→ ana(ana), Pb be b1(b1)

r′1,s
′
1,i
′
1−−−−−→

b2(b2)
r′2,s
′
2,i
′
2−−−−−→ . . .

r′nb−1,s
′
nb−1,i

′
nb−1

−−−−−−−−−−−−−→ bnb(bnb), and Pc be the path c1(c1)
r′′1 ,s

′′
1 ,i
′′
1−−−−−−→ c2(c2)

r′′2 ,s
′′
2 ,i
′′
2−−−−−−→

. . .
r′′nc−1,s

′′
nc−1,i

′′
nc−1−−−−−−−−−−−−−→ cnc(cnc). From S = 〈Da, Db, Dc, U〉 and S covers C, it follows that a1(a1) =

b1(b1) and bnb(bnb) = cnc(cnc). From S = 〈Da, Db, Dc, U〉, S covers C, and S is T -guarded, there
are two cases:

1. (Da, Db) is T -head guarded. Therefore, Da and Db are non-empty. There are two cases:
(a) Da = Db. From this, it follows that (1) Pa and Pb are directed paths in gg(p), (2)

a1(a1) = b1(b1), (3) na = nb, and (4) Da and Db are head-connected. From this and
(Da, Db) is head-guarded, it follows that the rules in Da and Db are weakly connected
for T . We claim that sh = s′h for any 1 ≤ h ≤ na. From this, it follows that Pa = Pb.
This contradicts the fact that P1, . . . , Pn induces a simple cycle in the undirected version
of gg(p) (because the cycle is not simple).
We now prove, by induction on d, that sd = s′d and ad(ad) = bd(bd).
Base Case. Assume that d = 1. From r1 = r′1, r1 is weakly connected for T , body(s1,
i1) = body(s′1, i′1) = a1(c1), sd ∈ ground(p, rd), s′d ∈ ground(p, r′d), and Proposition B.7, it
follows that s1 = s′1. From this, a1(a1) = head(s1), and b1(b1) = head(s′1), it follows that
a1(a1) = b1(b1).
Induction Step. Assume that the claim holds for all d′ < d. We now prove that
sd = s′d and ad(ad) = bd(bd) hold as well. From the induction’s hypothesis, it follows
that head(sd−1) = head(s′d−1). From this and gg’s definition, it follows that body(sd,
id) = body(s′d, i′d). From this, rd = r′d, id = i′d, rd is weakly connected for T , sd ∈
ground(p, rd), s′d ∈ ground(p, sd), and Proposition B.7, it follows that sd = s′d. From this,
ad(ad) = head(sd), and bd(bd) = head(s′d), it follows that ad(ad) = bd(bd).

(b) Da 6= Db. From this and (Da, Db) are head-guarded, it follows that there is an annotation
DIS(pr , pr ′) ∈ T a set K ⊆ {1, . . . , |a|}, and a bijection ν : K → {1, . . . , |pr |} such that
Da ν-downward links to pr and Da ν-downward links to pr ′. From Da ν-downward links
to pr , Pa is a ground instance of Da, and Proposition B.4, it follows that there is a positive
literal pr(v) in the body of one of the ground rules such that a1(a1)(k) = v(ν(K)) for any
k ∈ K. From this and the definition of ground, it follows that pr(v) ∈ ground(p). From
Db ν-downward links to pr ′, Pb is a ground instance of Db, and Proposition B.4, it follows
that there is a positive literal pr ′(v′) in the body of one of the ground rules such that
b1(b1)(k) = v′(ν(K)) for any k ∈ K. From this and the definition of ground, it follows
that pr ′(v′) ∈ ground(p). Finally, from the fact that Pa and Pb are head-connected,
it follows that a1(a1) = b1(b1). From this, a1(a1)(k) = v(ν(K)) for any k ∈ K, and
b1(b1)(k) = v′(ν(K)) for any k ∈ K, it follows that v = v′. From this, pr(v) ∈ ground(p)
and pr ′(v) ∈ ground(p). This contradicts Proposition B.2, since DIS(pr , pr ′) ∈ T and T
has been derived from p.

2. (Db, Dc) is T -tail guarded. Therefore, Db and Dc are non-empty. There are two cases:
(a) Db = Dc. From this, it follows that (1) Pc and Pb are directed paths in gg(p), (2)

cnc(cnc) = bnb(bnb), (3) nb = nc, and (4) Db and Dc are tail-connected. From this and
(Db, Dc) is tail-guarded, it follows that (1) Dc and Db are tail-connected, and (2) the rules
in Dc and Db are strongly connected for T . We claim that s′′h = s′h for any 1 ≤ h ≤ nc.
From this, it follows that Pc = Pb. This contradicts the fact that P1, . . . , Pn induces a
simple cycle in the undirected version of gg(p) (because the cycle is not simple).
We now prove, by induction on d, that s′′nb−d = s′nb−d and head(s′′nb−d) = head(s′nb−d).
Base Case. Assume d = 0. From r′′nb = r′nb , r

′
nb is strongly connected for T , head(s′′nb) =

head(s′nb) = bnb(bnb), s′′nb ∈ ground(p, r′′d ), s′d ∈ ground(p, r′d) , and Proposition B.6, it
follows that s1 = s′1. From this, a1(a1) = head(s1), and b1(b1) = head(s′1), it follows that
bnb(bnb) = cnb(cnb).
Induction Step. Assume that the claim holds for all d′ < d. We now prove that
s′′nb−d = s′nb−d and cnb−d(cnb−d) = bnb−d(bnb−d) hold as well. From the induction’s
hypothesis, it follows that s′′nb−d+1 = s′nb−d+1. From this and gg’s definition, it follows that
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head(s′′nb−d, i
′′
nb−d) = head(s′nb−d, i

′
nb−d). From this, r′′nb−d = r′nb−d, i

′′
nb−d = i′nb−d, r

′′
nb−d

is strongly connected for T , s′′nb−d ∈ ground(p, r′′nb−d), s
′
nb−d ∈ ground(p, snb−d), and

Proposition B.6, it follows that s′′nb−d = s′nb−d. From this, cnb−d(cnb−d) = head(s′′nb−d),
and bnb−d(bnb−d) = head(s′nb−d), it follows that cnb−d(cnb−d) = bnb−d(bnb−d).

(b) Db 6= Dc. From this and (Db, Dc) is tail-guarded, it follows that there is an annotation
DIS(pr , pr ′) ∈ T , a set K ⊆ {1, . . . , |a|}, and a bijection ν : K → {1, . . . , |pr |}, such that
Db ν-upward links to pr and Dc ν-upward links to pr ′. From Db ν-upward links to pr , Pb
is a path in the ground graph corresponding to Db, and Proposition B.5, it follows that a
positive literal pr(v) in the body of one of the ground rules such that bnb(bnb)(k) = v(ν(K))
for any k ∈ K. From this and the definition of ground, it follows that pr(v) ∈ ground(p).
From Dc ν-upward links to pr ′, Pc is a path in the ground graph corresponding to Dc, and
Proposition B.5, it follows that a positive literal pr ′(v′) in the body of one of the ground
rules such that cnc(cnc)(k) = v′(ν(K)) for any k ∈ K. From this and the definition of
ground, it follows that pr ′(v′) ∈ ground(p). Finally, from the fact that Pb and Pc are
tail-connected, it follows that bnb(bnb) = cnc(cnc). From this, bnb(bnb)(k) = v(ν(K)) for
any k ∈ K, and cnc(cnc)(k) = v′(ν(K)) for any k ∈ K, it follows that v = v′. Therefore,
pr(v) ∈ ground(p) and pr ′(v) ∈ ground(p). This contradicts Proposition B.2 since DIS(pr ,
pr ′) ∈ T and T has been derived from p.

This completes the proof of our claim.

B.1.5 Auxiliary Results
Here we prove two auxiliary results that help in establishing that programs are acyclic. In

particular, Proposition B.8 states pre-conditions that allows reducing the guardedness of a complex
undirected structure to the guardedness of simpler structures. Similarly, Proposition B.9 states pre-
conditions that allows reducing the guardedness of a complex directed structure to the guardedness
of a sequence of simpler structures. Note that Proposition B.9 can be easily extended to support (1)
different forms of cycle combination, and (2) combinations of non-self-loop cycles.

Proposition B.8. Let p be a ProbLog program, T be the template containing all annotations
that can be derived from p, C be an undirected cycle in graph(p), S = 〈D1, D2, D3, U〉 be an undi-
rected unsafe structure, and U ′1 and U ′2 be undirected cycles in graph(p). If (1) C is equivalent to
D1·U ′1·U ·U ′2·D3·D2, (2) S is T -guarded, then there is an undirected unsafe structure that covers C
and is T -guarded.

Proof. Let p be a ProbLog program, T be the template containing all annotations that can be
derived from p, C be an undirected cycle in graph(p), and S = 〈D1, D2, D3, U〉 be an undirected
structure, and U ′1 and U ′2 be undirected cycles in graph(p). We assume that (1) C is equivalent to
D1·U ′1·U ·U ′2·D3·D2, (2) S is T -guarded. We define the undirected unsafe structure S′ = 〈D1, D2,
D3, (U ′1·U ·U ′2)〉. From our assumption C is equivalent to D1·U ′1·U ·U ′2·D3·D2. Thus, S′ covers C.
Furthermore, since S and S′ agree on all directed paths, which are the only ones that determine
whether an undirected structure is guarded, it follows that S′ is T -guarded

In Proposition B.9, use the notion of a directed cycle C guarded for a set of predicates O and
a mapping ν. This notion is similar to the notion of guarded directed unsafe structure restricted O
and ν.

Proposition B.9. Let p be a ProbLog program, C1 = pr1
r1,i1−−−→ . . .

rn−1,in−1−−−−−−−→ prn
rn,in−−−→ pr1 be

a directed cycle in graph(p), O be a set of predicate symbols, pr1
rn+1,in+1−−−−−−−→ pr1, and o be a predicate

symbol such that for all o′ ∈ O, |o| = |o′|, K be a non-empty set K ⊆ {1, . . . , |pr1|}, and a bijection
ν : K → {1, . . . , |o|/2}. If (1) C1 is guarded for O and ν, and (2) pr1

rn+1,in+1−−−−−−−→ pr1 is guarded for
{o} and ν, then pr1

r1,i1−−−→ . . .
rn−1,in−1−−−−−−−→ prn

rn,in−−−→ pr1
rn+1,in+1−−−−−−−→ pr1 is guarded for O ∪ {o} and ν.

Proof. Let p be a ProbLog program, C1 = pr1
r1,i1−−−→ . . .

rn−1,in−1−−−−−−−→ prn
rn,in−−−→ pr1 be a directed

cycle in graph(p), O be a set of predicate symbols, pr1
rn+1,in+1−−−−−−−→ pr1, and o be a predicate symbol

such that for all o′ ∈ O, |o| = |o′|, K be a non-empty set K ⊆ {1, . . . , |pr1|}, ν be a bijection
ν : K → {1, . . . , |o|/2} and ν′ be the bijection ν′(i) = ν(x) + |o|/2 for all 1 ≤ i ≤ |o|/2. Furthermore,
we assume that (1) C1 is guarded for O and ν, and (2) pr1

rn+1,in+1−−−−−−−→ pr1 is guarded for {o} and ν.
First, we rewrite C1, pr1

rn+1,in+1−−−−−−−→ pr1 as pr1
r1,i1−−−→ . . .

rn−1,in−1−−−−−−−→ prn
rn,in−−−→ prn+1

rn+1,in+1−−−−−−−→
pr1. From C1 is guarded for O1, it follows that there are integers 1 ≤ y1 < y2 < . . . < ye ≤ n
such that ye = n and literals o1(x1), . . . , oe(xe) (where oj ∈ O and |xj | = |oj |), such that for each

0 ≤ k < e, (1) pryk
ryk ,iyk−−−−−→ . . .

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν-downward connects to ok+1(xk+1), and
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(2) pryk+1−1

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν

′-upward connects to ok+1(xk+1), where y0 = 1. Furthermore,

from pr1
rn+1,in+1−−−−−−−→ pr1 is guarded for {o} and ν, it follows that there is a literal o(x) such that

(3) prn+1
rn+1,in+1−−−−−−−→ pr1 ν-downward connects to o(x), and (4) pryn+1

rn+1,in+1−−−−−−−→ pry1 ν′-upward

connects to ok+1(xk+1). From (1)–(4), it therefore follows that pr1
r1,i1−−−→ . . .

rn−1,in−1−−−−−−−→ prn
rn,in−−−→

prn+1
rn+1,in+1−−−−−−−→ pr1 is guarded for ν and O∪{o}. Indeed, there are integers 1 ≤ y1 < y2 < . . . < ye <

ye+1 ≤ n+ 1 such that ye+1 = n+ 1 and literals o1(x1), . . . , oe(xe), oe+1(xe+1) (where oj ∈ O ∪ {o}

and |xj | = |oj |) such that for each 0 ≤ k < e + 1, (1) pryk
ryk ,iyk−−−−−→ . . .

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1

ν-downward connects to ok+1(xk+1), and (2) pryk+1−1

ryk+1−1,iyk+1−1
−−−−−−−−−−−−→ pryk+1 ν

′-upward connects
to ok+1(xk+1).

B.2 Encoding’s acyclicity

Here we prove that Algorithm 2 produces a Bayesian Network that is a forest of poly-trees.
Note that Algorithm 2 produces a forest of poly-trees and not just a single poly-tree because some
predicates symbols may be independent. For instance, the program consisting of the rules a(x)← b(x)
and c(x)← d(x) corresponds to two poly-trees (one per rule).

Proposition B.10. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a
(Σ,dom)-relaxed acyclic ProbLog program, and W be a witness for p’s acyclicity. The Bayesian
Network 〈N,E,CPT〉 produced by Algorithm 2 on input p is a forest of poly-trees.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-relaxed
acyclic ProbLog program, and W be a witness for p’s acyclicity. Furthermore, let BN = 〈N,
E,CPT〉 be the Bayesian Network produced by Algorithm 2 on input p. There is a one-to-one
mapping from paths in the ground graph gg(α(βµ(p)))) and paths in the Bayesian Network produced
by Algorithm 2. Namely, there is a path from a(c) to a′(c′) in gg(α(βW (p)))) iff there is a path
from X[a(c)] to X[a′(c′)] in BN . Assume that there is a cycle in the undirected version of BN .
From this, it follows that there is an undirected cycle in gg(α(βW (p)))). This, however, contradicts
Theorem B.1 (since p is relaxed acyclic, then α(βW (p))) is acyclic and there are no undirected cycles
in gg(α(βW (p))))).

B.3 Encoding’s Correctness

Here we prove the correctness of our encoding.

B.3.1 Terminology and Notation
Before presenting our correctness proof, we introduce some notation. Let p be a relaxed acyclic

ProbLog program,W be a witness for p, and BN = 〈N,E,CPT〉 be the Bayesian Network produced
by Algorithm 2 having p and W as inputs. We say that the kernel of BN , denoted K(BN ), is the
set of variables {X[r, ∅, a(c)] ∈ N | ∃v. r = v::a(c)}. Note that all nodes n ∈ K(BN ) are boolean
random variables by construction, namely D(n) = {>,⊥}. Given a BN -total assignment ν, we
say that ν is consistent iff for all variables n ∈ N \ K(BN ), cpt(n)(ν(P1), . . . , ν(Pm), ν(n)) = 1,
where p(n) = {P1, . . . , Pm}. Furthermore, we say that ν is a model for a state s, written ν |= s, iff
a(c) ∈ s⇔ ν(X[a(c)↓p]) = a(c)↑p.

Let r be a rule whose head is h and whose body consists of literals l1, . . . , lk and 〈v1, . . . , vn, vn+1〉
be a tuple, where k ≤ n. We say that s matches 〈v1, . . . , vn, vn+1〉 iff the following conditions hold:
(1) vn+1 = h↑p, (2) for all 1 ≤ i ≤ k, if li ∈ body+(r), then vi = li↑p, and (3) for all 1 ≤ i ≤ k, if
li ∈ body−(r), then vi = ⊥ or vi 6= li↑p.

B.3.2 Exact Grounding
We now introduce the exact grounding of a ProbLog program p given a p-probabilistic assign-

ment. The exact grounding encodes the ProbLog semantics.
Let p be a ProbLog program and f be a p-probabilistic assignment. Furthermore, let µ be the

mapping from predicate symbols in p to N: µ(a) = maxt∈paths(p,a)(w(t)), where paths(p, a) is the set
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of all directed paths that ends in a in p’s dependency graph and the weight of each path is

w(t) =



0 if t = ε

w(t′) if t = a1
r1,i1−−−→ a2

r2,i2−−−→ . . .
rn,in−−−→ an+1

∧t′ = a2
r2,i2−−−→ . . .

rn,in−−−→ an+1

∧body(r1, i1) ∈ A+
Σ,dom

1 + w(t′) if t = a1
r1,i1−−−→ a2

r2,i2−−−→ . . .
rn,in−−−→ an+1

∧t′ = a2
r2,i2−−−→ . . .

rn,in−−−→ an+1

∧body(r1, i1) 6∈ A+
Σ,dom

We remark that µ is a valid stratification for the program p. From more details about logic program-
ming with stratified negation we refer the reader to [10].

The functions gf (p, j, i), gf (p, j), and gf (p) are defined as follows:

gf (p, 0, 0) ={a(c) | a(c) ∈ p ∧ µ(a) = 0}∪
{a(c) | ∃v. v::a(c) ∈ p ∧ f(v::a(c)) = > ∧ µ(a) = 0}

gf (p, 0, i) =gf (p, 0, i− 1)∪
{head(r)Θ | Θ ∈ ASGN (r) ∧ r ∈ p ∧ ∀l ∈ body+(r). lΘ ∈ gf (p, 0, i− 1)∧

body−(r) = ∅ ∧ µ(pred(head(r))) = 0}
gf (p, j, 0) =gf (p, j − 1) ∪ {a(c) | a(c) ∈ p ∧ µ(a) = j}∪

{a(c) | ∃v. v::a(c) ∈ p ∧ f(v::a(c)) = > ∧ µ(a) = j}
gf (p, j, i) =gf (p, j, i− 1)∪

{head(r)Θ | Θ ∈ ASGN (r) ∧ r ∈ p ∧ ∀l ∈ body+(r). lΘ ∈ gf (p, j, i− 1)∧
∀l ∈ body−(r). atom(l)Θ 6∈ gf (p, j − 1) ∧ µ(pred(head(r))) = j}

gf (p, j) =
⋃
i∈N

gf (p, j, i)

gf (p) =
⋃
j∈N

gf (p, j)

Furthermore, the functions gf (p, r, j, i), gf (p, r, j), and gf (p, r) are defined as follows:

gf (p, a(c), j, i) ={a(c) | a(c) ∈ p ∧ µ(a) = j}
gf (p, v::a(c), j, i) ={a(c) | v::a(c) ∈ p ∧ f(v::a(c)) = > ∧ µ(a) = j}

gf (p, r, 0, 0) =∅
gf (p, r, 0, i) =gf (p, r, 0, i− 1)∪

{hΘ← l1Θ, . . . , lnΘ | r = h← l1, . . . , ln ∧Θ ∈ ASGN (r)∧
∀l ∈ body+(r). lΘ ∈ gf (p, 0, i− 1) ∧ body−(r) = ∅ ∧ µ(pred(h)) = 0}

gf (p, r, j, 0) =gf (p, r, j − 1)
gf (p, r, j, i) =gf (p, r, j, i− 1)∪

{hΘ← l1Θ, . . . , lnΘ | r = h← l1, . . . , ln ∧Θ ∈ ASGN (r)∧
∀l ∈ body+(r). lΘ ∈ gf (p, j, i− 1)∧
∀l ∈ body−(r). atom(l)Θ 6∈ gf (p, j − 1) ∧ µ(pred(h)) = j}

gf (p, r, j) =
⋃
i∈N

gf (p, r, j, i)

gf (p, r) =
⋃
j∈N

gf (p, r, j)

Proposition B.11 follows directly from gf ’s definition and the semantics of stratified logic programs.

Proposition B.11. For any ProbLog program p and any p-probabilistic assignment f , gf (p) =
Jinstance(p, f)K.



176 Appendix B. Proofs for Chapter 4

B.3.3 Auxiliary results about safe annotated disjunctions
Given a program p, a safe CPT schema 〈πH , πV , µ〉, and a predicate pr such that µ(pr) 6= ∅, each

partition in πH(p, pr) identifies a row in the CPT associated with a ground atom (whose predicate
is pr), whereas the first sequence produced by πV identifies the variables determining the CPT’s
result. We now present some results showing the correctness of the requirements for the safety of
CPT-schemas.

Proposition B.12 states that whenever two ground rules have the same head once we remove the
constants through the transformation β, the corresponding original rules belong to the same set RR
in πH(p, pr).

Proposition B.12. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for
p, and pr be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1,
. . . , |pr |} \ K, r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr,
r′1 ∈ ground(p, r1) and r′2 ∈ ground(p, r2) be the corresponding ground rules. Finally, let gRow1 and
gRow2 be the ground versions of the literals in row1 and row2, where πV (r1) = 〈row1, sel1, psw1〉 and
πV (r2) = 〈row2, sel2, psw2〉. If args(head(r′1))↓K′ = args(head(r′2))↓K′ , then there is an RR ∈ πH(p,
pr) such that r1, r2 ∈

⋃
R∈RR R.

Proof. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for p, and pr be
a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1, . . . , |pr |}\K,
r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr , r′1 ∈ ground(p, r1) and
r′2 ∈ ground(p, r2) be the corresponding ground rules. Finally, let gRow1 and gRow2 be the ground
versions of the literals in row1 and row2, where πV (r1) = 〈row1, sel1, psw1〉 and πV (r2) = 〈row2,
sel2, psw2〉. We assume that args(head(r′1))↓K′ = args(head(r′2))↓K′ . Assume, for contradiction’s
sake, that there is no RR ∈ πH(p, pr) such that r1, r2 ∈

⋃
R∈RR R. From this and r1, r2 ∈ p,

it follows that there are RR1,RR2 ∈ πH(p, pr), R1 ∈ RR1, and R2 ∈ RR2 such that r1 ∈ R1,
r2 ∈ R2, and RR1 6= RR2. From this and requirement (4.b) of schema safety, it follows that there
is an annotated disjunction DIS(a, b) that can be derived from p such that a(args(head(r1))↓K′) ∈
body+(r1) and b(args(head(r2))↓K′) ∈ body+(r2). From this, requirement (4.a) of schema safety,
and args(head(r′1))↓K′ = args(head(r′2))↓K′ , it follows that a(args(head(r′1))↓K′) ∈ body+(r′1) and
b(args(head(r′1))↓K′) ∈ body+(r′2). From this and the fact that both literals are positive, it follows
that both a(args(head(r′1))↓K′) and b(args(head(r′1))↓K′) are in ground(p). From Proposition B.2 and
DIS(a, b) can be derived from p, however, it follows that a(args(head(r′1))↓K′) or b(args(head(r′1))↓K′)
are not in ground(p), leading to a contradiction.

Proposition B.13 states that whenever we have two ground rules with the same head, they are
either the same rule or they represent different rows in the CPT.

Proposition B.13. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for
p, and pr be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1,
. . . , |pr |}\K. For any two distinct rules r1, r2 ∈ p such that pred(head(r1)) = pr and pred(head(r2)) =
pr, all r′1 ∈ ground(p, r1), and r′2 ∈ ground(p, r2), if args(head(r′1))↓K = args(head(r′2))↓K and
args(head(r′1))↓K′ = args(head(r′2))↓K′ , then either r′1 = r′2 or there are RR ∈ πH(p, pr), R1 ∈ RR,
and R2 ∈ RR such that r1 ∈ R1, r2 ∈ R2, and R1 6= R2.

Proof. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for p, and pr
be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr), K′ = {1, . . . ,
|pr |} \ K, r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr , and
r′1 ∈ ground(p, r1), and r′2 ∈ ground(p, r2). Assume that args(head(r′1))↓K = args(head(r′2))↓K and
args(head(r′1))↓K′ = args(head(r′2))↓K′ . Observe that 〈πH , πV , µ〉 is a safe CPT schema. There are
two cases:

• r1 = r2. From this and args(head(r′1))↓K = args(head(r′2))↓K and args(head(r′1))↓K′ =
args(head(r′2))↓K′ , it follows that the ground rules have the same heads. From this and the
requirement (1) of schema safety, r1 is strongly connected. From this and Proposition B.6, it
follows that r′1 = r′2.

• r1 6= r2. From r1 6= r2, args(head(r′1))↓K′ = args(head(r′2))↓K′ , and Proposition B.12, it follows
that there are RR ∈ πH(p, pr), R1 ∈ RR, and R2 ∈ RR such that r1 ∈ R1 and r2 ∈ R2. From
this, the requirements (2) and (3.a.i.B) of schema safety, r1 6= r2, and args(head(r′1))↓K =
args(head(r′2))↓K , it follows that r1 and r2 cannot be in the same partition, i.e., R1 6= R2.

This completes the proof of our claim.

Proposition B.14 states that whenever two distinct ground rules represent the same row in the
CPT, they produce different values (i.e., the head is different) and they are part of the same set R.
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Proposition B.14. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for
p, and pr be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1,
. . . , |pr |} \ K, r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr,
r′1 ∈ ground(p, r1) and r′2 ∈ ground(p, r2) be the corresponding ground rules. Finally, let gRow1
and gRow2 be the ground versions of the literals in row1 and row2, where πV (r1) = 〈row1, sel1,
psw1〉 and πV (r2) = 〈row2, sel2, psw2〉. If gRow1(i) = gRow2(i) for all 1 ≤ i ≤ min(|row1|, |row2|),
args(head(r′1))↓K′ = args(head(r′2))↓K′ , and r′1 6= r′2, then args(head(r′1))↓K 6= args(head(r′2))↓K and
there exists an RR ∈ πH(p, pr) and an R ∈ RR such that r1, r2 ∈ R.

Proof. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for p, and pr
be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1,
. . . , |pr |} \ K, r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr ,
r′1 ∈ ground(p, r1) and r′2 ∈ ground(p, r2) be the corresponding ground rules. Finally, let gRow1 and
gRow2 be the ground versions of the literals in row1 and row2, where πV (r1) = 〈row1, sel1, psw1〉
and πV (r2) = 〈row2, sel2, psw2〉. Assume that gRow1(i) = gRow2(i) for all 1 ≤ i ≤ min(|row1|,
|row2|), args(head(r′1))↓K′ = args(head(r′2))↓K′ , and r′1 6= r′2. Observe that 〈πH , πV , µ〉 is a safe
CPT schema. From args(head(r′1))↓K′ = args(head(r′2))↓K′ and Proposition B.12, it follows that
there exists an RR ∈ πH(p, pr), R1 ∈ RR, and R2 ∈ RR, such that r1 ∈ R1 and r2 ∈ R2. From
this and gRow1(i) = gRow2(i) for all 1 ≤ i ≤ min(|row1|, |row2|), it follows that R1 = R2 (indeed,
according to the requirement (3.b.iii) of schema safety, rules in different partitions must differ either
in the sign of some literals or in the constants used therein). Assume, for contradiction’s sake,
that args(head(r′1))↓K = args(head(r′2))↓K . From this, the fact that r1 and r2 are in the same
partition R1, and the requirement (3.a.i.A) of schema safety, it follows that r1 = r2. From this,
args(head(r′1))↓K′ = args(head(r′2))↓K′ , and args(head(r′1))↓K = args(head(r′2))↓K , it follows that
the heads of the two ground rules are the same. From this and the requirement (1) of schema
safety, r1 is strongly connected. From this and Proposition B.6, it follows that r′1 = r′2, leading to a
contradiction.

Proposition B.15 states that whenever we fix the head and the part of the ground rules representing
the row, then we have fully determined the rule.

Proposition B.15. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for
p, and pr be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1,
. . . , |pr |} \ K, r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr,
r′1 ∈ ground(p, r1) and r′2 ∈ ground(p, r2) be the corresponding ground rules. Finally, let gRow1 and
gRow2 be the ground versions of the literals in row1 and row2, where πV (r1) = 〈row1, sel1, psw1〉
and πV (r2) = 〈row2, sel2, psw2〉. If gRow1(i) = gRow2(i) for all 1 ≤ i ≤ min(|row1|, |row2|) and
head(r′1) = head(r′2), then r′1 = r′2.

Proof. Let p be a (Σ,dom)-ProbLog program, 〈πH , πV , µ〉 be an acyclicity witness for p, and pr
be a predicate symbol in Σ such that µ(pr) 6= ∅. Furthermore, let K = µ(pr) and K′ = {1,
. . . , |pr |} \ K, r1, r2 ∈ p be two rules such that pred(head(r1)) = pr and pred(head(r2)) = pr ,
r′1 ∈ ground(p, r1) and r′2 ∈ ground(p, r2) be the corresponding ground rules. Finally, let gRow1 and
gRow2 be the ground versions of the literals in row1 and row2, where πV (r1) = 〈row1, sel1, psw1〉 and
πV (r2) = 〈row2, sel2, psw2〉. Assume that gRow1(i) = gRow2(i) for all 1 ≤ i ≤ min(|row1|, |row2|)
and head(r′1) = head(r′2). From head(r′1) = head(r′2) and Proposition B.13, it follows that either
r′1 = r′2 or there is a RR ∈ πH(p, pr) such that R1 ∈ RR, R2 ∈ RR, r1 ∈ R1, r2 ∈ R2, and R1 6= R2.
Assume, for contradiction’s sake, that r′1 6= r′2. Then, it must be the case that there is a RR ∈ πH(p,
pr) such that R1 ∈ RR, R2 ∈ RR, r1 ∈ R1, r2 ∈ R2, and R1 6= R2. From this and requirement
(3.b.iii), there is an 1 ≤ i ≤ min(|row1|, |row2|) such that r1 and r2 differ in at least a literal. This,
however, contradicts gRow1(i) = gRow2(i) for all 1 ≤ i ≤ min(|row1|, |row2|). Hence, r′1 = r′2.

B.3.4 Auxiliary results about Relaxed Acyclic Programs
Proposition B.16 states a simple fact about relaxed acyclic programs.

Proposition B.16. Let p be a (Σ,dom)-ProbLog program, W = 〈πV , πH , µ〉 be an acyclicity
witness for p, and pr be a predicate symbol in Σ. If µ(pr) 6= ∅, then each ground atom pr(c) can be
derived only from one rule in α(βW (p)).

Proof. Let p be a (Σ,dom)-ProbLog program, W = 〈πV , πH , µ〉 be an acyclicity witness for p, and
pr be a predicate symbol in Σ. Furthermore, assume that µ(pr) 6= ∅. Assume for contradiction’s
sake, that there are two distinct rules r and r′ from which we can derive pr(c). There are two cases:
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• r and r′ are derived from rules r1 and r2 such that there are two distinct RR1, RR2 ∈ πH(p, pr),
r1 ∈

⋃
R∈RR1

R, and r2 ∈
⋃
R∈RR2

R. From this and requirement (4.b) of schema safety, it
follows that there is a disjointness annotation DIS(a, b) (that can be derived from p) and indexes
i, j such that a(args(head(r))↓µ(pr)) and b(args(head(r′))↓µ(pr)) are positive literals in r1 and r2.
From requirement (4.a) of schema safety and the fact that head(r) = head(r′), it follows that
args(head(r))↓µ(pr) = args(head(r)′)↓µ(pr). Furthermore, from requirements (4.b), (4.c), and the
transformation’s definition, it follows that a(args(head(r))↓µ(pr)) and b(args(head(r))↓µ(pr)) are
positive literals in r and r′. From this and args(head(r))↓µ(pr)) = args(head(r)′)↓µ(pr), it follows
that a(args(head(r))↓µ(pr)) and b(args(head(r))↓µ(pr)) belong to ground(p). This, however,
contradicts a(args(head(r))↓µ(pr)) or b(args(head(r))↓µ(pr)) are not in ground(p), which follows
from DIS(a, b) and Proposition B.2.

• r and r′ are derived from rules r1 and r′1 such that there is RR ∈ πH(p, pr), r′1 ∈
⋃
R∈RRR,

and r′2 ∈
⋃
R∈RRR. From this and requirement (3.c), r and r′ are the same rule, leading to a

contradiction.
This completes the proof of our claim.

Proposition B.17 states a simple results connecting the original program p and its transformed
version α(βW (p)).

Proposition B.17. Let dom be a finite domain, 〈Σ,dom〉 be a database schema, p be a (Σ,dom)-
relaxed acyclic ProbLog program, W be a witness for p, and p′ be the program α(βW (p)). Then,
(1) a ∈ ground(p) implies a↓p ∈ ground(p′), and (2) s ∈ ground(p, r) implies s↓p ∈ ground(p′, r↓p).

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
relaxed acyclic ProbLog program, W be a witness for p, and p′ be the program α(βW (p)). We
now prove our first claim. Let a ∈ ground(p). From this, it follows that there is an i such that
a ∈ ground(p, i). We now prove our claim by induction on i. The base case is a ∈ ground(p, 0).
From this, it follows that a is either a ground atom or a probabilistic ground atom. From this and
the definition of α and β, a↓p = a. From this, it follows that a ∈ p′ and, therefore, a ∈ ground(p′).
For the induction step, assume that our claim holds for all j < i, we now show that it holds also for
i. The only interesting case is a ∈ ground(p, i) \ ground(p, i − 1). From this, it follows that there
is a rule r and a ground rule s such that all body+(s) ⊆ ground(p, i − 1). From this, r↓p ∈ p′, the
fact that the transformation does not introduce new positive literals, and the induction hypothesis,
it follows that {b↓p | b ∈ body+(s)} ⊆ ground(p′). From this and ground’s definition, it follows that
a↓p ∈ ground(p′). The proof of our second claim is similar to the first one.

B.3.5 Auxiliary Lemmas
We are now ready to prove some auxiliary lemmas for the encoding’s correctness.

Lemma B.4. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p0 be a (Σ,
dom)-relaxed acyclic ProbLog program, W be a witness for p0, p be the transformed program
α(βW (p)), BN = 〈N,E,CPT〉 be the Bayesian Network generated by Algorithm 2 having p0 and
W as input. Furthermore, let r be a rule in p and D be the function associating to each predicate
symbol pr its domain (see Algorithm 2 for D’s definition). Finally, let 〈v1, . . . , vn+1〉 a tuple in
D(a1) × . . . ×D(an) ×D(pred(head(r))), where n = |body(r)| and ai = pred(body(r, i)) for 1 ≤ i ≤
|body(r)|. The following statements hold:

1. If vn+1 6= ⊥, then satisfiable(r, 〈v1, . . . , vn+1〉, D,W, p) = > iff there exists a rule r′ ∈ [r]p0,W

such that r′ matches 〈v1, . . . , vn, vn+1〉.
2. satisfiable(r, 〈v1, . . . ,⊥〉, D,W, p) = ⊥ iff there are a vn+1 6= ⊥ and a rule r′ ∈ [r]p0,W that

match 〈v1, . . . , vn, vn+1〉.
3. If vn+1 6= ⊥ and vn+1 6= >, then there is at most one rule r′ ∈ [r]p0,W such that r′ matches
〈v1, . . . , vn, vn+1〉.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p0 be a (Σ,dom)-
relaxed acyclic ProbLog program, W be a witness for p0, p be the transformed program α(βW (p)),
BN = 〈N,E,CPT〉 be the Bayesian Network generated by Algorithm 2 having p0 and W as input.
Furthermore, let r be a rule in p and D be the function associating to each predicate symbol pr
its domain (see Algorithm 2 for D’s definition). Finally, let 〈v1, . . . , vn+1〉 a tuple in D(a1) × . . . ×
D(an)×D(pred(head(r))), where n = |body(r)| and ai = pred(body(r, i)) for 1 ≤ i ≤ |body(r)|.
Statement 1. Assume that vn+1 6= ⊥. Then, the satisfiable procedure returns> iff there exists a rule
r′ ∈ [r]p0,W such that filter(head(r′), D,W ) = vn+1 and for all 1 ≤ i ≤ |body(r′)|, vi ∈ filter(body(r′,
i), D,W ). Observe that (1) filter(head(r′), D,W ) = vn+1 iff h↑p = vn+1, (2) for any positive literal,
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vi ∈ filter(body(r′, i), D,W ) iff vi ∈ {body(r′, i)↑p}, and (3) for any negative literal, vi ∈ filter(body(r′,
i), D,W ) iff vi ∈ (D(pred(body(r′, i)))\{body(r′, i)↑p})∪{⊥}. Therefore, satisfiable procedure returns
> iff there exists a matching rule in [r]p0,W .
Statement 2. Assume that vn+1 = ⊥. By inspecting the code of satisfiable it is easy to see that in
case vn+1 = ⊥ the function is equivalent to ¬(

∨
vn+1∈D(pred(head(r)))\{⊥} satisfiable(r, 〈v1, . . . ,⊥〉, D,

W, p)). From this, satisfiable(r, 〈v1, . . . ,⊥〉, D,W, p) = > iff
∧
vn+1∈D(pred(head(r)))\{⊥} ¬satisfiable(r,

〈v1, . . . , vn+1〉, D,W, p) holds. From this, satisfiable(r, 〈v1, . . . ,⊥〉, D,W, p) = ⊥ iff there exists a
vn+1 6= ⊥ such that satisfiable(r, 〈v1, . . . , vn+1〉, D,W, p) holds. From this (and the proof of the
previous claim), satisfiable(r, 〈v1, . . . ,⊥〉, D,W, p) = ⊥ iff there exists a vn+1 6= ⊥ and a rule r′ ∈
[r]p0,W that matches 〈v1, . . . , vn, vn+1〉.
Statement 3. Assume that vn+1 6= ⊥ and vn+1 6= >. Assume, for contradiction’s sake, that there
are two distinct rules r′, r′′ ∈ [r]p0,W such that v = 〈v1, . . . , vn, vn+1〉 matches r′ and r′′. Let pr be
the symbol pred(head(r′)) (note that pred(head(r′)) = pred(head(r′′))). From r′ matches v, it follows
that (1) head(r′)↑p = vn+1, (2) for all 1 ≤ i ≤ |body(r′)|, if li ∈ body+(r′), then vi = li↑p, and (3) for
all 1 ≤ i ≤ |body(r′)|, if li ∈ body−(r′), then vi = ⊥ or vi 6= li↑p. Similarly, from r′′ matches v, it
follows that (1) head(r′′)↑p = vn+1, (2) for all 1 ≤ i ≤ |body(r′′)|, if li ∈ body+(r′′), then vi = li↑p,
and (3) for all 1 ≤ i ≤ |body(r′′)|, if li ∈ body−(r′′), then vi = ⊥ or vi 6= li↑p. From this and
vn+1 6∈ {⊥,>}, it follows that args(head(r′))↓µ(pr) = vn+1 and args(head(r′′))↓µ(pr) = vn+1. From
r′, r′′ ∈ [r]p0,W and requirement (3.c) of schema safety, it follows that there are RR ∈ πH(p, pr),
R1 ∈ RR, and R2 ∈ RR such that r′ ∈ R1 and r′′ ∈ R2 (otherwise, r and r′ would result in different
rules in the transformed program). There are two cases:

• R1 = R2. From this and requirement (3.a.i.B) of schema safety, args(head(r′))↓µ(pr) 6=
args(head(r′′))↓µ(pr). This contradicts args(head(r′))↓µ(pr) = vn+1 and args(head(r′′))↓µ(pr) =
vn+1.

• R1 6= R2. From this and requirement (3.b.iii) of schema safety, there exists an 1 ≤ i ≤
min(|row1|, |row2|), where πV (r′) = 〈row1, sel1, sw1〉 and πV (r′′) = 〈row2, sel2, sw2〉, such that:
1. µ(pred(row1)(i)) 6= ∅, row1(i) and row2(i) are positive literals, and args(row1(i))↓K1,i

6=
args(row2(i))↓K2,i

, where K1,i = µ(pred(row1(i))) and K2,i = µ(pred(row2(i))), or
2. µ(pred(row1)(i)) = ∅, row1(i) is a positive literal, and row2(i) is a negative one or vice

versa.
In the first case, there is an 1 ≤ i ≤ min(|body(r′)|, |body(r′′)|) such that body(r′, i) and body(r′′,
i) are positive literals and body(r′, i)↑p 6= body(r′′, i)↑p. This, however, contradicts that vi =
body(r′, i)↑p and vi = body(r′′, i)↑p. In the second case, there is an 1 ≤ i ≤ min(|body(r′)|,
|body(r′′)|) such that body(r′, i) is a positive literal and body(r′′, i) is a negative one (or vice
versa). Hence, body(r′, i)↑p = > and body(r′, i)↑p = ⊥ (or vice versa). This, again, contradicts
vi = body(r′, i)↑p and vi = body(r′′, i)↑p.

This completes the proof of our third claim.

Lemma B.5. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,
dom)-relaxed acyclic ProbLog program, W be a witness for p, BN = 〈N,E,CPT〉 be the Bayesian
Network generated by Algorithm 2 having p and W as input, f be a p-probabilistic assignment, and ν
be a consistent BN -variable assignment such that ν(X[v::a(c), ∅, a(c)]) = f(v::a(c)) for all v::a(c) ∈ p.
Then, a(c) ∈ gf (p, j, i), for some j and i, iff ν(X[a(c)↓p]) = a(c)↑p.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
relaxed acyclic ProbLog program, W be a witness for p, BN = 〈N,E,CPT〉 be the Bayesian
Network generated by Algorithm 2 having p and W as input, f be a p-probabilistic assignment,
and ν be a consistent BN -variable assignment such that ν(X[v::a(c), ∅, a(c)]) = f(v::a(c)) for all
v::a(c) ∈ p. Furthermore, let p′ be the acyclic ProbLog program obtained after applying the α
and β transformations. We claim that a(c) ∈ gf (p, µ(a)) iff ν(X[a(c)↓p]) = a(c)↑p. From this,
a(c) ∈ gf (p) iff a(c) ∈ gf (p, j, i) for some j and i, and a(c) ∈ gf (p) iff a(c) ∈ gf (p, µ(a)), it follows
that a(c) ∈ gf (p, j, i), for some j and i, iff ν(X[a(c)↓p]) = a(c)↑p. However, there may be some nodes
in BN that do not correspond to any ground rule or atom in gf (p, r) or gf (p).

We now prove, by induction on µ(a) (defined in Section B.3.2), our claim that a(c) ∈ gf (p, µ(a))
iff ν(X[a(c)↓p]) = a(c)↑p (we denote the corresponding induction hypothesis as (?)).
Base Case. For the base case, we assume that µ(a) = 0. We prove separately the two directions,
namely (1) if a(c) ∈ gf (p, 0, i) and µ(a) = 0, then ν(X[a(c)↓p]) = a(c)↑p, and (2) if ν(X[a(c)↓p]) =
a(c)↑p and µ(a) = 0, then a(c) ∈ gf (p, 0, i). From this, it follows that if µ(a) = 0, then a(c) ∈ gf (p, 0)
iff ν(X[a(c)↓p]) = a(c)↑p.
(⇒). We prove, by induction on i, that if a(c) ∈ gf (p, 0, i), then ν(X[a(c)↓p]) = a(c)↑p (we denote
this induction hypothesis as (†)). From a(c) ∈ gf (p), gf (p) ⊆ ground(p), and Proposition B.17, then
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X[a(c)↓p] ∈ N . The base case is as follows. If a(c) ∈ gf (p, 0, 0), then there is a rule r such that
either r = a(c) or r = v::a(c) and a(c) ∈ gf (p, r, 0, 0). If r = a(c), then ν(X[r, ∅, a(c)]) = > due to
ν’s consistency, gf (p) ⊆ ground(p), Proposition B.17, r↓p = r, and a(c)↓p = a(c). If r = v::a(c),
then f(v::a(c)) = > follows from a(c) ∈ gf (p, 0, 0). From this, gf (p) ⊆ ground(p), Proposition B.17,
r↓p = r, a(c)↓p = a(c), and ν(X[v::a(c), ∅, a(c)]) = f(v::a(c)), it follows that there is a variable
X[r, ∅, a(c)] ∈ N such that ν(X[r, ∅, a(c)]) = >. From ν(X[r, ∅, a(c)]) = >, BN ’s construction, and
ν’s definition, it follows that there are nodes X[r, a(c)], X[a(c)] ∈ N such that ν(X[r, a(c)]) = >
and ν(X[a(c)]) = > as well (note that r↓p = r, and a(c)↓p = a(c) in this case). For the induction
step, we assume that our claim holds for all i′ < i. The only interesting case is when a(c) ∈ gf (p, 0,
i) \ gf (p, 0, i − 1). From this, it follows that there is rule r ∈ p such that a(c) ← b1, . . . , bm ∈ gf (p,
r, 0, i). From this, it follows that b1, . . . , bm ∈ gf (p, 0, i − 1) and body−(r) = ∅. From this, gf (p,
0, i − 1) ⊆ ground(p), Proposition B.17, and the induction’s hypothesis (†), it follows that there
are nodes X[b1↓p], . . . , X[bm↓p] ∈ N and ν(X[b1↓p]) = b1↑p, . . . , ν(X[bm↓p]) = bm↑p. From this,
body−(r) = ∅, gf (p, r, 0, i) ⊆ gf (p, r) ⊆ ground(p, r), Proposition B.17, and BN ’s construction, it
follows that there is a variable X[r↓p, {b1↓p, . . . , bm↓p}, a(c)↓p] ∈ N such that cpt(X[r↓p, {b1↓p, . . . ,
bm↓p}, a(c)↓p])(ν(X[b1↓p]), . . . , ν(X[bm↓p]), k) = 1 iff k = a(c)↑p (this follows from the definitions
of cpt, satisfiable, and Lemma B.4). As a result, ν(X[r↓p, {b1↓p, . . . , bm↓p}, a(c)↓p]) = a(c)↑p since
ν is consistent. From this and BN ’s construction, it follows that there are nodes X[r↓p, a(c)↓p],
X[a(c)↓p] ∈ N such that ν(X[r↓p, a(c)↓p]) = > and ν(X[a(c)↓p]) = a(c)↑p. This completes the proof
of the if direction.
(⇐). To prove that if ν(X[a(c)↓p]) = a(c)↑p, then a(c) ∈ gf (p, 0, i), for some i, we prove a
stronger claim. Namely, if ν(X[a(c)↓p]) = a(c)↑p, then a(c) ∈ gf (p, 0, depth(X[a(c)↓p])), where
depth(n) = 0 if ancestors(n) does not contain any variable of the form X[b(v)] and depth(n) =
1 + maxn′∈ancestors(n)depth(n′) otherwise. We prove our claim by induction on depth(X[a(c)↓p]) (we
denote the induction hypothesis as (4)). The base case is as follows. If depth(X[a(c)↓p]) = 0,
then from ν(X[a(c)↓p]) = > and ν’s consistency, it follows that there must be a rule r, of the form
r = v::a(c) or r = a(c), such that X[r, a(c)] ∈ N and ν(X[r, a(c)]) = > (note that, in this case,
r↓p = r and a(c)↓p = a(c)). From this and ν’s consistency, there is a variable X[r, ∅, a(c)] ∈ N such
that ν(X[r, ∅, a(c)]) = >. If r = a(c), then a(c) ∈ gf (p, 0, 0) by definition. If r = v::a(c), then from
ν(X[r, ∅, a(c)]) = > and ν(X[r, ∅, a(c)]) = f(v::a(c)), it follows that f(v::a(c)) = >. From this, it
follows that a(c) ∈ gf (p, 0, 0). For the induction step, we assume that our claim holds for all random
variables of depth less than k. From ν(X[a(c)↓p]) = a(c)↑p and ν’s consistency, it follows that there
is a rule r ∈ p′ such that ν(X[r, a(c)↓p]) = a(c)↑p. From this and ν’s consistency, there is a set
of positive ground literals I = (b1, . . . , bm) such that X[r, (b1↓p, . . . , bm↓p), a(c)↓p] ∈ N and ν(X[r,
(b1↓p, . . . , bm↓p), a(c)↓p]) = a(c)↑p. From this and BN ’s construction (cf. the cpt and satisfiable
procedures and Lemma B.4), it follows that there is a rule r′ ∈ p such that (1) r′ ∈ [r]p, and (2) the
values assigned by ν to the random variables associated to the atoms in I produce a grounding s′ of r′
that satisfies all constraints and is consistent (namely, the body of s′ does not contain both an atom
and its negation and multiple copies of the same CPT-like atom in r′ are assigned to the same value
in r). From this, BN ’s definition, and µ(a) = 0, it follows that ν(X[b↓p]) = b↑p for all b ∈ I. From
this and the induction’s hypothesis (4), it follows that b ∈ gf (p, 0, depth(X[a(c)])− 1) for all b ∈ I.
From this, there is a rule r′ ∈ p such that (1) r′ ∈ [r]p, and (2) r is satisfied by {b1, . . . , bm}, i.e., there
is a grounding s′ of r′ obtained by using a subset of the literals in {b1, . . . , bm} and adding repeated
occurrences of the literals if needed. From this, it follows that s is in gf (p, r, 0, depth(X[a(c)↓p])).
From this, it follows that a(c) ∈ gf (p, 0, depth(X[a(c)↓p])). This completes the proof the only if
direction.
Induction Step. For the induction’s step, we assume that b(d) ∈ gf (p, µ(b)) iff ν(X[b(d)↓p]) =
b(d)↑p holds for all b such that µ(b) < µ(a). We now prove that a(c) ∈ gf (p, µ(a)) iff ν(X[a(c)↓p]) =
a(c)↑p as well. In the following, let k be µ(a). We prove separately the two directions, namely (1) if
a(c) ∈ gf (p, µ(a), i), for some i, then ν(X[a(c)↓p]) = a(c)↑p, and (2) if ν(X[a(c)↓p]) = a(c)↑p, then
a(c) ∈ gf (p, µ(a), i), for some i. From this, it follows that a(c) ∈ gf (p, µ(a)) iff ν(X[a(c)↓p]) = a(c)↑p.
(⇒). We prove, by induction on i, that if a(c) ∈ gf (p, k, i), for some i, then ν(X[a(c)↓p]) = a(c)↑p
(we denote the induction hypothesis associated to this proof as (♣)). From a(c) ∈ gf (p) ⊆ ground(p)
and Proposition B.17, then X[a(c)↓p] ∈ N . The base case is as follows. Assume that a(c) ∈ gf (p,
k, 0). From this and a(c) 6∈ gf (p, k − 1) (since µ(a) > k − 1), it follows that there is a rule r
such that either r = a(c) or r = v::a(c). If r = a(c), then there is a node X[r, ∅, a(c)] ∈ N such
that ν(X[r, ∅, a(c)]) = > due to ν’s consistency, gf (p, r) ⊆ ground(p, r), r↓p = r, a(c)↓p = a(c),
and Proposition B.17. If r = v::a(c), then f(v::a(c)) = > follows from a(c) ∈ gf (p, k, 0). From
this, gf (p, r) ⊆ ground(p, r), Proposition B.17, and ν(X[{v::a(c)}, ∅, a(c)]) = f(v::a(c)), it follows
that there is a node X[r, ∅, a(c)] ∈ N such that ν(X[r, ∅, a(c)]) = >. From ν(X[r, ∅, a(c)]) = >,
BN ’s definition, and nu’s definition, it follows that there are nodes X[r, a(c)], X[a(c)] ∈ N such
that ν(X[r, a(c)]) = > and ν(X[a(c)]) = > as well (note that r↓p = r and a(c)↓p = a(c)). For
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the induction step, we assume that our claim holds for all i′ < i. Assume that a(c) ∈ gf (p, k,
i). The only interesting case is when a(c) ∈ gf (p, k, i) \ gf (p, k, i − 1). From this, it follows that
there is rule r such that r′ = a(c) ← b1, . . . , bm and r′ ∈ gf (p, r, k, i). Furthermore, we denote
by b′1, . . . , b

′
m the atoms pos(b1), . . . , pos(bm). From this, it follows that be ∈ gf (p, k, i − 1) for

all be ∈ body+(r′) and b′d 6∈ gf (p, k − 1) for all bd ∈ body−(r′). From be ∈ gf (p, k, i − 1) for all
be ∈ body+(r′), gf (p, r) ⊆ ground(p, r), Proposition B.17, and the induction’s hypothesis (♣), it
follows that there is a node X[be↓p] ∈ N such that ν(X[be↓p]) = be↑p for all be ∈ body+(r′). From
b′d 6∈ gf (p, k − 1) for all bd ∈ body−(r′), it follows that b′d 6∈ gf (p, µ(pred(bd))) for all bd ∈ body−(r′).
From this, r′ ∈ gf (p, r, k, i), gf (p, r, k, i) ⊆ ground(p, r), Proposition B.17, µ(pred(bd)) < µ(a) for all
bd ∈ body−(r′), and the induction’s hypothesis (?), it follows that there is a node X[b′d↓p] ∈ N such
that ν(X[b′d↓p]) 6= b′d↑p for all bd ∈ body−(r′). From r′ ∈ gf (p, r, k, i), gf (p, r, k, i) ⊆ ground(p, r),
Proposition B.17, ν(X[be↓p]) = be↑p for all be ∈ body+(r′), ν(X[b′d↓p]) 6= b′d↑p for all bd ∈ body−(r′),
and BN ’s construction (cf. the cpt and satisfiable procedures and Lemma B.4), there is X[r↓p, {b′1↓p,
. . . , b′m↓p}, a(c)↓p] ∈ N such that cpt(X[r↓p, {b′1↓p, . . . , b′m↓p}, a(c)↓p])(ν(X[b′1↓p]), . . . , ν(X[b′m↓p]),
k) = 1 iff k = a(c)↑p. As a result, ν(X[r↓p, {b′1↓p, . . . , b′m↓p}, a(c)↓p]) = > since ν is consistent.
From this and BN ’s construction, it follows that there are variables X[r↓p, a(c)↓p], X[a(c)↓p] ∈ N
such that ν(X[r↓p, a(c)↓p]) = a(c)↑p and ν(X[a(c)↓p]) = a(c)↑p. This completes the proof of the if
direction.
(⇐). To prove that if ν(X[a(c)↓p]) = a(c)↑p, then a(c) ∈ gf (p, k, i), for some i, we prove a stronger
claim. Namely, if ν(X[a(c)↓p]) = a(c)↑p, then a(c) ∈ gf (p, k, depth(X[a(c)])), where depth(n) is as
above. We prove our claim by induction on depth(X[a(c)↓p]) (we denote the induction hypothesis
associated to this proof as (♠)). The base case is as follows. If depth(X[a(c)↓p]) = 0, then from
ν(X[a(c)↓p]) = > and ν’s consistency, it follows that there must be a rule r, of the form r = v::a(c)
or r = a(c), such that X[r, a(c)] ∈ N and ν(X[r, a(c)]) = > (note that r↓p = r and a(c)↓p = a(c)).
From this and ν’s consistency, there is a variable X[r, ∅, a(c)] ∈ N such that ν(X[r, ∅, a(c)]) = >.
If r = a(c), then a(c) ∈ gf (p, k, 0) by definition. If r = v::a(c), then from ν(X[r, ∅, a(c)]) = > and
ν(X[r, ∅, a(c)]) = f(v::a(c)), it follows that f(v::a(c)) = >. From this, it follows that a(c) ∈ gf (p,
k, 0). For the induction step, we assume that our claim holds for all random variables of depth less
than k. We now show that it holds also for a variable X[a(c)↓p] such that depth(X[a(c)↓p]) = i.
From ν(X[a(c)↓p]) = a(c)↑p and ν’s consistency, it follows that there is a rule r′ ∈ p′ such that
X[r′, a(c)↓p] ∈ N and ν(X[r′, a(c)↓p]) = a(c)↑p. From this and ν’s consistency, there is a set of
ground atoms I = (b1, . . . , bm) such thatX[r′, (b1↓p, . . . , bm↓p), a(c)↓p] ∈ N , ν(X[r′, (b1↓p, . . . , bm↓p),
a(c)↓p]) = a(c)↑p, and X[b↓p] ∈ N for all b ∈ I. From this and BN ’s construction (cf. the cpt and
satisfiable procedures and Lemma B.4), it follows that there is a rule r ∈ p such that (1) r ∈ [r′]p, and
(2) the values assigned by ν to the random variables associated to the atoms in I produce a grounding
s of r that satisfies all constraints and is consistent (namely, the body of s does not contain both an
atom and its negation and multiple copies of the same CPT-like atom in r′ are assigned to the same
value in r). Let I+ be the atoms in I that are assigned to positive literals in s and I− be the atoms in
I that are assigned to negative literals (note that these two sets are disjoint). From ν(X[r′, (b1↓p, . . . ,
bm↓p), a(c)↓p]) = a(c)↑p, and ν’s consistency, it follows that ν(X[be↓p]) = be↑p for all be ∈ I+ and
ν(X[bd↓p]) 6= bd↑p for all bd ∈ I−. From ν(X[be↓p]) = be↑p and depth(X[be↓p]) < depth(X[a(c)↓p])
for all be ∈ I+ and the induction’s hypothesis (♠), it follows that be ∈ gf (p, k, depth(X[be↓p])) for
all be ∈ I+. From this, the induction’s hypothesis, and depth(X[be↓p]) < depth(X[a(c)↓p]), it follows
that be ∈ gf (p, k, i − 1) for all be ∈ body+(r′). From ν(X[bd↓p]) 6= bd↑p and µ(pred(bd)) < µ(a) for
all bd ∈ I− and the induction’s hypothesis (?), it follows that bd 6∈ gf (p, µ(pred(bd))) for all bd ∈ I−.
From this and µ(pred(bd)) < µ(a), it follows that bd 6∈ gf (p, k−1) for all bd ∈ I−. From r′ definition,
be ∈ gf (p, k, i−1) for all be ∈ I+, and bd 6∈ gf (p, k−1) for all bd ∈ I−, it follows that r′ ∈ gf (p, r, k, i).
From this, it follows that r′ ∈ gf (p, k, i) and a(v) ∈ gf (p, k, i). This completes the proof the only if
direction.

Lemma B.6. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,
dom)-relaxed acyclic ProbLog program, W be a witness for p, s be a (Σ,dom)-structure, and
BN = 〈N,E,CPT〉 be the Bayesian Network generated by Algorithm 2 having p and W as input.
There is a p-probabilistic assignment f such that prob(f) = k and gf (p) = s iff there is a BN -total
assignment ν such that JBN K(ν) = k, ν is consistent, and ν |= s.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-relaxed
acyclic ProbLog program, W be a witness for p, s be a (Σ,dom)-structure, and BN = 〈N,E,CPT〉
be the Bayesian Network generated by Algorithm 2 having p and W as input. We now prove both
directions of our claim.
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(⇒). Let f be a p-probabilistic assignment f such that prob(f) = k and gf (p) = s. Furthermore,
let ν be the following BN -total assignment:

ν(n) =



f(v::a(c)) if n = X[v::a(c), ∅, a(c)]
> if n = X[a(c), ∅, a(c)]
k if k ∈ D(n) ∧ p(n) = {P1, . . . , Pm}

∧ν(P1) = v1 ∧ . . . ∧ ν(Pm) = vm

∧cpt(n)(v1, . . . , vm, k) = 1

The assignment ν is well-defined since (1) BN is a forest of poly-trees (see Proposition B.10), and (2)
for all nodes of the form X[v::a(c), ∅, a(c)] and X[a(c), ∅, a(c)], D(n) = {>,⊥} by construction (cf.
Algorithm 2). Furthermore, the assignment ν is consistent by construction. Indeed, for all variables
n ∈ N \K(BN ), the corresponding entry in the CPT is 1.

We now prove that ν |= s. From Lemma B.5, ν’s consistency, and f(v::a(c)) = ν(X[{v::a(c)},
∅, a(c)]) for all v::a(c) ∈ p, it follows that a(c) ∈ gf (p) iff ν(X[a(c)↓p]) = a(c)↑p. From this and
gf (p) = s, it follows ν |= s.

Finally, we show that JBN K(ν) = prob(f). In more detail, JBN K(ν) =
[(∏

n∈N cpt(n)
)]

(ν). This

can be equivalently rewritten as follows: JBN K(ν) =
[(∏

n∈K(BN) cpt(n)
)
·
(∏

n∈N\K(BN) cpt(n)
)]

(ν).
Furthermore, since ν is consistent and the CPTs associated with the variables in N \K(BN ) are de-
terministic, JBN K(ν) can be simplified as JBN K(ν) =

[(∏
n∈K(BN) cpt(n)

)]
(ν). From this and BN ’s

definition, it follows that JBN K(ν) =
∏
ν(X[v::a(c),∅,a(c)])=> v ·

∏
ν(X[v::a(c),∅,a(c)])=⊥(1− v). From this

and ν’s definition, it follows JBN K(ν) =
∏
f(v::a(c))=> v ·

∏
f(v::a(c))=⊥(1− v), which is equivalent to

prob(f).
(⇐). Let ν be a BN -total assignment such that JBN K(ν) = k, ν is consistent, and ν |= s, and f be
the following p-probabilistic assignment: f(v::a(c)) = ν(X[{v::a(c)}, ∅, a(c)]).

We now show that JBN K(ν) = prob(f). In more detail, JBN K(ν) =
[(∏

n∈N cpt(n)
)]

(ν). Further-
more, since ν is consistent and the CPTs associated with the variables in N\K(BN ) are deterministic,
JBN K(ν) can be simplified as JBN K(ν) =

[(∏
n∈K(BN) cpt(n)

)]
(ν). From this and BN ’s definition,

it follows that JBN K(ν) =
∏
ν(X[v::a(c),∅,a(c)])=> v ·

∏
ν(X[v::a(c),∅,a(c)])=⊥(1 − v). From this and ν’s

definition, it follows that JBN K(ν) =
∏
f(v::a(c))=> v ·

∏
f(v::a(c))=⊥(1 − v), which is equivalent to

prob(f).
We still have to prove that gf (p) = s. From Lemma B.5, ν’s consistency, f(v::a(c)) = ν(X[{v::a(c)},

∅, a(c)]), it follows that a(c) ∈ gf (p) iff ν(X[a(c)↓p]) = a(c)↑p. From this and ν |= s, it follows
gf (p) = s.

B.3.6 Proof of the main result
Theorem B.2 shows the correctness of our encoding.

Theorem B.2. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a
(Σ,dom)-relaxed acyclic ProbLog program, W be a witness for p, BN be the Bayesian Network
generated by Algorithm 2 having p and W as input, and s be a (Σ,dom)-structure. Furthermore, let
ν be the BN -partial assignment such that (1) for any ground atom a(c), ν(X[a(c↓p)]) = a(c)↑p iff
a(c) ∈ s, and (2) ν(v) is undefined otherwise. Then, JpK(s) = JBN K(ν).

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, p be a (Σ,dom)-
relaxed acyclic ProbLog program, W be a witness for p, BN be the Bayesian Network generated
by Algorithm 2 having p and W as input, and s be a (Σ,dom)-structure. Furthermore, let ν be the
BN -partial assignment such that (1) for any ground atom a(c), ν(X[a(c↓p)]) = a(c)↑p iff a(c) ∈ s,
and (2) ν(v) is undefined otherwise.

The probability JpK(s) is Σf∈M(p,s)prob(f), where M(p, s) is the set of all assignments f such
that Jinstance(p, f)K = s. Equivalently,M(p, s) is the set of all probabilistic assignments f such that
gf (p) = s. Let K be the set of all total assignments that agree with ν for all variables of the form
X[a(c)↓p]. The probability JBN K(µ) is Σν′∈KJBN K(ν′). Since any non-consistent assignment has
probability 0, JBN K(ν) = Σν′∈K′JBN K(ν′), where K′ is the set of all consistent assignments in K.
From this, it follows that JpK(s) = JBN K(ν) iff Σf∈{f |gf (p)=s}prob(f) = Σν′∈K′JBN K(ν′). The latter
follows trivially from Lemma B.6, which establishes a one-to-one mapping from {f | gf (p) = s} and
K′ that preserves probabilities.
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B.4 Complexity of Inference

Here we prove our results about the complexity of inference for ProbLog programs.

B.4.1 Size of the encoding
Given a Bayesian Network BN = 〈N,E,CPT〉, the size of BN , denoted |BN |, is |N | + |E| +

Σn∈N |cpt(n)|, where the size of a conditional probability table is just the number of rows in the
table (i.e., the number of all assignments). The size of an atom a(c) is |a|, whereas the size of a rule
h← l1, . . . , ln is |h|+ Σ1≤i≤n|li|. Finally, the size of a program p is Σr∈p|r|. The ground version of
p, denoted gv(p), is

⋃
r∈p ground(p, r), namely the relaxed grounding of all the rules in p. Note that

ground(p) ⊆ gv(p).
Let p be a relaxed acyclic ProbLog program, W be a witness for p, p′ = α(βW (p)) be the

transformed program, g = gv(p′) be its ground version, and bn(p,W ) = 〈N,E,CPT〉 be the corre-
sponding Bayesian Network derived by Algorithm 2. The number of nodes in N is O(|rules(p′)| · |g|).
Indeed, there is a node X[a(c)] for each ground atom in g. Moreover, for each rule r ∈ p′ and
ground rule r′ ∈ g, there are nodes X[r, body(r′), head(r′)] and X[r, head(r′)]. Finally, the number
of intermediate nodes generated by the tree procedure is twice the number of nodes of the form
X[r, body(r′), head(r′)].

The number of edges in E is O(|rules(p′)|2 · |g|). Indeed, there is an edge X[r, a(c)] → X[a(c)]
for each rule r and ground atom a(c). Furthermore, there is an edge X[b(v)]→ X[r, I, a(c)] for each
rule r, ground rule a(c)← I, and atom b(v) ∈ I. Finally, the number of edges introduced by the tree
procedure is O(|g|).

The size of cpt is O(|rules(p′)| · |g| ·max(2, |rules(p)|)2+|rules(p)|). Indeed, we have a CPT for each
node n ∈ N . The size of each CPT depends on (1) the number of parents for each node, and (2)
the size of the domain associated to each variable. In the worst case, the size of the domain of each
node is max(2, |rules(p)|) (since the size of the domain of a CPT-like predicate depends only on the
rules — there are no CPT-like predicates defined by ground atoms). The number of parents for
intermediate nodes is 2, and the size of each CPT is O(max(2, |rules(p)|)3). The maximum number
of parents for nodes of the form X[r, a(c)] is 1, and the size of each CPT is O(max(2, |rules(p)|)2).
The maximum number of parents for nodes of the form X[r, I, a(c)] is |rules(p′)|, and the size of each
CPT is O(max(2, |rules(p)|)|rules(p′)+1|). Similarly, the maximum number of parents for nodes of the
form X[a(c)] is 1 + |rules(p)|, and the size of each CPT is O(max(2, |rules(p)|)|rules(p′)+2|).

As a result, |bn(p,W )| is O(|rules(p′)|2 · |g| · max(2, |rules(p)|)2+|rules(p)|). Furthermore, since
|g| ∈ O(|prob(p′)||rules(p′)|), it follows that |bn(p,W )| is O(|rules(p′)|2 · |prob(p′)||rules(p′)| · max(2,
|rules(p)|)2+|rules(p)|). Finally, since |prob(p′)| ∈ O(|prob(p)|) and |rules(p′) ∈ O(|rules(p)|), we can
simplify the result as follows: |bn(p,W )| isO(|rules(p)|2·|prob(p)||rules(p)|·max(2, |rules(p)|)2+|rules(p)|).
Hence, the size of bn(p,W ) is polynomial in |prob(p)|.

B.4.2 Complexity Proofs
We first define the inference problem Inf. Afterwards, we analyze its complexity.

Definition B.1. Inf denotes the following decision problem:
Input: A database schema 〈Σ,dom〉 such that dom is a finite domain, a ProbLog program p, a
set of ground literals E, and a ground atom a(c).
Output: The probability of a(c) given evidence in E. �

The data complexity of Inf(Σ,dom, p, E, a) for relaxed acyclic programs can be obtained by (1)
fixing rules(p) and varying only prob(p) (and indirectly dom), and (2) requiring the program to
be relaxed acyclic. The data complexity of the Inf problem for relaxed-acyclic programs p is the
complexity of the following decision problem:
Definition B.2. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain, R be a fixed
set of ProbLog rules over Σ, E be a set of ground literals, a(c) be a ground atom, and W be a
CPT-schema. InfraΣ,R,E,a(c),W denotes the following problem:
Input: A set of probabilistic atoms E′ such that (1) atoms in E and a(c) refer only to constant values
in E′ and R, and (2) R ∪ E′ is a relaxed acyclic ProbLog program and W is a safe CPT-schema
and a witness for the acyclicity of R ∪ E′.
Output: The probability of a(c) given evidence in E. �

Theorem B.3. InfraΣ,R,E,a(c),W is in Ptime.

Proof. Let 〈Σ,dom〉 be a database schema such that dom is a finite domain R be a fixed set of
ProbLog rules over Σ, E be a set of ground literals, a(c) be a ground atom, and W be a CPT-
schema. We consider only inputs E′ such that E′ ∪ R is a relaxed acyclic ProbLog program and
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W is a safe CPT-schema and a witness for the acyclicity of R ∪E′. The size of E′ is the sum of the
sizes of all atoms, where the size of an atom is its cardinality.

Let e be the number of distinct constants occurring in E′ ∪ R and r be |R|. Computing Inf(Σ,
E′, p, E, a) can be done in the following steps:

1. Transform the original program p into the program p′ (by applying the α and βW transforma-
tions).

2. Construct the ground version g of the program p′.
3. Construct the Bayesian Network bn(p,W ) from g.
4. Perform the inference on bn(p,W ).

The first step can be performed in linear time in the size of O(e+r). The second step can be performed
in O(er) (because the grounding of p′ can be done in O(e|rules(p′)|) and |rules(p′)| ≤ r). The third
step can be performed in O(r4 ·e2·r ·max(2, r)2+r) (constructing N and E can be done in O(r2 ·e2·r),
whereas the cpt can be constructed in O(r4 · er ·max(2, r)2+r)). The fourth step can be performed in
O(|bn(p)|) since bn(p) is a forest of poly-trees (see Proposition B.10). In particular, inference can be
performed by (1) identifying the poly-tree that contains the atom a(x) (in O(|bn(p)|)), (2) identifying
the subset E′′ ⊆ E of all atoms in the poly-tree of a(x) (again in O(|bn(p)|)), and (3) performing
inference using belief-propagation (in O(|bn(p)|) [105]). Therefore, the fourth step can be performed
in O(r2 · er · max(2, r)2+r). As a result, the answer to Inf can be computed in O(r2 · e2·r · max(2,
r)2+r). Furthermore, since r is fixed and the number of constants in E′ is O(|E′|), there is a k ∈ N
such that e ∈ O(|E′|+ k). From this, it follows that there is a k ∈ N such that Inf can be computed
in O(|E′|k). Hence, the complexity of InfraΣ,R,E,a(c),µ (and the data complexity of Inf) is Ptime.

Inf for ProbLog is #P -hard. This follows from the #P -hardness of inference on arbitrary
Bayesian networks (BNs) [105], which can be encoded in ProbLog. We now show that inference
for ProbLog programs is #P -hard even in terms of data complexity. We do this using a reduction
from the #Sat problem (counting the number of satisfying assignments of a propositional formula
φ), which is #P -hard [126].

Proposition B.18. Inf is #P -hard in terms of data complexity for ProbLog programs.

Proof. We show this by reducing the #Sat problem to inference for a ProbLog program p where
(1) the formula can be encoded in prob(p), and (2) the rules are fixed. Let φ be a propositional
formula.
First-order Signature. Let Σ be the signature containing the following predicate symbols:

• e of arity 1, which is used to store the identifiers associated to all sub-expressions of φ,
• state of arity 1, which is used to store the propositions in the model,
• sat of arity 1, which is used to denote whether an expression is satisfiable or not,
• conj of arity 3 which is used to encode conjunctions,
• disj of arity 3 which is used to encode disjunctions,
• neg of arity 2 which is used to encode negations, and
• prop of arity 2 used to encode propositions.

Rules. We now define a fixed set of rules encoding the semantics of propositional logic.

sat(x)← e(x), prop(x, y), state(y)
sat(x)← e(x),neg(x, y),¬sat(y)
sat(x)← e(x), conj(x, y, z), sat(y), sat(z)
sat(x)← e(x), disj(x, y, z), sat(y)
sat(x)← e(x), disj(x, y, z), sat(z)

Encoding a formula φ. Given a formula φ, we define the following encoding using probabilistic
ground atoms. We first associate to each sub-formula ψ of φ a unique identifier idψ. We also
associate a unique identifier idp to each propositional symbol p. For each sub-formula ψ ∧ γ, the
ground atoms e(idψ∧γ) and conj(idψ∧γ , idψ, idγ) are in E′. For each sub-formula ψ ∨ γ, the ground
atoms e(idψ∨γ) and disj(idψ∨γ , idψ, idγ) are in E′. For each sub-formula ¬ψ, the ground atoms
e(id¬ψ) and neg(id¬ψ, idψ) are in E′. For each sub-formula ψ such that ψ is a propositional symbol
p, the ground atoms e(idψ) and prop(idψ, idp) are in E′. Finally, for each propositional symbol p,
there is a propositional atom 1/2::state(idp) in E′.
Reduction. There are 2n(φ) grounded instances of R ∪ E′, where n(φ) is the number of distinct
propositional symbols occurring in φ, each one with probability 1/2n(φ). The grounded instances
represent all possible assignments of > and ⊥ to the proposition symbols in φ. It is easy to see that
sat(idφ) can be derived in a grounded instance iff the instance represents a model for φ. Therefore,
the probability JR ∪ E′K(sat(idφ)) is k/2n(φ), where k is the number of models that satisfy φ.
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Note that the encoding shown in the previous proof can be tweaked to work for acyclic ProbLog
programs but only for propositional formulae without repetitions of propositional symbols. We
remark that the #Sat problem restricted to formulae without repetitions is no longer #P -hard.
Indeed, it can be solved in Ptime as follows: given a formula φ without repetitions, we can construct
a poly-tree boolean Bayesian Network BN encoding φ in O(|φ|), where the nodes associated to
propositional symbols p have a uniform probability distribution (i.e., p is > with probability 1/2 and
⊥ with probability 1/2). Then, the probability associated to the root of φ is going to be k/2n(φ), where
k is the number of satisfying assignments. Since the inference on BN can be done in linear time in
|BN | and |BN | ∈ O(|φ|), then the whole problem is in Ptime.

B.5 Expressiveness

Here we show that any BN that consists of a forest of poly-trees can be represented as a relaxed
acyclic program.

Proposition B.19. Any BN that is a forest of poly-trees can be represented as a relaxed acyclic
ProbLog program.

Proof. Let bn be a BN that is a forest of poly-trees. We now construct the corresponding relaxed
acyclic ProbLog program. In particular, for each random variable X in bn, we show how to equiv-
alently encode it using ProbLog rules. Without loss of generality, we assume there is a unique
mapping id from random variables in bn to predicate symbols identifiers. With a slight abuse of
notation, we use X to refer both to the random variable and to the corresponding symbol id(X).
Boolean Random Variables without parents. For each boolean random variable X such that
(1) p(X) = ∅, and (2) CPT(X) = {> 7→ v,⊥ 7→ (1− v)}, we introduce a probabilistic atom v::X.
Non-Boolean Random Variables without parents. For each non-boolean random variable X
with domain {q1, . . . , qn} such that (1) p(X) = ∅, and (2) CPT(X) = {q1 7→ v1, . . . , qn 7→ vn}, we
introduce an annotated disjunction v1::X(q1); . . . ; vn::X(qn).
Boolean Random Variables with parents. Let X be a boolean random variable X with parents
p(X) = {Y1, . . . , Yn}, CPT(X) be the function associated with X, and v1, . . . , vm be all possible
assignments to the variables in p(X). We introduce m fresh predicate symbols swX,v1 , . . . , swX,vm .
For each vi, we introduce the probabilistic atom ci::swX,vi , where CPT(X)(vi,>) = ci. Finally, for
each vi, we also introduce the following rules:

X ← Y1[vi(1)], . . . , Yn[vi(n)], sw(l1), swX,vi
...

X ← Y1[vi(1)], . . . , Yn[vi(n)], sw(l2i−1), swX,vi

where l1, . . . , l2i−1 are all possible values in {>,⊥}i−1, sw(l1, . . . , li−1) is the list of literals swX,v1 [l1],
. . . , swX,vi−1 [li−1], and given a symbol A, A[>] = A, A[⊥] = ¬A, and A[v] = A(v) if v 6∈ {>,⊥}.
Non-Boolean Random Variables with parents. Let X be a non-boolean random variable X
with domain {q1, . . . , qm} and parents p(X) = {Y1, . . . , Yn}, CPT(X) be the function associated with
X, and v1, . . . , vn be all possible assignments to the variables in p(X). For each v1, we introduce the
probabilistic atoms w1

i ::swq1
X,vi

, . . . , wmi ::swqm
X,vi

, where for all 1 ≤ i ≤ n, wji = cji ·
(

1−
∑

1≤k<j c
k
j

)
and CPT(X)(vi, qj) = cji . Finally, for each vi, we also introduce the following rules:

X[q1]← Y1[vi(1)], . . . , Yn[vi(n)], sw(l1), swq1
X,vi

X[q2]← Y1[vi(1)], . . . , Yn[vi(n)], sw(l1),¬swq1
X,vi

, swq2
X,vi

...
X[qm]← Y1[vi(1)], . . . , Yn[vi(n)], sw(l1),¬swq1

X,vi
, . . . ,¬swqm−1

X,vi
, swqm

X,vi

...
X[q1]← Y1[vi(1)], . . . , Yn[vi(n)], sw(l2m(i−1)), swq1

X,vi

X[q2]← Y1[vi(1)], . . . , Yn[vi(n)], sw(l2m(i−1)),¬swq1
X,vi

, swq2
X,vi

...
X[qm]← Y1[vi(1)], . . . , Yn[vi(n)], sw(l2m(i−1)),¬swq1

X,vi
, . . . ,¬swqm−1

X,vi
, swqm

X,vi
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where l1, . . . , l2m(i−1) are all possible values in {>,⊥}m(i−1), sw(l11, . . . , lm1 , . . . , l1i−1, . . . , l
m
i−1) is the

list of literals swq1
X,v1

[l11], . . . , swqm
X,v1

[lm1 ], . . . , swq1
X,vi−1

[l1i−1], . . . , swqm
X,vi−1

[lmi−1], and given a predicate
symbol A, A[>] = A, A[⊥] = ¬A, and A[v] = A(v) if v 6∈ {>,⊥}. Observe that the above rules
are equivalent to having, for each vi, the annotated disjunction c1i ::X[q1]; . . . ; pmi ::X[qm]← Y1[vi(1)],
. . . , Yn[vi(n)] encoding the CPT’s row.
Correctness of the encoding. The encoding presented above encodes the CPTs for the random
variables. The probability that a random variable X has value v is exactly the same as the probability
associated with the ground literal X[v] (with the notation defined above). The encoding for variables
without parents directly encodes the corresponding CPTs. For variables with parents, the only non-
standard part is the use of sw(l2i−1), swX,vi . Note, however, that the literals in sw(l2i−1) do not
influence the derivation since there is a rule for any possible values for them. We need them only
for the encoding. Therefore, also the encoding of random variables with parents directly encodes the
corresponding CPTs.
Relaxed Acyclicity. Let p be the program produced by the above construction. It is easy to see
that all predicates associated with non-boolean random variables are safe annotated disjunctions (as
we just encoded their CPTs). The horizontal partitioning πH contains, for each non-boolean variable
X, only one set RR that, in turns, contains a partition of the rules defining X based on the CPT row,
whereas the vertical partitioning πV is such that, for instance, πV (X[qm]← Y1[vi(1)], . . . , Yn[vi(n)],
sw(l1),¬swq1

X,vi
, . . . ,¬swqm−1

X,vi
, swqm

X,vi
) = 〈(Y1[vi(1)], . . . , Yn[vi(n)], sw(l1)), ε, (¬swq1

X,vi
, . . . ,¬swqm−1

X,vi
,

swqm
X,vi

)〉. Finally, the function µ is such that µ(X) = ∅ for boolean variables X and µ(X) = {1} for
non-boolean variables. Observe that the schema 〈πH , πV , µ〉 is safe. Therefore, the program βW (p) is
obtained by removing all constant values associated with the domains of non-boolean random values.
Finally, the program α(βW (p)) collapses the rules for random variables with parents into a single
rule (this follows from the use of sw in the rules’ bodies). The acyclicity of p′ = α(βW (p)) follows
from (1) p′ does not contain free-variables (i.e., both the literals and the ground atoms are only
propositional facts), (2) bn is a forest of poly-trees, and (3) each predicate symbol swX,vi occurs only
in the rule of X. From (1), it follows that all rules are both strongly and weakly connected. From
(2) and (3), it follows that (a) there are no directed cycles in graph(p), and (b) for all undirected
cycles U in graph(p), there are U ′, U ′′ such that U is equivalent to U ′·U ′′ and U ′ is P ′ r,i←− P r,i−→ P ′

for some P, P ′, r, i. Since all rules are both strongly and weakly connected, it directly follows that
the undirected unsafe structure 〈P r,i−→ P ′, P

r,i−→ P ′, P ′, U ′′〉 is guarded. Therefore, p′ is acyclic and
p is a relaxed acyclic ProbLog program.

Observe that the reduction from poly-tree Bayesian Networks to relaxed acyclic programs intro-
duces an exponential blow-up. This is due to our use of the sw function for encoding the CPTs. We
remark, however, that this exponential factor is not present when we ground the program, as the ex-
ponentially many rules collapse into a single rule. We also note that, in the worst case, the Bayesian
Network corresponding to a relaxed acyclic ProbLog program is exponential in the program’s size
(as it depends on the program’s grounding).

B.6 ANGERONA

Here we prove Angerona’s security and complexity.

B.6.1 Security Proof
Let C = 〈D,Γ〉 be a system configuration and h be a C-history. The set observations(h, u) is

{φ | ∃i. h(i) = 〈〈u, φ〉,>,>〉} ∪ {¬φ | ∃i. h(i) = 〈〈u, φ〉,>,⊥〉}.
We first prove that Angerona’s result depends just on the queries in the history, and not on the

actual database’s state.

Proposition B.20. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, and
〈u, q〉 be a C-query. Angerona(C, s, h,ATK , 〈u, q〉) = Angerona(C, s′, h′,ATK , 〈u, q〉) whenever
observations(h, u) = observations(h′, u).

Proof. Let C = 〈D,Γ〉 be a system configuration, ATK be an AtkLog model, and 〈u, q〉 be
a C-query. Furthermore, let s, s′ be C-states and h, h′ be C-histories such that observations(h,
u) = observations(h′, u). Assume, for contradiction’s sake, that Angerona(C, s, h,ATK , 〈u, q〉) 6=
Angerona(C, s′, h′,ATK , 〈u, q〉). Without loss of generality, assume that Angerona(C, s, h,ATK ,
〈u, q〉) = > and Angerona(C, s′, h′,ATK , 〈u, q〉) = ⊥. This happens iff either the result of pox
or secure is different in the two cases. The results of pox and secure, however, depend just on
the attacker’s initial beliefs, the query q, and the set of formulae in observations(h, u). From
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this and observations(h, u) = observations(h′, u), it follows that Angerona(C, s, h,ATK , 〈u, q〉) =
Angerona(C, s′, h′,ATK , 〈u, q〉).

We now prove a key result for our security proof, namely that considering only the sentences in
observations(h, u) is enough to determine secrecy-preservation.

Proposition B.21. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be
the C-PDP obtained by parametrizing Algorithm 1 with C and ATK , u ∈ U be a user, and r = 〈s, h〉
be a (C, f)-run. The following fact holds: JrK∼u = {db ∈ ΩΓ

D |
∧
φ∈observations(h,u)[φ]db = >}.

Proof. (⇒). Let C = 〈D,Γ〉 be a system configuration, ATK be an AtkLog model, f be the C-PDP
obtained by parametrizing Algorithm 1 with C and ATK , u ∈ U be a user, and r = 〈〈db, U, P 〉, h〉
be a (C, f)-run. Furthermore, let r′ = 〈〈db′, U ′, P ′〉, h′〉 be a run in [r]∼u . From this, it follows that
h|u = h′|u. From this, it follows that all queries in observations(h, u) have the same result in db and
db′. Therefore, db′ ∈ {db ∈ ΩΓ

D |
∧
φ∈observations(h,u)[φ]db = >}.

(⇐). Let C = 〈D,Γ〉 be a system configuration, ATK be an AtkLog model, f be the C-PDP
obtained by parametrizing Algorithm 1 with C and ATK , u ∈ U be a user, and r = 〈〈db, U, P 〉, h〉
be a (C, f)-run. Furthermore, let db′ be a database state in {db′ ∈ ΩΓ

D |
∧
φ∈observations(h,u)[φ]db′}.

We now construct a C-state s and an history h′ such that (1) 〈s, h′〉 is a run, (2) s.db = db′, and
(3) 〈s, h′〉 ∈ [r]∼u . The C-state s is defined as 〈db′, U, P 〉, whereas the history h′ = h|u. We claim
that 〈s, h′〉 is a run. From this and h′ = h|u, it follows that 〈s, h′〉 ∼u r. From this, it follows that
db′ ∈ JrK∼u .

To prove our claim that 〈〈db′, U, P 〉, h|u〉 is a run, we prove the stronger fact that for all 0 ≤ i ≤ |h|,
〈〈db′, U, P 〉, hi|u〉 is a run. We prove this by induction on i.
Base case. The base case 〈〈db′, U, P 〉, h0|u〉 is trivial since db′ ∈ ΩΓ

D and h0|u = ε, therefore
〈〈db′, U, P 〉, h0|u〉 is a run.
Induction Step. Assume that 〈〈db′, U, P 〉, hi−1|u〉 is a run. We now show that 〈〈db′, U, P 〉, hi|u〉 is
a run as well. Let 〈〈u′, q〉, a, res〉 be the last C-event in hi. There are two cases:

• u′ 6= u. From this, hi|u = hi−1|u. Therefore, 〈〈db′, U, P 〉, hi−1|u〉 = 〈〈db′, U, P 〉, hi|u〉 and our
claim directly follows from the induction hypothesis.

• u′ = u. From this, hi|u = hi−1|u·〈〈u, q〉, a, res〉. Assume, for contradiction’s sake, that 〈〈db′,
U, P 〉, hi|u〉 is not a run. From 〈〈db′, U, P 〉, hi−1|u〉 is a run (which directly follows from the
induction hypothesis), it follows that there are only three cases:
1. f(〈db′, U, P 〉, 〈u, q〉, hi−1|u) 6= a. Since a is the security decision associated with the last

event in hi, it follows that a = f(〈db, U, P 〉, 〈u, q〉, hi−1). From this, it follows that f(〈db,
U, P 〉, 〈u, q〉, hi−1) 6= f(〈db′, U, P 〉, 〈u, q〉, hi−1|u). From observations’s definition, it follows
that observations(hi−1, u) = observations(hi−1|u, u). From this and Proposition B.20, it
follows that f(〈db, U, P 〉, 〈u, q〉, hi−1) = f(〈db′, U, P 〉, 〈u, q〉, hi−1|u), leading to a contra-
diction.

2. a = ⊥ but res 6= †. This contradicts the fact that the history is derived from h, which
comes from a proper run.

3. a = > but res 6= [q]db′ . From res 6= [q]db′ and res = [q]db (since res comes from the run r),
it follows that [q]db 6= [q]db′ . There are two cases:
– [q]db = >. From this and the definition of observations, it follows that q ∈ observations(h,
u). Therefore, [q]db′ = > follows from db′ ∈ {db′ ∈ ΩΓ

D |
∧
φ∈observations(h,u)[φ]db′},

leading to a contradiction.
– [q]db = ⊥. From this and the definition of observations, it follows that ¬q ∈ observations(h,
u). From this and db′ ∈ {db′ ∈ ΩΓ

D |
∧
φ∈observations(h,u)[φ]db′}, it follows that

[¬q]db′ = >. From this, [q]db′ = ⊥ = [q]db, leading to a contradiction.
This completes the proof of our claim.

Propositions B.22 and B.23 state the correctness of the secure and pox procedure.

Proposition B.22. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be
the C-PDP obtained by parametrizing Algorithm 1 with C and ATK , ATK ′ = λu ∈ U .JATK(u)KD
be the (C, f)-attacker model associated to ATK , r = 〈s, h〉 be a run in runs(C, f), and 〈u, ψ, l〉 be a
secret in r.S. Then, secure(C,ATK , h, 〈u, ψ, l〉) returns true iff JATK ′K(u, 〈s, h〉)(JψK) < l.

Proof. Let r = 〈s, h〉 be a run such that s is compatible with h. The secure procedure returns
JATK(u)KD(JψK|

⋂
φ∈observations(h,u)JφK) < l. From Proposition B.21, it follows that JrK∼u = {db ∈

ΩΓ
D |
∧
φ∈observations(h,u)[φ]db = >} =

⋂
φ∈observations(h,u)JφK. We can therefore rewrite secure’s result

as JATK(u)KD(JψK|J〈s, h〉K∼u) < l. This is equivalent to JATK ′K(u, 〈s, h〉)(JψK) < l.
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Proposition B.23. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be
the C-PDP obtained by parametrizing Algorithm 1 with C and ATK , ATK ′ = λu ∈ U .JATK(u)KD be
the (C, f)-attacker model associated to ATK , r = 〈s, h〉 be a run in runs(C, f), and 〈u, q〉 be a query.
Then, pox(C,ATK , h, 〈u, q〉) returns true iff JATK ′K(u, 〈s, h〉)(q) > 0.

Proof. Let r = 〈s, h〉 be a run such that s is compatible with h. The pox procedure returns
JATK(u)KD(JqK|

⋂
φ∈observations(h,u)JφK) > 0. From Proposition B.21, it follows that JrK∼u = {db ∈

ΩΓ
D |
∧
φ∈observations(h,u)[φ]db = >} =

⋂
φ∈observations(h,u)JφK. We can therefore rewrite pox’s result as

JATK(u)KD(JqK|J〈s, h〉K∼u) < l. This is equivalent to JATK ′K(u, 〈s, h〉)(JqK) > 0.

We now prove that Angerona provides the desired security guarantees.
Theorem B.4. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be the
C-PDP obtained by parametrizing Algorithm 1 with C and ATK , and ATK ′ = λu ∈ U .JATK(u)KD
be the (C, f)-attacker model associated to ATK . The PDP shown in Algorithm 1, parametrized with
ATK , provides data confidentiality with respect to C and ATK ′.

Proof. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be the C-PDP
obtained by parametrizing Algorithm 1 with C and ATK , and ATK ′ = λu ∈ U .JATK(u)KD be the
(C, f)-attacker model associated to ATK . Furthermore, let f be the PDP shown in Algorithm 1.
Assume, for contradiction’s sake, that f does not provide confidentiality with respect to C and ATK ′.
From this, it follows that there is a run r = 〈〈db, U, P 〉, h〉, a user u ∈ U , a secret 〈u, φ, l〉 ∈ P , and a
0 ≤ i ≤ |h| − 1 such that JATK ′K(u, ri)(JφK) < l and JATK ′K(u, ri+1)(JφK) ≥ l. As a result, the i-th
C-query is the one that leaked information. There are two cases:

• The C-query is 〈u, q〉, for some q. There are three cases:
– The result of the PDP is > and the query q holds in the current state. From this, it

follows that there is a database state (namely, the one in r) where the query q holds and
the database is consistent with observations(hi, u). From this, it follows that JATK ′K(u,
ri)(JqK) > 0. From this and Proposition B.23, it follows that pox(C,ATK , hi, 〈u, q〉)
returns true. From this and the fact that the query has been authorized, it follows that
secure(C,ATK , hi+1, 〈u, φ, l〉) returned true. From this, the fact that r is actually a run
(since q is satisfied in r.db), and Proposition B.22, it follows that JATK ′K(u, ri+1)(JφK) < l,
leading to a contradiction.

– The result of the PDP is > and the query q does not hold in the current state. From this, it
follows that there is a database state (namely, the one in r) where the query ¬q holds and
the database is consistent with observations(hi, u). From this, it follows that JATK ′K(u,
ri)(J¬qK) > 0. From this and Proposition B.23, it follows that pox(C,ATK , hi, 〈u,¬q〉)
returns true. From this and the fact that the query has been authorized, it follows that
secure(C,ATK , hi+1, 〈u, φ, l〉) returned true. From this, the fact that r is actually a run
(since q is satisfied in r.db), and Proposition B.22, it follows that JATK ′K(u, ri+1)(JφK) < l,
leading to a contradiction.

– The result of the PDP is ⊥ (namely the query is not authorized). From this and Propo-
sition B.20, it follows that for any run r′ ∼u ri the PDP result is the same. Therefore,
JriK∼u = Jri+1K∼u . From this, JATK ′K(u, ri)(JφK) < l, and AtkLog semantics, it follows
that JATK ′K(u, ri+1)(JφK) < l, leading to a contradiction.

• The C-query is 〈u′, q〉, where u′ 6= u and q is a query. From this, it follows that JATK ′K(u,
ri)(JφK) = JATK ′K(u, ri+1)(JφK) since u’s belief does not change in response to a query from
another user (since ri|u = ri+1|u). From this and JATK ′K(u, ri)(JφK) < l, it follows that both
JATK ′K(u, ri+1)(JφK) < l and JATK ′K(u, ri+1)(JφK) ≥ l, leading to a contradiction.

Since all cases ended in contradiction, this completes the proof of our claim.

B.6.2 Complexity Proof
First, we formalize literal queries, a fragment of relational calculus that can be composed with

relaxed acyclic programs without modifying acyclicity. Afterwards, we prove that for acyclic AtkLog
models and literal queries, Angerona has Ptime data complexity.

A literal query is a quantifier-free relational calculus (Σ,dom)-formula either of the form R(c) or
¬R(c), where R ∈ Σ and c ∈ dom|R|. We say that a literal query R(c) (or ¬R(c)) is compatible with
a relaxed acyclic program p (with witness W = 〈πH , πV , µ〉) iff µ(R) 6= ∅ implies c↓µ(R) ∈ pdom(R, p,
µ(R)). We now show that literal queries can be composed with acyclic ProbLog programs without
introducing cycles.
Proposition B.24. Let D = 〈Σ,dom〉 be a database schema, p be a relaxed acyclic program, W be
a witness for p, R be a predicate symbol in Σ, c ∈ dom|R| be a tuple, and φ be a boolean D-query. If
φ is a literal query compatible with p, then p∪PL(φ) is a relaxed acyclic ProbLog program as well.
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Proof. Let D = 〈Σ,Γ〉 be a database schema, p be a relaxed acyclic program, and φ be a boolean
D-query. Furthermore, let φ be a literal query. Assume, for contradiction’s sake, that p ∪ PL(φ)
is not a relaxed acyclic program. This happens iff the program α(βµ(p ∪ PL(φ))) is not an acyclic
program. This happens iff the program α(βµ(p ∪ PL(φ))) contains an unguarded cycle C. The only
interesting case is when C contains rules from PL(φ). If φ = R(c), then PL(φ) contains a single rule
fresh ← R(c), where fresh is a fresh predicate symbol. Similarly, if φ = ¬R(c), then PL(φ) contains
two rules fresh1 ← fresh2 and fresh2 ← ¬R(c), where fresh1 and fresh2 are fresh predicate symbols.
From this, it follows that C is an undirected cycle (which is not a directed cycle). Observe that all
rules in PL(φ) are both strongly and weakly connected for T . Hence, it follows that there is always
an unguarded cycle C′ that can be obtained from C by removing the rules in PL(φ). This contradicts
the fact that p is a relaxed acyclic program.

Here, we show that for acyclic AtkLog models, Angerona has Ptime data complexity. Observe
that we say that an AtkLog-model is relaxed acyclic if so are all the ProbLog programs in it.

Theorem B.5. Let C be a system configuration and f be the PDP shown in Algorithm 1. For any
relaxed acyclic C-AtkLog model ATK , any action (u, q) such that q is a literal query compatible with
p, and any run r ∈ runs(C, f) such that (1) all sentences in observations(r.h, u), for any u ∈ r.U ,
are literal queries compatible with p, and (2) all secrets in r.S are literal queries compatible with p,
the algorithm shown in Algorithm 1 has Ptime data complexity.

Proof. Let B be the ProbLog program obtained from ATK . The data complexity of f is its
complexity when only the database r.db and prob(B) change. The algorithm in Algorithm 1 calls
three times the secure procedure and twice the pox procedure. The set observations(h, u) can be
constructed in O(|h|). From this, it follows that the program p has size O(|prob(B)|+|rules(B)|+|h|).
Furthermore, since all queries are literal queries, B is a relaxed acyclic ProbLog program, and
Proposition B.24, it follows that p is a relaxed acyclic ProbLog program as well. From this and
Theorem B.3, the inference can be performed in O(r2 · er ·max(2, r)2+r), where r ∈ O(|rules(B)|+
(|r| + |prob(K)|)|rules(K)|) and e ∈ O(|prob(B)|). Since rules(B), r, and K are fixed, then the data
complexity of the secure procedure is O(|prob(B)|k), for some k ∈ N. From this and the fact that
Algorithm 1 three times the secure procedure and twice the pox procedure per secret in r.S, it follows
that the data complexity of Algorithm 1 is Ptime.

B.6.3 Completeness Proof
We first introduce the notion of unconditionally secrecy-preserving query. Informally, a query

〈u′, q〉 is unconditionally secrecy-preserving given a run r and a secret 〈u, ψ, l〉 iff disclosing the result
of 〈u′, q〉 in any run r′ ∼u r does not violate the secret.

Definition B.3. Let C = 〈D,Γ〉 be a configuration, f be a C-PDP, and ATK be a (C, f)-attacker
model. A query q is unconditionally secrecy-preserving for a (C, f)-run r, a user u, a secret 〈u,
ψ, l〉, and ATK iff JATKK(u, r)(ψ) < l implies that (a) if JATKK(u, r)(q) > 0, then JATKK(u,
r)(ψ | {db ∈ JrK∼u | [q]db = >}) < l, and (b) if JATKK(u, r)(¬q) > 0, then JATKK(u, r)(ψ | {db ∈
JrK∼u | [q]db = ⊥}) < l. �

We say that a PDP is complete if it authorizes all unconditionally secrecy-preserving queries.
Angerona is complete. This directly follows from (1) Proposition B.21, (2) the use of exact inference
procedures for ProbLog programs, and (3) the fact that Angerona directly checks whether queries
are unconditionally secrecy-preserving or not.

Proposition B.25. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be
the C-PDP obtained by parametrizing Algorithm 1 with C and ATK , ATK ′ = λu ∈ U .JATK(u)KD be
the (C, f)-attacker model associated to ATK , r = 〈〈db, U, P 〉, h〉 be a run, and 〈u, q〉 be a C-query. If
q is unconditionally secrecy-preserving for u, r, ATK ′, and all secrets 〈u, ψ, l〉 ∈ secrets(P, u), then
f authorizes 〈u, q〉.

Proof. Let C = 〈D,Γ〉 be a system configuration, ATK be a C-AtkLog model, f be the C-PDP
obtained by parametrizing Algorithm 1 with C and ATK , ATK ′ = λu ∈ U .JATK(u)KD be the (C,
f)-attacker model associated to ATK , r = 〈〈db, U, P 〉, h〉 be a run, and 〈u, q〉 be a C-query. Assume,
for contradiction’s sake, that our claim does not hold. Namely, there is query 〈u, q〉 such that (1) the
query is unconditionally secrecy-preserving u, for all secrets 〈u, ψ, l〉 ∈ secrets(P, u), r, and ATK ′,
and (2) Angerona (parametrized with ATK) does not authorize 〈u, q〉. Since Angerona does not
authorize 〈u, q〉, it means that Angerona(C, 〈db, U, P 〉, h,ATK , 〈u, q〉) = ⊥. From this, it follows
that there is a secret 〈u, ψ, l〉 ∈ secrets(P, u) such that:

• secure(C,ATK , h, 〈u, ψ, l〉) = >, and
• one of the two cases hold:
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– pox(C,ATK , h, 〈u, q〉) = > and secure(C,ATK , h′, 〈u, ψ, l〉) = ⊥, where h′ = h · 〈〈u, q〉,>,
>〉, or

– pox(C,ATK , h, 〈u,¬q〉) = > and secure(C,ATK , 〈db, U, P 〉, h′′, 〈u, ψ, l〉) = ⊥, where h′′ =
h · 〈〈u, q〉,>,⊥〉.

Without loss of generality, we assume that pox(C,ATK , h, 〈u, q〉) = > and secure(C,ATK , h′〈u, ψ,
l〉) = ⊥, where h′ = h · 〈〈u, q〉,>,>〉 (the proof for the other case is identical). From secure(C,ATK ,
h, 〈u, ψ, l〉) = >, Proposition B.22, and the fact that s is compatible with h, it follows that JATK ′K(u,
r)(ψ) < l. From pox(C,ATK , h, 〈u, q〉) = >, Proposition B.22, and the fact that s is compatible with
h, it follows that JATK ′K(u, r)(q) > 0. From this and Proposition B.20, it follows that there is a
system state s′ = 〈db′, U, P 〉 such that (1) q holds in db′, (2) s′ is compatible with h|u, and (3) r′ = 〈s′,
h|u〉 is a run indistinguishable from r. From this, secure(C,ATK , h′, 〈u, ψ, l〉) = ⊥, secure(C,ATK , h′,
〈u, ψ, l〉) = secure(C,ATK , 〈db, U, P 〉, h′|u, 〈u, ψ, l〉), and Proposition B.22, it follows that JATK ′K(u,
〈s′, h′|u〉)(ψ) ≥ l. From this and the definition of h′|u, it follows that JATK ′K(u, r′)(ψ | {db ∈ JrK∼u |
[q]db = >}) ≥ l. From this, r ∼u r′, and JATK ′K(u, r) = JATK ′K(u, r′) if r ∼u r′, it follows that
JATK ′K(u, r)(ψ | {db ∈ JrK∼u | [q]db = >}) ≥ l. Therefore, we have that JATK ′K(u, r)(ψ) < l,
JATK ′K(u, r)(q) > 0, and JATK ′K(u, r)(ψ | {db ∈ JrK∼u | [q]db = >}) ≥ l. This contradicts the fact
that q is an unconditionally secrecy-preserving query and completes the proof of our claim.
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Appendix C

Proofs for Chapter 6

Here, we provide proofs of all the results in Chapter 6. For simplicity’s sake, we assume, with-
out loss of generality, that all the relational calculus formulae do not use constant symbols inside
predicates. For instance, instead of the formula ∃x.R(x, 5, 10), we consider the equivalent formula
∃x, y, z. R(x, y, z)∧y = 5∧ z = 10. Furthermore, for readability, we write secureP,u(r, i `u φ) instead
of secureP,∼=P,u(r, i `u φ).

C.1 Soundness of the attacker model

Proposition C.1 states that our attacker model is sound with respect to the relational calculus
semantics, i.e., every judgment r, i `u φ that holds in AT Ku is such that φ is satisfied in the i-th
state of r. We first introduce the concept of derivation. Given a judgment r, i `u φ, a derivation
of r, i `u φ with respect to AT Ku, or a derivation of r, i `u φ for short, is a proof tree, obtained
by applying the rules defining AT Ku, that ends in r, i `u φ. With a slight abuse of notation, we
use r, i `u φ to denote both the judgment and its derivation. The length of a derivation, denoted
|r, i `u φ|, is the number of rule applications in it. Note that a judgments r, i `u φ holds in AT Ku
iff there is a derivation for it.

Proposition C.1. Let P be an extended configuration, L be the P -LTS, u be a user, r ∈ traces(L)
be an L-run, φ ∈ RCbool be a sentence, and 1 ≤ i ≤ |r|. If r, i `u φ holds in AT Ku, then [φ]db = >,
where last(ri) = 〈db, U, sec, T, V, c〉.

Proof. Let P be an extended configuration, L be the P -LTS, u be a user, r ∈ traces(L) be an L-run,
φ ∈ RCbool be a sentence, and 1 ≤ i ≤ |r|. Furthermore, let r, i `u φ be a judgment that holds
in AT Ku, i.e., there is a derivation d of r, i `u φ with respect to AT Ku. We prove our claim by
induction on the length of d.
Base Case: The base case is a derivation of length 1. There are a number of cases depending on
the rule used to obtain r, i `u φ.

1. SELECT Success - 1. Let i be such that ri = ri−1·〈u, SELECT, φ〉·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM and last(ri−1) = 〈db, U, sec, T, V, c′〉. From the rules, it follows that res(s) = >. From
this and the LTS rules, it follows that [φ]db = >.

2. SELECT Success - 2. The proof for this case is similar to that of SELECT Success - 1.
3. INSERT Success. Let i be such that ri = ri−1·〈u, INSERT, R, t〉·s , where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be R(t). From the LTS rules, it follows that
db = db′[R ⊕ t]. From ⊕’s definition, it follows that t ∈ db(R). Therefore, from the RC’s
semantics, it follows that [R(t)]db = >. Since φ := R(t), it follows that [φ]db = >.

4. INSERT Success - FD. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w. We
claim that [φ]db′ holds. From this claim and the LTS semantics, it follows that there is no tuple
(v′, w′, q′) in db′(R) such that v′ = v and w′ 6= w. There are two cases:
(a) The INSERT command causes an integrity exception, i.e., Ex(s) 6= ∅. From this and the

LTS semantics, it follows that db = db′. From this and [φ]db′ = >, it follows that also
[φ]db = >.

(b) The INSERT command does not cause any integrity exception, i.e., Ex(s) = ∅. From this,
[φ]db′ = >, and db(R) = db′(R)∪ {(v, w, q)}, it follows that there is no tuple (v′, w′, q′) in
db(R) such that v′ = v and w′ 6= w. From this, it follows that also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that this is not
the case. This means that there is a tuple (v′, w′, q′) in db′(R) such that v′ = v and w′ 6= w.
Let db′′ be the state db′[R ⊕ (v, w, q)]. From this and (v′, w′, q′) ∈ db′(R) such that v′ = v
and w′ 6= w, it follows that there are two tuples (v, w, q) and (v, w′, q′) in db′′(R) such that
w′ 6= w. From this, it follows that [∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) → y = y′]db′′ = ⊥.
This contradicts the fact that ∀x, y, y′, z, z′. ((R(x, y, z)∧R(x, y′, z′))→ y = y′ is not in Ex(s).
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5. INSERT Success - ID. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w)〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∃y. S(v, y). We claim that [φ]db′

holds. From this claim and the LTS semantics, it follows that there is a tuple (v′, w′) in db′(S)
such that v′ = v. There are two cases:
(a) The INSERT command causes an integrity exception, i.e., Ex(s) 6= ∅. From this and the

LTS semantics, it follows that db = db′. From this and [φ]db′ = >, it follows that also
[φ]db = >.

(b) The INSERT command does not cause any integrity exception, i.e., Ex(s) = ∅. From this,
[φ]db′ = >, and db(S) = db′(S), it follows that there a tuple (v′, w′) in db(S) such that
v′ = v. From this, it follows that also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that this is not the
case. This means that there is no tuple (v′, w′) in db′(S) such that v′ = v. Let db′′ be the state
db′[R⊕ (v, w)]. From this and the fact that there is no tuple (v′, w′) in db′(S) such that v′ = v,
it follows that there is a tuple (v, w) in db′′(R) and there is no tuple (v′, w′) in db′′(S) such that
v′ = v. From this, it follows that [∀x, z. (R(x, z)→ ∃w. S(x,w))]db′′ = ⊥. This contradicts the
fact that ∀x, z. (R(x, z)→ ∃w. S(x,w)) is not in Ex(s).

6. DELETE Success. The proof for this case is similar to that of INSERT Success.
7. DELETE Success - ID. Let i be such that ri = ri−1·〈u, DELETE, R, (v, w)〉·s, where s = 〈db, U, sec,
T, V, c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∀x, z. (S(x, z) → x 6= v) ∨ ∃y. (R(v,
y)∧ y 6= w). We claim that [φ]db holds. From this claim and the LTS semantics, it follows that
there are two cases:
(a) all tuples (x, y) ∈ db(S) are such that v 6= x. There are two cases:

i. The DELETE command causes an integrity exception, i.e., Ex(s) 6= ∅. From this and
the LTS semantics, it follows that db = db′. From this and [φ]db′ holds, it follows that
also [φ]db holds.

ii. The DELETE command does not cause any integrity exception, i.e., Ex(s) = ∅. From
this, [φ]db′ = >, and db(S) = db′(S), it follows that all tuples (x, y) ∈ db(S) are such
that v 6= x. Therefore, also [φ]db holds.

(b) there is a tuple (v, w′) ∈ db(R) such that w 6= w′. There are two cases:
i. The DELETE command causes an integrity exception, i.e., Ex(s) 6= ∅. From this and

the LTS semantics, it follows that db = db′. From this and [φ]db′ holds, it follows that
also [φ]db holds.

ii. The DELETE command does not cause any integrity exception, i.e., Ex(s) = ∅. From
this, [φ]db′ = >, and db(R) = db′(R) \ {(v, w)}, it follows that there is a tuple (v,
w′) ∈ db(R) such that w 6= w′. Therefore, also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that this is not
the case. This means that there is a tuple (v, z) in db′(S) and there is no tuple (v, y) ∈ db′(R)
such that y 6= w. Let db′′ be the state db′[R 	 (v, w)]. From this and the fact that there
is a tuple (v, z) in db′(S) and there is no tuple (v, y) ∈ db′(R) such that y 6= w, it follows
that there is a tuple (v, z) in db′′(S) and there is no tuple (v, y) ∈ db′′(R) such that y 6= w.
From this, it follows that [∀x, z. (S(x, z)→ ∃w.R(x,w)]db′′ = ⊥. This contradicts the fact that
∀x, z. (S(x, z)→ ∃w.R(x,w) is not in Ex(s).

8. INSERT Exception. Let i be such that ri = ri−1·〈u, INSER, R, t〉·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬R(t). We claim that [¬R(t)]db′ = >
holds. From the LTS semantics, it follows that db = db′. Therefore, also [¬R(t)]db = > holds.
We now prove our claim. Assume, for contradiction’s sake, that [¬R(t)]db′ = ⊥. Therefore,
t ∈ db′(R). From this and the definition of ⊕, it follows that db′ = db′[R⊕ t]. From the rules,
it follows that Ex(s) 6= ∅. Therefore, from the LTS semantics, it follows that db′[R ⊕ t] 6∈ ΩΓ

D.
From last(ri−1) = 〈db′, U, sec, T, V, c′〉, it follows that db′ ∈ ΩΓ

D. However, from db′ = db′[R⊕ t]
and db′ ∈ ΩΓ

D, it follows that db′[R⊕ t] ∈ ΩΓ
D leading to a contradiction.

9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
10. INSERT FD Exception. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U,

sec, T, V, c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∃y, z. R(v, y, z)∧y 6= w. We claim
that [φ]db′ holds. From this and the LTS semantics, it follows that there is a tuple (v, w′, q′) in
db′(R) such that w′ 6= w. From this and db = db′, it follows that there is a tuple (v, w′, q′) in
db(R) such that w′ 6= w. From this, it follows that also [φ]db holds.
We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that this is not
the case. This means that there is no tuple (v′, w′, q′) in db′(R) such that v′ = v and w′ 6= w.
Therefore, for all tuples (v′, w′, q′) in db′(R), if v = v′, then w′ = w. From this and db′[R⊕ (v,
w, q)](R) = db′(R) ∪ {(v, w, q)}, it follows that for all tuples (v′, w′, q′) in db′[R⊕ (v, w, q)](R),
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if v = v′, then w′ = w. Furthermore, from db′ ∈ ΩΓ
D , it follows that for all tuples (v′,

w′, q′) and (v′, w′′, q′′) in db(R) such that v′ 6= v, then w′ = w. From this and db[R ⊕ (v,
w, q)](R) = db′(R) ∪ {(v, w, q)}, it follows that for all tuples (v′, w′, q′) and (v′, w′′, q′′) in
db′[R ⊕ (v, w, q)](R) such that v′ 6= v, then w′ = w. From these facts, it follows that [∀x, y,
y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′]db′[R⊕(v,w,q)] = >. This is in contradiction with the
fact that the constraint ∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′ is in Ex(last(ri)).

11. INSERT ID Exception. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w)〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∀x, y. S(x, y)→ x 6= v. We claim
that [φ]db′ holds. From this claim and the LTS semantics, it follows that there is no tuple
(v, w′) in db′(S). From this and db(S) = db′(S), it follows that there no tuple (v, w′) in db(S).
From this, it follows that also [φ]db holds.
We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that this is not the
case. This means that there is a tuple (v, w′) in db′(S), for some w′. From db′ ∈ ΩΓ

D, it follows
that for all tuples (x, z) ∈ db′(R) such that x 6= v, there is a tuple (x, y) ∈ db′(S). From this,
(v, w′) in db′(S), db′[R ⊕ (v, w)](S) = db′(S), and db′[R ⊕ (v, w)](R) = db′(R) ∪ {(v, w)}, it
follows that for all tuples (x, z) ∈ db′[R⊕ (v, w)](R), there is a tuple (x, y) ∈ db′[R⊕ (v, w)](S).
From these facts, it follows that [∀x, z. (R(x, z) → ∃w. S(x,w))]db′[R⊕(v,w)] = >. This is in
contradiction with the fact that the constraint ∀x, z. (R(x, z)→ ∃w. S(x,w)) is in Ex(last(ri)).

12. DELETE FD Exception. Let i be such that ri = ri−1·〈u, DELETE, R, (v, w)〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM , last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∃z. S(v, z) ∧ ∀y. (R(v, y) → y =
w). We claim that [φ]db′ holds. From this claim and the LTS semantics, it follows that there is
a tuple (v, z) in db′(S) and all tuples (v, y) ∈ db′(R) are such that y = w. From (v, z) in db′(S)
and db(S) = db′(S), it follows that (v, z) in db′(S). From the fact that all tuples (v, y) ∈ db′(R)
are such that y = w and db(R) = db′(R), it follows that all tuples (v, y) ∈ db(R) are such that
y = w. From (v, z) in db(S) and the fact that all tuples (v, y) ∈ db(R) are such that y = w, it
follows that [φ]db holds.
We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that this is not the
case. There are two cases:
(a) all tuples (x, y) ∈ db′(S) are such that v 6= x. From db′ ∈ ΩΓ

D, it follows that for all
tuples (x, y) ∈ db(S) such that v 6= x, there is a tuple (x, z) ∈ db(R). From these facts,
db′[R	 (v, w)](S) = db′(S), and db′[R	 (v, w)](R) = db′(R) \ {(v, w)}, it follows that for
all tuples (x, y) ∈ db′[R 	 (v, w)](S), there is a tuple (x, z) ∈ db′[R 	 (v, w)](R). From
this, it follows that [∀x, z. (S(x, z) → ∃w.R(x,w))]db′[R	(v,w))] = >. This contradicts the
fact that the constraint ∀x, z.(S(x, z)→ ∃w.R(x,w)) is in Ex(last(ri)).

(b) there is a tuple (v, w′) ∈ db′(R) such that w 6= w′. Furthermore, from db′ ∈ ΩΓ
D, it follows

that for all tuples (x, y) ∈ db′(S) such that v 6= x, there is a tuple (x, z) ∈ db′(R). From
these facts, db′[R 	 (v, w)](S) = db′(S), and db′[R 	 (v, w)](R) = db′(R) \ {(v, w)}, it
follows that for all tuples (x, y) ∈ db′[R 	 (v, w)](S), there is a tuple (x, z) ∈ db′[R 	 (v,
w)](R). From this, it follows that [∀x, z. (S(x, z) → ∃w.R(x,w))]db′[R	(v,w))] = >. This
contradicts the fact that the constraint ∀x, z.(S(x, z)→ ∃w.R(x,w)) is in Ex(last(ri)).

13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state
s = 〈db, U, sec, T, V, c〉 ∈ ΩM and any γ ∈ Γ, [γ]db = > holds by definition.

14. Learn GRANT/REVOKE Backward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and
whose action is either a GRANT or a REVOKE. From the rule’s definition, it follows sec 6= sec′. We
now prove that [φ]db = >. Assume, for contradiction’s sake, that [φ]db = ⊥. From this and the
LTS rules for the triggers, it follows that the trigger t is disabled. Therefore, according to the
Trigger Disabled rule, sec = sec′, which leads to a contradiction.

15. Trigger GRANT Disabled Backward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T,
V, c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is ψ,
and φ be ¬ψ. Furthermore, let g ∈ Ωsec

U,D be the GRANT added by the trigger. From the rule’s
definition, it follows g 6∈ sec′. We now prove that [φ]db = >. Assume, for contradiction’s sake,
that [φ]db =⊥. This would imply that the trigger t is enabled. There are two cases:
(a) t’s execution is authorized. Therefore, g ∈ sec′, which contradicts g 6∈ sec′.
(b) t’s execution is not authorized. This contradicts secEx(s) = ⊥.

16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT
Disabled Backward.

17. Trigger INSERT FD Exception. The proof for this case is similar to that of INSERT FD Exception.
18. Trigger INSERT ID Exception. The proof for this case is similar to that of INSERT ID Exception.
19. Trigger DELETE ID Exception. The proof for this case is similar to that of DELETE ID Exception.
20. Trigger Exception. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
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last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and whose action
is act. From the rule’s definition, it follows that t is enabled and that the evaluation of the
WHEN condition is authorized. From this and the LTS’s rules, it follows that [φ]db = >.

21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
23. Trigger Rollback INSERT. Let i be such that ri = ri−n−1·〈u, INSERT, R, t〉·s1·t1·s2· . . . ·tn·sn,

where s1, s2, . . . , sn ∈ ΩM and t1, . . . , tn ∈ T RIGGERD, and φ be ¬R(t). Furthermore, let
last(ri−n−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉 and sn be 〈db, U, sec, T, V, c〉. Assume, for contradiction’s
sake, that [φ]db = ⊥. Therefore, t ∈ db(R). From the LTS rules, it follows that db′ = db. From
this and t ∈ db(R), it follows t ∈ db′(R). From r’s definition and the LTS rule INSERT Success
- 2, it follows that t 6∈ db′(R), which leads to a contradiction.

24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.
25. Learn from deny - actions. There are r, r′, r′′ ∈ traces(L), 1 < i ≤ |r|, a ∈ AD,u, s, s′ ∈ ΩM , and

φ such that: ri = ri−1·a·s, r′ = r′′·a·s′, ri−1 ∼=P,u r
′′, secEx(s′) 6= secEx(s), [φ]last(ri−1).db = >,

and [φ]last(r′′).db = ⊥. Then, [φ]last(ri−1).db = > follows directly from the rule.
26. Learn from deny - triggers. The proof is similar to that of Learn from deny - actions.

This completes the proof of the base step.
Induction Step: Assume that the claim holds for any derivation of r, j `u ψ such that |r,
j `u ψ| < |r, i `u φ|. We now prove that the claim also holds for r, i `u φ. There are a number of
cases depending on the rule used to obtain r, i `u φ.

1. View. The proof of this case follows trivially from the semantics of the relational calculus
extended over views.

2. Propagate Forward SELECT. Let i be such that ri+1 = ri·〈u, SELECT, ψ〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i `u φ
holds. From this, the induction hypothesis, and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉, it follows
that [φ]db′ = >. From the LTS semantics, it follows that db = db′. From this and [φ]db′ = >,
it follows that [φ]db = >.

3. Propagate Forward GRANT/REVOKE. The proof for this case is similar to that of Propagate Forward
SELECT.

4. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward
SELECT.

5. Propagate Backward SELECT. Let i be such that ri+1 = ri·〈u, SELECT, ψ〉·s, where s = 〈db′, U ′,
sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule’s definition, r, i+ 1 `u φ
holds. From this, the induction hypothesis, ri+1 = ri·〈u, SELECT, ψ〉·s, and s = 〈db, U, sec, T, V,
c〉, it follows that [φ]db′ = >. From the LTS semantics, it follows that db = db′. From this and
[φ]db′ = >, it follows that [φ]db = >.

6. Propagate Backward GRANT/REVOKE. The proof is similar to that of Propagate Backward SELECT.
7. Propagate Backward CREATE TRIGGER. The proof is similar to that of Propagate Backward

SELECT.
8. Propagate Backward CREATE VIEW. Let i be such that ri+1 = ri·〈u, CREATE, o〉·s, where s = 〈db′,
U ′, sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule’s definition, r, i+1 `u
φ′ holds. From this, the induction hypothesis, ri+1 = ri·〈u, SELECT, ψ〉·s, and s = 〈db, U, sec,
T, V, c〉, it follows that [φ′]db′ = >. From the definition of replace, it follows that replace(φ′, o)
and φ′ are semantically equivalent. From this and [φ′]db′ = >, [replace(φ′, o)]db′ = >. From the
LTS semantics, it follows that db = db′. From this and [replace(φ′, o)]db′ = >, it follows that
[replace(φ′, o)]db = >.

9. Rollback Backward - 1. Let i be such that ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn, where s1,
s2, . . . , sn ∈ ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT, DELETE}. Furthermore, let
sn be 〈db′, U ′, sec′, T ′, V ′, c′〉 and last(ri−n−1) be 〈db, U, sec, T, V, c〉. From the rule’s definition,
r, i `u φ holds. From this, the induction hypothesis, and sn = 〈db, U, sec, T, V, c〉 ∈ ΩM , it
follows that [φ]db′ = >. From the LTS semantics, it follows that db = db′ (because a roll-back
happened). From this and [φ]db′ = >, it follows that [φ]db = >.

10. Rollback Backward - 2. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where s = 〈db′, U ′, sec′,
T ′, V ′, c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and op is one of {INSERT, DELETE}. From
the rule’s definition, r, i `u φ holds. From this, the induction hypothesis, ri = ri−1·〈u, op,R,
t〉·s, and s = 〈db′, U ′, sec′, T ′, V ′, c′〉, it follows that [φ]db′ = >. From the LTS semantics, it
follows that db = db′ (because a roll-back happened). From this and [φ]db′ = >, it follows that
[φ]db = >.

11. Rollback Forward - 1. Let i be such that ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn, where s1,
s2, . . . , sn ∈ ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT, DELETE}. Furthermore, let
sn be 〈db, U, sec, T, V, c〉 and last(ri−n−1) be 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition,
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r, i − n − 1 `u φ holds. From this, the induction hypothesis, and last(ri−n−1) = 〈db′, U ′, sec′,
T ′, V ′, c′〉, it follows that [φ]db′ = >. From the LTS semantics, it follows that db = db′ (because
a roll-back happened). From this and [φ]db′ = >, it follows that [φ]db = >.

12. Rollback Forward - 2. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op ∈ {INSERT, DELETE},
s = 〈db, U, sec, T, V, c〉 ∈ ΩM , and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s defini-
tion, r, i− 1 `u φ holds. From this, the induction hypothesis, and last(ri−1) = 〈db′, U ′, sec′, T ′,
V ′, c′〉, it follows that [φ]db′ = >. From the LTS semantics, it follows that db = db′ (because a
roll-back happened). From this and [φ]db′ = >, it follows that [φ]db = >.

13. Propagate Forward INSERT/DELETE Success. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where
op ∈ {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM , and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′,
c′〉. From the rule’s definition, r, i − 1 `u φ holds. From this, the induction hypothesis, and
last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, it follows that [φ]db′ = >. From revise(ri−1, φ, ri) = >, it
follows that R does not occur in φ. From the LTS semantics, it follows that db(R′) = db′(R′)
for all R′ 6= R. From this and the fact that R does not occur in φ, it follows that [φ]db = >.

14. Propagate Forward INSERT Success - 1. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op is
one of {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉.
From the rule’s definition, r, i − 1 `u φ and r, i − 1 `u R(t) hold. From this, the induction
hypothesis, and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, it follows that [φ]db′ = > and [R(t)]db′ =
>. From [R(t)]db′ = > and the relational calculus’ semantics, it follows that t ∈ db′(R). From
the LTS semantics, db = db′[R ⊕ t]. From this, it follows that db(R′) = db′(R′) for all R′ 6= R
and db(R) = db′(R)∪{t}. From this and t ∈ db′(R), it follows that db(R) = db′(R). Therefore,
db = db′. From this and [φ]db′ = >, it follows that [φ]db = >.

15. Propagate Forward DELETE Success - 1. The proof for this case is similar to that of Propagate
Forward INSERT Success - 1.

16. Propagate Backward INSERT/DELETE Success. The proof for this case is similar to that of
Propagate Forward INSERT/DELETE Success.

17. Propagate Backward INSERT Success - 1. The proof for this case is similar to that of Propagate
Forward INSERT Success - 1.

18. Propagate Backward DELETE Success - 1. The proof for this case is similar to that of Propagate
Forward DELETE Success - 1.

19. Reasoning. Let Φ be a subset of {φ | r, i `u φ} and last(ri) = 〈db, U, sec, T, V, c〉. From the
induction hypothesis, it follows that [φ]db = > for any φ ∈ Φ. From the rule’s definition, it
follows that Φ |=fin γ. From this and [φ]db = > for any φ ∈ Φ, it follows that [γ]db = >.

20. Learn INSERT Backward - 3. Let i be such that ri = ri−1·〈u, INSERT, R, t〉·s, where s = 〈db′,
U ′, sec′, T ′, V ′, c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be ¬R(t). We prove that
[¬R(t)]db = >. Assume, for contradiction’s sake, that [¬R(t)]db = ⊥. From this, it follows that
t ∈ db(R). From this and the LTS semantics, it follows that db = db′ because db′ = db[R ⊕ t].
However, from the rule’s definition, there is a ψ such that r, i − 1 `u ψ and r, i `u ¬ψ hold.
From this, the induction hypothesis, s = 〈db′, U ′, sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec,
T, V, c〉, it follows that [ψ]db = > and [¬ψ]db′ = >. Therefore, [ψ]db = > and [ψ]db′ = ⊥. Hence,
db 6= db′ leading to a contradiction with db = db′.

21. Learn DELETE Backward - 3. The proof is similar to that of Learn INSERT Backward - 3.
22. Propagate Forward Disabled Trigger. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec,

T, V, c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger. Furthermore, let ψ be t’s
condition where all free variables are replaced with the values in tpl(last(ri−1)). From the rule’s
definition, it follows that r, i−1 `u ¬ψ holds. From this and the induction hypothesis, it follows
that [ψ]db′ = ⊥. From this, the fact that ψ is t’s WHEN condition, and the rule Trigger Disabled,
it follows that db = db′. From the rule’s definition, it follows that r, i − 1 `u φ holds. From
this, the induction hypothesis, and last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that [φ]db′ = >.
From this and db = db′, it follows that [φ]db = >.

23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate
Forward Disabled Trigger.

24. Learn INSERT Forward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger, and φ be R(t). Furthermore, let ψ be t’s
condition where all free variables are replaced with the values in tpl(last(ri−1)). From the rule’s
definition, it follows that r, i− 1 `u ψ holds. From this and the induction hypothesis, it follows
that [ψ]db′ = ⊥. Furthermore, from the rule’s definition, it follows that secEx(s) = ⊥ and
Ex(s) = ∅. From this, the fact that ψ is t’s WHEN condition, [ψ]db′ = ⊥, and the rule Trigger
DELETE-INSERT Success, it follows that db = db′[R⊕ t]. From the definition of ⊕, it follows that
t ∈ db(R). From this, it follows that [φ]db = >.

25. Learn INSERT - FD. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
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last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w.
Furthermore, let ψ be t’s condition where all free variables are replaced with the values
in tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be t’s actual action. We claim that db(R) =
db′(R) ∪ {(v, w, q)}. Furthermore, we claim that [φ]db holds. From these claims, it follows
that there is no tuple (v′, w′, q′) in db(R) such that v′ = v and w′ 6= w. From this and
db(R) = db′(R) ∪ {(v, w, q)}, it follows that there is no tuple (v′, w′, q′) in db′(R) such that
v′ = v and w′ 6= w. From this, it follows that also [φ]db′ holds.
We now prove our claim that db(R) = db′(R) ∪ {(v, w, q)}. Assume, for contradiction’s sake,
that this is not the case. Since db is obtained from db′, this would imply that the trigger t is
disabled. Hence, this would imply that [ψ]db′ = ⊥. From the rule’s definition, r, i − 1 `u ψ.
From this, the induction’s hypothesis, and last(ri−1) = 〈db′, U, sec, T, V, c′〉, it follows that
[ψ]db′ = >, which contradicts [ψ]db′ = ⊥.
We now prove our claim that [φ]db holds. Assume, for contradiction’s sake, that this is not
the case. This means that there is a tuple (v′, w′, q′) in db(R) such that v′ = v and w′ 6= w.
Note that, as we proved before, (v, w, q) ∈ db(R). Therefore, there are two tuples (v, w, q)
and (v, w′, q′) in db(R) such that w′ 6= w. From this, it follows that [∀x, y, y′, z, z′. ((R(x, y,
z) ∧ R(x, y′, z′)) → y = y′)]db = ⊥. This is in contradiction with the fact that the constraint
∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) → y = y′) is in Γ. Indeed, since the constraint is in Γ,
any state in ΩΓ

D must satisfy it.
26. Learn INSERT - FD - 1. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,

last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w.
Furthermore, let ψ be t’s condition where all free variables are replaced with the values in
tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be t’s actual action. From the rule’s definition,
r, i − 1 `u ψ. From this, the induction’s hypothesis, and last(ri−1) = 〈db′, U, sec, T, V, c′〉, it
follows that [ψ]db′ = >. From this and the LTS semantics, it follows that the trigger t is enabled
in last(ri−1). We now prove our claim that [φ]db′ holds. Assume, for contradiction’s sake, that
this is not the case. This means that there is a tuple (v′, w′, q′) in db′(R) such that v′ = v and
w′ 6= w. Let db′′ be the state db′[R ⊕ (v, w, q)]. From db′′ = db′[R ⊕ (v, w, q)], and the fact
that there is a tuple (v′, w′, q′) in db′(R) such that v′ = v and w′ 6= w, it follows that there
are two tuples (v, w, q) and (v, w′, q′) in db′′(R) such that w′ 6= w. From this, it follows that
[∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′)]db′′ = ⊥. Since the trigger t is enabled, this
contradicts the fact that ∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))→ y = y′) is not in Ex(s).

27. Learn INSERT - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the
proof of INSERT Success - ID.

28. Learn INSERT - ID - 1. The proof of this case is similar to that of Learn INSERT - FD - 1. See
also the proof of INSERT Success - ID.

29. Learn INSERT Backward - 1. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, t ∈ T RIGGERD, and φ be t’s actual WHEN condition,
where all free variables are replaced with the values in tpl(last(ri−1)). From the rule’s definition,
it follows that there is a ψ such that r, i − 1 `u ψ and r, i `u ¬ψ. From this, the induction’s
hypothesis, s = 〈db′, U ′, sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that
[ψ]db = > and [¬ψ]db′ = >. Therefore, [ψ]db = > and [ψ]db′ = ⊥. Hence, db 6= db′. We now
prove that [φ]db = >. Assume, for contradiction’s sake, that [φ]db = ⊥. From the rule’s defi-
nition, it follows that secEx(s) = ⊥. Therefore, f(last(ri−1), 〈u′, SELECT, φ〉) = >. From this,
[φ]db = ⊥, and the rule Trigger Disabled, it follows that db = db′, which contradicts db 6= db′.

30. Learn INSERT Backward - 2. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, t ∈ T RIGGERD, and φ be ¬R(t). Furthermore, let
act = 〈u′, INSERT, R, t〉 be t’s actual action. From the rule’s definition, it follows that there is
a ψ such that r, i− 1 `u ψ and r, i `u ¬ψ. From this, the induction’s hypothesis, s = 〈db′, U ′,
sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that [ψ]db = > and [¬ψ]db′ = >.
Therefore, [ψ]db = > and [ψ]db′ = ⊥. Hence, db 6= db′. We now prove that [φ]db = >. Assume,
for contradiction’s sake, that [φ]db = ⊥. Therefore, t ∈ db(R). From this and act = 〈u′,
INSERT, R, t〉, it follows that db′ = db[R ⊕ t]. From this and ⊕’s definition, it follows that
db′(R′) = db(R′) for all R′ 6= R and db′(R) = db(R) ∪ {t}. From db′(R) = db(R) ∪ {t} and
t ∈ db(R), it follows that db′(R) = db(R). From this and db′(R′) = db(R′) for all R′ 6= R, it
follows that db′ = db, which contradicts db 6= db′.

31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
32. Learn DELETE - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the

proof of DELETE Success - ID.
33. Learn DELETE - ID - 1. The proof of this case is similar to that of Learn INSERT - FD - 1. See

also the proof of DELETE Success - ID.
34. Learn DELETE Backward - 1. The proof is similar to that of Learn INSERT Backward - 1.
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35. Learn DELETE Backward - 2. The proof is similar to that of Learn INSERT Backward - 2.
36. Propagate Forward Trigger Action. The proof of this case is similar to Propagate Forward

INSERT/DELETE Success.
37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward

INSERT/DELETE Success.
38. Propagate Forward INSERT Trigger Action. The proof of this case is similar to that of Propagate

Forward INSERT Success - 1.
39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate

Forward DELETE Success - 1.
40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Prop-

agate Backward INSERT Success - 1.
41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Prop-

agate Backward DELETE Success - 1.
42. Trigger FD INSERT Disabled Backward. Let i be such that ri = ri−1·t·s, where s = 〈db′,

U ′, sec′, T ′, V ′, c′〉 ∈ ΩM , t ∈ T RIGGERD, and last(ri−1) = 〈db, U, sec, T, V, c〉, and ψ be
¬φ[x|R′| 7→ tpl(last(ri−1))]. Furthermore, let act = 〈u′, INSERT, R, (v, w, q)〉 be t’s actual ac-
tion. From the rule’s definition, it follows that r, i− 1 `u ∃y, z.R(v, y, z) ∧ y 6= w holds. From
this, the induction hypothesis, and last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that [∃y, z.R(v, y,
z) ∧ y 6= w]db = >. Therefore, there is a tuple (v, w′, z′) ∈ db(R) such that w′ 6= w. We now
prove that [ψ]db = >. Assume, for contradiction’s sake, that this is not the case, namely that
[φ[x 7→ tpl(last(ri−1))]]db = >. There are two cases:
(a) the trigger t is enabled and the action act is authorized. In this case, the database db[R⊕(v,

w, q)] 6∈ ΩΓ
D because ∀x, y, y′, z, z′. (R(x, y, z) ∧ R(x, y′, z′)) → y = y′ ∈ Γ and there is a

tuple (v, w′, z′) ∈ db(R) such that w′ 6= w. Therefore, the resulting state would be such
that Ex(s) 6= ∅. This contradicts the fact that, according to the rule’s definition, Ex(s) = ∅.

(b) the trigger t is enabled and the action act is not authorized. Therefore, the resulting state
would be such that secEx(s) = >. This contradicts the fact that, according to the rule’s
definition, secEx(s) = ⊥.

43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD
INSERT Disabled Backward.

44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD
INSERT Disabled Backward.

This completes the proof of the induction step.
This completes the proof of the theorem.

C.2 Indistinguishability is an equivalence relation

We now show that our indistinguishability definition is, indeed, an equivalence relation over traces.

Proposition C.2. Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, and u ∈ U be a
user. The indistinguishability relation ∼=P,u is an equivalence relation over traces(L).

Proof. We now prove that ∼=P,u is reflexive, symmetric, and transitive. This implies the fact that
∼=P,u is an equivalence relation over traces(L). In the following, let P = 〈M, f〉 be an extended
configuration, L be the P -LTS, and u ∈ U be a user. From the definition of data indistinguishability
and Proposition 3.1, it follows that the data-indistinguishability relation ∼=data

M,u is an equivalence
relation over the set of all system states.

Reflexivity Let r ∈ traces(L) be a run. It follows trivially that r|u = r|u. From this, it follows
that r|u and r|u are consistent. It is easy to see that r is indistinguishable from r. Indeed, the
database states are the same in r and r and the data-indistinguishability relation is reflexive.

Symmetry Let r, r′ ∈ traces(L) be two runs such that r ∼=P,u r
′. From this, it follows that r|u

and r′|u are consistent. Note that the consistency definition is symmetric. Therefore, also r′|u and
r|u are consistent. From this and the symmetry of data indistinguishability, it follows that ∼=P,u is
symmetric.

Transitivity Let r, r′, r′′ ∈ traces(L) be three runs such that r ∼=P,u r
′ and r′ ∼=P,u r

′′. From
this it follows that r|u and r′|u are consistent and r′|u and r′′|u are consistent. It is easy to see that
also r|u and r′′|u are consistent as well. From this and the transitivity of data indistinguishability, it
follows that ∼=P,u is transitive.
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C.3 Database Integrity Proofs

Here, we prove that the enforcement mechanism f from Section 6.8 provides database integrity.

C.3.1 Extend function
Proposition C.3 states that the extend function produces only views that are equivalent to those

given as input.

Proposition C.3. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, and V ′ ⊆ V be a set of views with owner’s privileges. For each view v ∈ extend(M, s, V ′), there
is a view v′ ∈ V ′ such that v and v′ disclose the same data.

Proof. Assume, for contradiction’s sake, that there is a view v ∈ extend(M, s, V ′) such that all the
views in V ′ disclose different data from v. This is impossible because v has been obtained by a view
v′ ∈ V ′ just by replacing the views with their definitions (and each view is semantically equivalent
to its definition).

C.3.2 A sound under-approximation of query determinacy
Before proving that apprDet, which is defined in Section 6.8.2, is a sound approximation of

determines, we extend determines from sentences to formulae.
Given a system’s configuration M = 〈D,Γ〉, a formula φ, a set of views V with owner’s privileges,

a set of tables T , and a well-formed assignment ν for φ, we say that V and T determine (φ, ν), denoted
by determinesM (T, V, φ, ν), iff D,Γ ` Q� φν holds, where Q is the set of queries containing all tables
in T and all views in V . In the following, given a view 〈u, o, q,m〉, we denote by def (〈u, o, q,m〉) its
definition q. Furthermore, given a set of tables T , a set of views V , and a database state db, we denote
by JdbKV,T the set of all states {db′ ∈ ΩΓ

D |
∧
t∈T db(t) = db′(t) ∧

∧
v∈V [def (v)]db = [def (v)]db′}.

In Proposition C.4, we show that apprDet is, indeed, a sound under-approximation of query
determinacy.

Proposition C.4. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, T ′ ⊆ D be a set of tables, V ′ ⊆ V be a set of views with owner’s privileges, and φ be a formula.
If apprDet(T ′, V ′, φ, s,M) = >, then for all well-formed assignments ν for φ, determinesM (T ′, V ′,
φ, ν) holds.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M -system state,
T ′ ⊆ D be a set of tables, V ′ ⊆ V be a set of views with owner’s privileges, and φ be a formula. We
prove the lemma by structural induction over the formula φ.
Base Case: There are a number of alternatives.
φ := R(x) Assume that apprDet(T, V,R(x), s,M) = >. There are two cases:

1. R ∈ T ′. In this case, the set T ′ trivially determines the formula R(x) for any well-
formed assignment ν. Therefore, determinesM (T ′, V ′, R(x), ν) holds. Indeed, assume that
this is not the case. Thus, there are three database states db, db1, and db2 such that
db1, db2 ∈ JdbKV ′,T ′ and [R(x)ν]db1 6= [R(x)ν]db2 . From this and the relational calculus
semantics, it follows that db1(R) 6= db2(R). From this, R ∈ T ′, and db1, db2 ∈ JdbKV ′,T ′ ,
it follows that db1(R) = db2(R) leading to a contradiction.

2. there is a view v′ in extend(M, s, V ′) such that def (v′) = {x | R(x)}. This means
that there is a sequences of views V1, . . . , Vn in s such that def (V1) = {x | R(x)},
def (V2) = {x | V1(x)}, . . . , def (Vn) = {x | Vn−1(x)}, and Vn ∈ V ′. Therefore, the set V ′
trivially determines the formula R(x) for any well-formed assignment ν, and Vn and R are
equivalent. Therefore, determinesM (T ′, V ′, R(x), ν) holds.

φ := V (x) Assume that apprDet(T, V, V (x), s,M) = >. There are two cases:
1. There is a view 〈V, o, q, O〉 ∈ V ′. In this case, the set V ′ trivially determines the formula
V (x) for any assignment ν that is well-formed for φ. Therefore, determinesM (T ′, V ′, V (x),
ν) holds.

2. there is a view v′ in extend(M, s, V ′) such that def (v′) = {x | V (x)}. This means
that there is a sequences of views V1, . . . , Vn in s such that def (V1) = {x | V (x)},
def (V2) = {x | V1(x)}, . . . , def (Vn) = {x | Vn−1(x)}, and Vn ∈ V ′. Therefore, the set V ′
trivially determines the formula V (x) for any well-formed assignment ν, and Vn and V
are equivalent. Therefore, determinesM (T ′, V ′, V (x), ν) holds.

φ := x = v For any well-formed assignment ν, the empty set trivially determines the formula x = v.
φ := > The proof of this case is similar to that of φ := x = v.
φ := ⊥ The proof of this case is similar to that of φ := x = v.
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This concludes the proof of the base case.
Induction Step: Assume that the claim holds for all sub-formulae of φ. We now show that the
claim holds also for φ. There are a number of cases:
φ := ψ ∧ γ Assume that apprDet(T ′, V ′, ψ ∧ γ, s,M) = >. There are two cases:

1. apprDet(T ′, V ′, ψ, s,M) = > and apprDet(T ′, V ′, γ, s,M) = >. From the induction hy-
pothesis, it follows that both determinesM (T ′, V ′, ψ, ν) and determinesM (T ′, V ′, γ, ν) hold
for all well-formed assignments ν. Therefore, also determinesM (T ′, V ′, ψ ∧ γ, ν) holds
for all well-formed assignments ν. Indeed, assume that this is not the case. Then,
there are three database states db, db1, and db2 such that db1, db2 ∈ JdbKV ′,T ′ and
[(ψ ∧ γ)ν]db1 6= [(ψ ∧ γ)ν]db2 . From this and the relational calculus semantics, there
are two cases:
(a) [ψν]db1 6= [ψν]db2 . From this, it follows that determinesM (T ′, V ′, ψ, ν) does not hold.

This contradicts the fact that determinesM (T ′, V ′, ψ, ν) holds.
(b) [γν]db1 6= [γν]db2 . The proof of this case is similar to the previous one.

2. there is a view v′ in extend(M, s, V ′) such that def (v′) = {x | ψ∧γ}. From Proposition C.3,
it follows that there is a view v′′ ∈ V ′ that is equivalent to v′, and, therefore, to {x | ψ∧γ}.
Thus, determinesM (T ′, V ′, ψ∧γ, ν) holds for all assignments ν that are well-formed for φ.

φ := ψ ∨ γ This case is similar to ψ ∧ γ.
φ := ¬ψ Assume that apprDet(T ′, V ′,¬ψ, s,M) = >. There are two cases:

1. apprDet(T ′, V ′, ψ, s,M) = >. From the induction hypothesis, determinesM (T ′, V ′, ψ, ν)
holds. Therefore, also determinesM (T ′, V ′,¬ψ, ν) holds. Indeed, assume that this is not
the case. This means that there are three database states db, db1, and db2 such that
db1, db2 are in JdbKV ′,T ′ and [¬ψν]db1 6= [¬ψν]db2 . From this and the relational calculus
semantics, it follows that [ψν]db1 6= [ψν]db2 . From this, it follows that determinesM (T ′,
V ′, ψ, ν) does not hold. This contradicts the fact that determinesM (T ′, V ′, ψ, ν) holds.

2. there is a view v′ in extend(M, s, V ′) such that def (v′) = {x | ¬ψ}. From Proposition C.3,
it follows that there is a view v′′ ∈ V ′ that is equivalent to v′, and, therefore, to {x | ¬ψ}.
Thus, determinesM (T ′, V ′,¬ψ, ν) holds for all well-formed assignments ν.

φ := ∃x. ψ Assume that apprDet(T ′, V ′, ∃x. ψ, s,M) = >. There are two cases:
1. apprDet(T ′, V ′, ψ, s,M) = >. From the induction hypothesis, determinesM (T ′, V ′, ψ, ν)

holds for all well-formed assignments ν. Therefore, also determinesM (T ′, V ′, ∃x. ψ, ν) holds
for all well-formed assignments ν (note that any well-formed assignment for ψ is also a
well-formed assignment for ∃x. ψ). Indeed, assume that this is not the case. This means
that there are three database states db, db1, and db2 such that db1, db2 are in JdbKV ′,T ′ and
[(∃x. ψ)ν]db1 6= [(∃x. ψ)ν]db2 . From this and the relational calculus semantics, it follows
that there is a value v ∈ dom such that [ψν[x 7→ v]]db1 6= [ψν[x 7→ v]]db2 . Note that
ν[x 7→ v] is a well-formed assignment for ψ. Let’s call this assignment ν′. From this,
it follows that [ψν′]db1 6= [ψν′]db2 . From this, it follows that determinesM (T ′, V ′, ψ, ν′)
does not hold. This contradicts the fact that determinesM (T ′, V ′, ψ, ν) holds for any
well-formed assignment ν.

2. there is a view v′ in extend(M, s, V ′) such that def (v′) = {x | ∃x. ψ}. From Proposi-
tion C.3, it follows that there is a view v′′ ∈ V ′ that is equivalent to v′, and, therefore, to
{x | ∃x. ψ}. Thus, determinesM (T ′, V ′, ∃x. ψ, ν) holds for all well-formed assignments ν.

φ := ∀x. ψ This case is similar to ∃x. ψ.
This concludes the proof of the induction step.

This completes the proof.

C.3.3  appr
auth is a sound approximation of  auth

We now show that  appr
auth is a sound approximation of  auth . Namely, whenever s  appr

auth act
holds, then s  auth act holds as well. A derivation of s  appr

auth act is a proof tree, obtained using
the rules defining  appr

auth , which ends in s appr
auth act. The size of a derivation is the number of  appr

auth
rules that are used to show that s  appr

auth act. In the following, we switch freely between statements
of the form s appr

auth act and their derivations. We denote the size of the derivation of s appr
auth act as

|s appr
auth act|.

Proposition C.5. Let M = 〈D,Γ〉 be a system configuration, s be an M-state, c be an M-context,
and act ∈ AD,U ∪ T RIGGERD be an action or a trigger. If s appr

auth act, then s auth act.

Proof. Let M = 〈D,Γ〉 be a system configuration, s be an M -state, c be an M -context, and act ∈
AD,U ∪ T RIGGERD. Furthermore, we assume that there is a derivation of s  appr

auth act. We prove
our claim by induction on the size of s appr

auth act’s derivation.
Base Case: We now show that, for all s and act such that |s  appr

auth act| = 1, if s  appr
auth act,

then s auth act. Observe that the base case is trivial. Indeed, for the rules INSERT DELETE admin,
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CREATE VIEW admin, CREATE TRIGGER admin, SELECT, EXECUTE TRIGGER-3, GRANT-2, GRANT-5, and
ADD USER, if s appr

auth act, then s auth act follows trivially from the rule’s definition.
Induction Step: We now assume that, for all derivations of size less than |s  appr

auth act|, it
holds that if s′  appr

auth act′, then s′  auth act′. There are several cases:
1. Rule INSERT DELETE : Assume that s  appr

auth act holds and that act = 〈u, op′, R, t〉, where op′
is one of {INSERT, DELETE}. From the rule’s definition, it follows that there is a grant g = 〈op,
u, 〈op′, R〉, u′〉 in s.sec such that s appr

auth g. From this and the induction hypothesis, it follows
that s auth g. Therefore, s auth act holds (we can apply the INSERT DELETE rule in  auth).

2. Rule CREATE VIEW : The proof is similar to the one for the INSERT DELETE rule.
3. Rule CREATE TRIGGER : The proof is similar to the one for the INSERT DELETE rule.
4. Rule EXECUTE TRIGGER-2 : Assume that s  appr

auth act holds and that act = 〈i, o, e, R, φ, st,
A〉 such that [φ[x|R| 7→ tpl(s)]]s.db = >. From the rule’s definition, it follows that both
s  appr

auth action(st, ow, tpl(s)) and s  appr
auth action(st, invoker(s), tpl(s)) hold. From this and

the induction hypothesis, both s auth action(st, ow, tpl(s)) and s auth action(st, invoker(s),
tpl(s)) hold. From this and the EXECUTE TRIGGER-2 rule in auth , it follows that also s auth act
holds.

5. Rule EXECUTE TRIGGER-1 : The proof is similar to the one for the EXECUTE TRIGGER-2 rule.
6. Rule GRANT-1 : Assume that s appr

auth act holds and that act = 〈op, u, p, u′〉, where op ∈ {⊕,⊕∗}.
From the rule’s definition, it follows that there is a grant g = 〈⊕∗, u′, p, u′′〉 in s.sec such that
s  appr

auth g. From this and the induction hypothesis, ti follows that s  auth g. From this and
the GRANT-1 rule in  auth , it follows that s auth act holds.

7. Rule GRANT-3 : Assume that s  appr
auth act holds and that act = 〈op, u, p, o〉, where p = 〈SELECT,

v〉, v ∈ VIEWowner
D , op ∈ {⊕,⊕∗}, and o = owner(v) such that o 6= admin. Let T ′ be the set

obtained through the aT function and V ′ be the set obtained through the aV function. From
the rule’s definition, it follows that apprDet(T ′, V ′, def (v)) = >. From this and Proposition C.4,
it follows that determinesM (T ′, V ′, def (v)) holds. We now show that for any obj ∈ T ′ ∪ V ′,
hasAccess(s′, {obj}, o,⊕∗) holds. There are four cases:
(a) o = admin and obj ∈ D. Since obj ∈ T ′, it follows that there is a g = 〈⊕∗, o, 〈SELECT, obj〉,

u′〉 such that s appr
auth g. From this and the induction hypothesis, it follows that s auth g.

Therefore, hasAccess(s′, {obj}, o,⊕∗) holds.
(b) o 6= admin and obj ∈ D. Since obj ∈ T ′, it follows that there is a g = 〈⊕∗, o, 〈SELECT,

obj〉, u′〉 in sec such that s  appr
auth g. From this and the induction hypothesis, it follows

that s auth g. Thus, hasAccess(s′, {obj}, o,⊕∗) holds.
(c) o = admin and obj ∈ V . The proof of this case is similar to that of o = admin and

obj ∈ D.
(d) o 6= admin and obj ∈ V . The proof of this case is similar to that of o 6= admin and

obj ∈ D.
Note that from hasAccess(s′, A, o, op) and hasAccess(s′, B, o, op), it follows that hasAccess(s′,
A ∪ B, o, op). Thus, hasAccess(s, T ′ ∪ V ′, o,⊕∗) holds. From this, it follows that s  auth act
holds because we can apply the corresponding rule in  auth .

8. Rule GRANT-4 : The proof is similar to the one for the GRANT-3 rule.
9. Rule REVOKE : Assume that s  appr

auth act holds and that act = 〈	, u, p, u′〉. From the rule’s
definition, it follows that s′  appr

auth g for any g ∈ s′.sec, where s′ = applyRev(s, 〈	, u, p, u′〉).
From the induction’s hypothesis, it follows that s′  auth g for any g ∈ s′.sec. Therefore, we
can apply the rule REVOKE of  auth to derive s auth act.

This completes our proof.

C.3.4 f provides Database Integrity
We are now ready to prove that f provides database integrity.

Lemma C.1. For any two states s = 〈db, U, sec, T, V, c〉, s′ = 〈db′, U, sec, T, V, c′〉 in ΩM and any
action a ∈ AD,U :

1. s auth a iff s′  auth a, and
2. s appr

auth a iff s′  appr
auth a.

Proof. It is easy to see that the only rules that depends on db, db′, c, and c′ are EXECUTE TRIGGER -
1, EXECUTE TRIGGER - 2, and EXECUTE TRIGGER - 3. Since they are not used to evaluate whether
s auth a and s appr

auth a hold for actions in AD,U , the lemma follows trivially.

Lemma C.2. Let M be a system configuration. Then, for all M-states s = 〈db, U, sec, T, V, c〉 ∈ ΩM
such that trigger(s) = ε and all actions act ∈ AD,U , if fint(s, act) = >, then s auth act.
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Proof. We prove the theorem by contradiction. Assume, for contradiction’s sake, that the claim does
not hold. Therefore, there is a state s and an action act such that fint(s, act) = >, trigger(s) = ε, and
s 6 auth act. Thus, from fint(s, act) = >, trigger(s) = ε, and fint ’s definition, it follows s  appr

auth act.
From this and Proposition C.5, it follows that s auth act leading to a contradiction.

Lemma C.3. Let M be a system configuration. For all M-states s = 〈db, U, sec, T, V, c〉 ∈ ΩM and
all triggers t ∈ T such that trigger(s) = t, the following hold:

1. If fint(s, c) = > and [ψ]db = ⊥, then s auth t, where c = trigCond(s) = 〈u, SELECT, ψ〉.
2. If fint(s, c) = >, [ψ]db = >, and fint(s, a) = >, then s  auth t, where c = trigCond(s) = 〈u,

SELECT, ψ〉 and a = trigAct(s).

Proof. We prove both claims by contradiction.
Assume, for contradiction’s sake, that the first claim does not hold. Therefore, there is a state s

and a trigger t such that fint(s, c) = > and [ψ]db = ⊥ and s 6 auth t. From [ψ]db = ⊥, trigger(s) = t,
and the rule EXECUTE TRIGGER - 3, it follows that s auth t holds, which leads to a contradiction.

Assume, for contradiction’s sake, that the second claim does not hold. Therefore, there is a state
s and a trigger t = 〈id, ow, e, R, φ, st,m〉 such that fint(s, c) = >, [ψ]db = >, fint(s, a) = >, and
s 6 auth t. If t is a trigger with owner’s privileges, from fint(s, a) = > and trigger(s) = t, it follows
that s appr

auth action(st, ow, tpl(s)). From this and Proposition C.5, it follows that s auth action(st,
ow, tpl(s)). From this, t ∈ T , [ψ]db = >, and trigCond(s) = 〈u, SELECT, ψ〉, it follows that we can
apply the rule EXECUTE TRIGGER - 1 and we can derive s  auth t. If t is a trigger with activator’s
privileges, from fint(s, a) = > and trigger(s) = t, it follows that s  appr

auth action(st, ow, tpl(s)) and
s appr

auth action(st, invoker(s), tpl(s)). From this Proposition C.5, it follows that s auth action(st, ow,
tpl(s)) and s auth action(st, invoker(s), tpl(s)). From this, t ∈ T , [ψ]db = >, and trigCond(s) = 〈u,
SELECT, ψ〉, it follows that we can apply the rule EXECUTE TRIGGER - 2 and we can derive s auth t.
In both cases we can derive s auth t, leading to a contradiction.

We are now ready to prove our main result, namely that f provides database integrity.

Theorem C.1. Let M = 〈D,Γ〉 be a system configuration, f be the PDP defined in Section 6.8, and
P = 〈M, f〉 be an extended configuration. The PDP f provides database integrity with respect to P .

Proof. We prove the lemma by contradiction. Assume, for contradiction’s sake, that f does not
satisfy the database integrity property. There are three cases:

• there is a reachable state s and an action act ∈ AD,U such that trigger(s) = ε, f(s, act) = >,
and s 6 auth act. From f(s, act) = >, it follows that fint(s, act) = >. From this, trigger(s) = ε,
and Lemma C.2, it follows s auth act, which leads to a contradiction.

• there is a reachable state s and a trigger t ∈ T RIGGERD such that trigger(s) = t, f(s, c) = >,
[ψ]s.db = ⊥, and s 6 auth t, where c = 〈u, SELECT, ψ〉 is t’s condition. From f(s, c) = >, it
follows that fint(s, c) = >. From fint(s, c) = >, [ψ]s.db = ⊥, trigger(s) = t, and Lemma C.3, it
follows s auth t, which leads to a contradiction.

• there is a reachable state s and a trigger t ∈ T RIGGERD such that trigger(s) = t, f(s, c) = >,
[ψ]s.db = >, f(s′, a) = >, and s 6 auth t, where c = 〈u, SELECT, ψ〉 is t’s condition, a is t’s action,
and s′ is the state obtained from s by updating the context’s history. From f(s′, a) = >, it
follows that fint(s′, a) = >. Since s and s′ are equivalent modulo the context’s history and fint
does not depend on the context’s history, it follows that fint(s, a) = >. From fint(s, c) = >,
[ψ]s.db = >, fint(s, a) = >, trigger(s) = t, and Lemma C.3, it follows s auth t, which leads to
a contradiction.

This completes the proof.

We also prove that, by using f , any reachable state has a consistent policy. Observe that this is
the underlying reason why f prevents Attacks 6.2 and 6.3.

Lemma C.4. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system con-
figuration and f is the PDP defined in Section 6.8, and L be the P -LTS. For each reachable state
s = 〈db, U, sec, T, V, c〉, s auth g for all g ∈ sec.

Proof. We claim that, for any run r, the state last(r) is such that for all p ∈ last(r).sec, last(r) auth
p. From this, the lemma follows trivially.

We now prove that for any run r, the state last(r) is such that for all p ∈ last(r).sec, last(r) auth
p. We do this by induction on the length of the run r.
Base Case: The base case consists of the runs containing only one initial state. Note that an initial
state contains only grants issued by admin, together with views and triggers owned by admin. It is
easy to see that for any permission p = 〈op, u, pr , admin〉 in a policy sec in an initial state s, it holds
that s auth p. There are two cases:



202 Appendix C. Proofs for Chapter 6

1. The privilege pr in p is such that pr ∈ PRIVD \ PRIV
SELECT,VIEWowner

D
D . Then, s  auth p by

the rule GRANT-2.
2. The privilege pr in p is such that pr is in the set PRIVSELECT,VIEWowner

D
D . Recall that admin

is the owner of all views in the state. Then, s  auth p by the rule GRANT-3. Indeed, admin
can read (and delegate the SELECT permission over) all tables in the database. Therefore,
hasAccess(s,D, admin,⊕∗) and determinesM (D, ∅, q) hold for any query q.

This complete the proof for the base case.
Induction Step: We now assume that for all runs r′ of length less than the length of r, the state
last(r′) is such that for all p ∈ last(r′).sec, last(r′)  auth p. Let r′ be the run r|r|−1. There are two
cases, depending on whether act raises an exception or not.

1. secEx(last(r)) = ⊥ and Ex(last(r)) = ∅. There are a number of cases depending on act:
(a) act is 〈u, INSERT, R, t〉, 〈u, DELETE, R, t〉, 〈u, SELECT, q〉, 〈u, ADD_USER, u′〉, or 〈u, CREATE, o〉.

In these cases, last(r′).sec = last(r).sec. Furthermore, last(r′).U ⊆ last(r).U , last(r′).T ⊆
last(r).T , and last(r′).V ⊆ last(r).V . From this and the fact that last(r′)  auth g for all
g ∈ last(r′).sec, it follows that last(r) auth g for all g ∈ last(r).sec.

(b) act is 〈op, u, p, u′〉, where op ∈ {⊕,⊕∗}. From secEx(last(r)) = ⊥, it follows that
last(r′)  auth act. From the induction hypothesis, it follows that last(r′)  auth g for all
g ∈ last(r′).sec. We claim that, for any grant statement g, if 〈db, U, sec, T, V, c〉  auth g,
then 〈db′, U, sec′, T, V, c′〉  auth g for any policy such that sec ⊆ sec′. From the claim, it
follows that last(r)  auth act and last(r)  auth g for all g ∈ last(r′).sec. From this and
last(r).sec = {act} ∪ last(r′).sec, it follows that last(r) auth g for all g ∈ last(r).sec.
Our claim that, for any grant statement g, if 〈db, U, sec, T, V, c〉 auth g, then 〈db′, U, sec′,
T, V, c′〉  auth g, where sec ⊆ sec′, follows trivially from the definition of the rules for
GRANT statements.

(c) act is 〈	, u, p, u′〉. From secEx(last(r)) = ⊥, it follows that last(r′)  auth act. From
this, it follows that s′  appr

auth g for all g ∈ s′.sec, where s′ = applyRev(last(r′), act). From
this and Proposition C.5, it follows that s′  auth g for all g ∈ s′.sec. Recall that last(r)
and s′ are equivalent modulo the database and the context. From this, Lemma C.1, and
s′  auth g for all g ∈ s′.sec, it follows that last(r) auth g for all g ∈ last(r).sec.

(d) act is a trigger and the WHEN condition is not satisfied. In this case, last(r′) and last(r)
are equivalent modulo the context. From this, the induction hypothesis, and Lemma C.1,
it follows that last(r) auth g for all g ∈ last(r).sec.

(e) act is a trigger and the WHEN condition is satisfied. In this case, the proof is the same as
the previous cases depending on the trigger’s action.

2. secEx(last(r)) = > or Ex(last(r)) 6= ∅. From this and the LTS’s rules, it follows that there is a
state s′ ∈ {last(ri) | 1 ≤ i ≤ |r| − 1} such that sysState(last(r)) = sysState(s′) (because there
has been a roll-back). Let sec be the policy in s′. From the induction hypothesis, it follows
that for all p ∈ sec, s′  auth p. From this fact, the  auth ’s definition, sysState(last(r)) =
sysState(s′), and Lemma C.1, it follows that for all p ∈ last(r).sec, also last(r) auth p.

This complete the proof for the induction step.
This completes the proof.

C.4 Data Confidentiality Proofs

Here we prove that our PDP f provides data confidentiality.

C.4.1 A sound under-approximation of query containment
Proposition C.6 proves that the rules in Figure 6.27 are a sound under-approximation of query

containment.

Proposition C.6. Let M = 〈D,Γ〉 be a system configuration, and φ(x) and ψ(y) be two formulae.
If φ ⊆M ψ, according to the rules in Figure 6.27, then ∀d ∈ ΩΓ

D. [{x | φ}]d ⊆ [{y | ψ}]d, where x
(respectively y) is the tuple defined by the variables in free(φ) (respectively free(ψ)) ordered according
to �var .

Proof. Observe that φ ⊆M ψ iff there is a finite derivation that ends in φ ⊆M ψ created using the
rules in Figure 6.27. We prove our claim by induction on the derivation’s length.
Base Case Assume that the derivation has length 1. There are four cases depending on the rule
used to derive φ ⊆M ψ:

1. Rule Conjunction. From the rule’s definition, it follows that free(φ) = free(φ∧ ψ). Let d ∈ ΩΓ
D

and t ∈ [{x | φ ∧ ψ}]d. From t ∈ [{x | φ ∧ ψ}]d and the definition of non-boolean query, it



C.4. Data Confidentiality Proofs 203

follows that [(φ ∧ ψ)[x 7→ t]]d = >. From this, it follows that [φ[x 7→ t]]d = >. From this and
the definition of non-boolean query, t ∈ [{x | φ}]d. Therefore, [{x | φ ∧ ψ}]d ⊆ [{x | φ}]d.

2. Rule Disjunction. From the rule’s definition, it follows that free(φ) = free(φ ∨ ψ) = x. Let
d ∈ ΩΓ

D and t ∈ [{x | φ}]d. From t ∈ [{x | φ}]d and the definition of non-boolean query, it
follows that [φ[x 7→ t]]d = >. From this, it follows that [(φ ∨ ψ)[x 7→ t]]d = >. From this and
the definition of non-boolean query, t ∈ [{x | φ ∨ ψ}]d. Therefore, [{x | φ}]d ⊆ [{x | φ ∨ ψ}]d.

3. Rule Identity. From the rule’s definition, it follows that free(φ) = x, free(ψ) = y, and φ[x 7→
y] = ψ. Let d ∈ ΩΓ

D and t ∈ [{x | φ}]d. From t ∈ [{x | φ}]d and the definition of non-
boolean query, it follows that [φ[x 7→ t]]d = >. From this and φ[x 7→ y] = ψ, it follows that
[ψ[y 7→ t]]d = >. From this and the definition of non-boolean query, t ∈ [{y | ψ}]d. Therefore,
[{x | φ}]d ⊆ [{y | ψ}]d.

4. Rule Inclusion Dependency. From the rule’s definition, it follows that γ := ∀x, z. (R(x, z) →
∃w. S(x,w)) is in Γ. Let d ∈ ΩΓ

D and t ∈ [{x | ∃z.R(x, z)}]d. From t ∈ [{x | ∃z.R(x, z)}]d and
the definition of non-boolean query, it follows that [∃z.R(t, z)]d = >. Therefore, there is a tuple
(t, w) ∈ d(R). From this and γ ∈ Γ, it follows that there is a tuple (t, w′) ∈ d(S). From this, it
follows that [∃w. S(t, w)]d = >. From this and the definition of non-boolean query, it follows
that t ∈ [{x | ∃w. S(x,w)}]d. Therefore, it follows that [{x | ∃z.R(x, z)}]d ⊆ [{x | ∃w. S(x,
w)}]d holds.

This completes the proof for the base case.
Induction Step Assume now that the claim holds for all derivations of length less than that of
φ ⊆M ψ. We now prove that it holds also for φ ⊆M ψ. There are two cases:

1. Rule Projection. In this case, φ ⊆M ψ is of the form ∃xi. α ⊆M ∃yi. β and it is obtained by
applying the rule Projection to α ⊆M β. From the rule, it follows that α ⊆M β holds. Let
1 ≤ u ≤ n and t′ (respectively x′ and y′) be the tuple obtained from t (respectively x and y)
by dropping the i-th value (respectively variable). We now prove that [{x′ | ∃xi. α}]d ⊆ [{y′ |
∃yi. β}]d . Assume, for contradiction’s sake, that this is not the case, namely there is a tuple
v such that v ∈ [{x′ | ∃xi. α}]d but v 6∈ [{y′ | ∃yi. β}]d . From v ∈ [{x′ | ∃xi. α}]d and the
relational calculus semantics, it follows that there is a tuple v1, obtained by adding a value
to v in the i-th position, such that v1 ∈ [{x | α}]d . From this, α ⊆M β, and the induction
hypothesis, it follows that v1 ∈ [{y | β}]d . From this and the relational calculus semantics, it
follows that v ∈ [{y′ | ∃yi. β}]d . This contradicts the fact that v 6∈ [{y′ | ∃yi. β}]d .

2. Rule Transitivity. From the rule, it follows that both φ ⊆M γ and γ ⊆M ψ hold. Let d ∈ ΩΓ
D

and t ∈ [{x | φ}]d. From φ ⊆M γ, t ∈ [{x | φ}]d, and the induction hypothesis, it follows that
t ∈ [{y | γ}]d. From this, γ ⊆M ψ, and the induction hypothesis, it follows that t ∈ [{z | ψ}]d.
Hence, φ ⊆M ψ.

This completes the proof.

C.4.2 Data security is a sound under-approximation of judgment’s security
Here we introduce data security, a weaker notion than judgment security. Afterwards, we show

that it is a sound under-approximation of judgment’s security.
Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, u ∈ U be a user, r ∈ traces(L)

be an L-run, φ ∈ RCbool be a sentence, and 1 ≤ i ≤ |r|. Furthermore, let s be the i-th state of r.
The judgment r, i `u φ is data-secure for M and u, denoted by securedata

P,u (r, i `u φ), iff for all s′,
s′′ ∈ JsysState(s)Kdata

M,u, [φ]s′.db = [φ]s′′.db, where ∼=data
M,u is the data-indistinguishability relation defined

in Chapter 6 and JsKdataM,u is the set {s′ ∈ ΠM |s ∼=data
M,u s

′}.
Proposition C.7 states that securedata

P,u is a sound under approximation of secureP,u. Observe that
deciding whether securedata

P,u (r, i `u φ) holds for a given judgment is still undecidable for the relational
calculus (this directly follows from our results in Chapter 3).

Proposition C.7. Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, u ∈ U be a user,
r ∈ traces(L) be an L-run, φ ∈ RCbool is a sentence, and 1 ≤ i ≤ |r|. Given a judgment r, i `u φ, if
securedata

P,u (r, i `u φ), then secureP,u(r, i `u φ).

Proof. We prove the claim by contradiction. Let P = 〈M, f〉 be an extended configuration, L be
the P -LTS, u ∈ U be a user, r ∈ traces(L) be an L-run, φ ∈ RCbool is a sentence, and 1 ≤ i ≤ |r|.
Furthermore, let s = 〈db, U, sec, T, V, c〉 be the i-th state of r. Assume, for contradiction’s sake,
that securedata

P,u (r, i `u φ) holds and secureP,u(r, i `u φ) does not hold. We denote, for brevity’s
sake, the fact that secureP,u(r, i `u φ) does not hold as ¬secureP,u(r, i `u φ). From ¬secureP,u(r,
i `u φ), it follows that there is a run r′ ∈ traces(L), whose last state is s′ = 〈db′, U ′, sec′, T ′, V ′, c′〉,
such that ri ∼=P,u r′ and [φ]db 6= [φ]db′ . From the (P, u)-indistinguishability definition, it follows
that sysState(last(ri)) and sysState(last(r′)) are data indistinguishable according to M and u, i.e.,
sysState(last(ri)) ∼=data

M,u sysState(last(r′)). From securedata
P,u (r, i `u φ), it also follows that for all
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s′, s′′ ∈ JsysState(s)Kdata
M,u, [φ]s′.db = [φ]s′′.db. From this and the fact that sysState(last(ri)) ∼=data

M,u

sysState(last(r′)), it follows that [φ]db = [φ]db′ , which contradicts [φ]db 6= [φ]db′ . This completes the
proof.

C.4.3 Properties of φ>s,u and φ⊥s,u

We now show that the rewritings φ>s,u and φ⊥s,u provide the desired properties. First, in Lemma C.5
we prove that the two rewritings satisfy the following invariants: “if φ>s,u holds in s, then also φ holds
in s” and “if φ⊥s,u does not hold in s, then also φ does not hold in s”. Afterwards, in Lemma C.6
we show that both φ>s,u and φ⊥s,u are secure. Then, in Lemma C.8 we prove that φ>s,u and φ⊥s,u
are equivalent to φ>s′,u and φ⊥s′,u for any two data indistinguishable M -state s and s′. Finally, in
Proposition C.8 we show that both φ>s,u and φ⊥s,u are domain-independent.

Lemma C.5. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M-state,
u ∈ U be a user, and φ be a D-formula. For all assignments ν that are well-formed for φ, the
following conditions hold:

• if [φ>s,uν]db = >, then [φν]db = >, and
• if [φ⊥s,uν]db = ⊥, then [φν]db = ⊥.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M -state, u ∈ U
be a user, and φ be a D-formula. Furthermore, let ν be an assignment that is well-formed for φ. We
prove our claim by induction on the structure of the formula φ.
Base Case There are four cases:

1. φ := x = y. In this case, φ>s,u = φ⊥s,u = φ. From this, it follows that [(x = v)>s,uν]db = [(x =
v)ν]db and [(x = v)⊥s,uν]db = [(x = v)ν]db. Therefore, our claim follows trivially.

2. φ := >. The proof of this case is similar to that of φ := x = y.
3. φ := ⊥. The proof of this case is similar to that of φ := x = y.
4. φ := R(x). Let t be the tuple ν(x). Note that since ν is well-formed for φ, t is well-defined.

Assume that [φ>s,uν]db = >. From this and φ>s,u :=
∨
S∈R>s,u

S(x), it follows that there is an
S ∈ R>s,u such that t ∈ db(S). Since S ∈ R>s,u, it follows that S ⊆M R. From S ⊆M R,
t ∈ db(S), and Proposition C.6, it follows that t ∈ db(R). From this, it follows that [φν]db = >.
Assume that [φ⊥s,uν]db = ⊥. From this and φ⊥s,u :=

∧
S∈R⊥s,u

S(x), it follows that there is an
S ∈ R⊥s,u such that t 6∈ db(S). Since S ∈ R⊥s,u, it follows that R ⊆M S. From R ⊆M S,
t 6∈ db(S), and Proposition C.6, it follows that t 6∈ db(R). From this, it follows that [φν]db = ⊥.

This completes the proof of the base case.
Induction Step Assume that our claim holds for all sub-formulae of φ. We now show that our claim
holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ ∧ γ. Assume that [φ>s,uν]db = >. From this and φ>s,u := ψ>s,u ∧ γ>s,u, it follows that
[ψ>s,uν]db = > and [γ>s,uν]db = >. Since ν is well-formed for φ, it is also well-formed for ψ
and γ because free(ψ) ⊆ free(φ) and free(γ) ⊆ free(φ). From [ψ>s,uν]db = > and the induction
hypothesis, it follows that [ψν]db = >. From [γ>s,uν]db = > and the induction hypothesis, it
follows that [γν]db = >. From [ψν]db = >, [γν]db = >, φ := ψ ∧ γ, and the relational calculus
semantics, it follows that [φν]db = >.
Assume that [φ⊥s,uν]db = ⊥. From this and φ⊥s,u := ψ⊥s,u ∧ γ⊥s,u, there are two cases:
(a) [ψ⊥s,uν]db = ⊥. From [ψ⊥s,uν]db = ⊥ and the induction hypothesis, it follows that [ψν]db =
⊥. From this and φ := ψ ∧ γ, it follows that [φν]db = ⊥

(b) [γ⊥s,uν]db = ⊥. From [γ⊥s,uν]db = ⊥ and the induction hypothesis, it follows that [γν]db = ⊥.
From this and φ := ψ ∧ γ, it follows that [φν]db = ⊥

2. φ := ψ ∨ γ. The proof of this case is similar to that of φ := ψ ∧ γ.
3. φ := ¬ψ. Assume that [φ>s,uν]db = >. From this and φ>s,u := ¬ψ⊥s,u, it follows that [ψ⊥s,uν]db = ⊥.

From this and the induction hypothesis, it follows that [ψν]db = ⊥. From this, φ := ¬ψ, and
the relational calculus semantics, it follows that [φν]db = >.
Assume that [φ⊥s,uν]db = ⊥. From this and φ⊥s,u := ¬ψ>s,u, it follows that [ψ>s,uν]db = >. From
this and the induction hypothesis, it follows that [ψν]db = >. From this and φ := ¬ψ, it follows
that [φν]db = ⊥.

4. φ := ∃x. ψ. Assume that [φ>s,uν]db = >. From this and φ>s,u := ∃x. ψ>s,u, it follows that there is
a v ∈ dom such that [ψ>s,uν[x 7→ v]]db = >. Note that since v is well-formed for φ, ν[x 7→ v]
is well-formed for ψ because φ := ∃x. ψ. From this, [ψ>s,uν[x 7→ v]]db = >, and the induction
hypothesis, it follows that [ψν[x 7→ v]]db = >. From this and φ := ∃x. ψ, it follows that
[φν]db = >.
Assume that [φ⊥s,uν]db = ⊥. From this and φ⊥s,u := ∃x. ψ⊥s,u, it follows that for all v ∈ dom,
[ψ⊥s,uν[x 7→ v]]db = ⊥. Note that since v is well-formed for φ, ν[x 7→ v] is well-formed for ψ
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because φ := ∃x. ψ. From this, [ψ⊥s,uν[x 7→ v]]db = ⊥, and the induction hypothesis, it follows
that for all v ∈ dom, [ψν[x 7→ v]]db = ⊥. From this and φ := ∃x. ψ, it follows that [φν]db = ⊥.

5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.
This completes the proof of the induction step.

This completes the proof of our claim.

In Lemma C.6, we prove that our rewritings are secure.

Lemma C.6. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system configu-
ration and f is an M-PDP, r ∈ traces(L) be a run, φ be a RC -formula, and 1 ≤ i ≤ r. Furthermore,
let s be the i-th state of r. For all assignments ν over dom that are well-formed for φ, securedata

P,u (r,
i `u φ>s,uν), securedata

P,u (r, i `u φ⊥s,uν), and securedata
P,u (r, i `u φrw

s,uν) hold.

Proof. The security of r, i `u φrw
s,u follows trivially from that of r, i `u φ>s,u and r, i `u φ⊥s,u. Therefore,

in the following we prove just that securedata
P,u (r, i `u φ>s,uν) and securedata

P,u (r, i `u φ⊥s,uν) hold. Let
M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M -state, u ∈ U be a user,
and φ be a D-formula. Furthermore, let ν be an assignment that is well-formed for φ. We prove our
claim by induction on the structure of the formula φ.
Base Case There are four cases:

1. φ := x = y. The claim holds trivially. Indeed, φ>s,uν and φ⊥s,uν are always equivalent either to >
or to ⊥. Since for all s′, s′′ ∈ JsysState(last(ri))Kdata

M,u, [>]s′.db = [>]s′′.db and [⊥]s′.db = [⊥]s′′.db,
it follows that both securedata

P,u (r, i `u φ>s,uν) and securedata
P,u (r, i `u φ⊥s,uν) hold.

2. φ := >. The proof of this case is similar to that of φ := x = y.
3. φ := ⊥. The proof of this case is similar to that of φ := x = y.
4. φ := R(x). Assume, for contradiction’s sake, that securedata

P,u (r, i `u φ>s,uν) does not hold. From
this and securedata

P,u ’s definition, it follows that there are two M -system states s′ = 〈db′, U, sec,
T, V 〉 and s′′ = 〈db′′, U, sec, T, V 〉 in JsysState(last(ri))Kdata

M,u such that [φ>s,uν]db′ 6= [φ>s,uν]db′′ .
Note that this rules out the cases in which Rvs,u = ∅ for any v ∈ {>,⊥}. We assume without
loss of generality that [φ>s,uν]db′ = > and [φ>s,uν]db′′ = ⊥. From this and φ>s,u :=

∨
S∈R>s,u

S(x),
it follows that there is a predicate symbol S in the extended vocabulary such that ν(x) ∈ db′(S)
and ν(x) 6∈ db′′(S). There are two cases:

• S is a table in D or a view in V . Since S ∈ R>s,u, it follows that 〈⊕, SELECT, S〉 ∈
permissions(last(ri), u). Note that permissions(s′, u) is identical to permissions(s′′, u)
and permissions(last(ri), u) because all the states are in the same equivalence class. From
s′ ∼=data

M,u s
′′, 〈⊕, SELECT, S〉 ∈ permissions(s′, u), and the definition of data indistinguish-

ability, it follows that db′(S) = db′′(S). From this, it follows that ν(x) ∈ db′(S) iff
ν(x) ∈ db′′(S), which contradicts ν(x) ∈ db′(S) and ν(x) 6∈ db′′(S).

• S is a projection of O, which is either a table in D or a view in V . From S ∈ R>s,u and
R>s,u’s definition, it follows that 〈⊕, SELECT, O〉 ∈ permissions(last(ri), u). From s′ ∼=data

M,u

s′′, 〈⊕, SELECT, O〉 ∈ permissions(s′, u), and the definition of data indistinguishability, it
follows that db′(O) = db′′(O). From this and the definition of S, it also follows that
db′(S) = db′′(S)1. From this, it follows that ν(x) ∈ db′(S) iff ν(x) ∈ db′′(S), which
contradicts ν(x) ∈ db′(S) and ν(x) 6∈ db′′(S).

The proof of securedata
P,u (r, i `u φ⊥s,uν) is analogous.

This completes the proof of the base case.
Induction Step Assume that our claim holds for all sub-formulae of φ. We now show that our claim
holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ∧γ. Assume, for contradiction’s sake, that securedata
P,u (r, i `u φ>s,uν) does not hold. From

this and securedata
P,u ’s definition, it follows that there are two M -system states s′ = 〈db′, U, sec,

T, V 〉 and s′′ = 〈db′′, U, sec, T, V 〉 in JsysState(last(ri))Kdata
M,u such that [φ>s,uν]db′ 6= [φ>s,uν]db′′ .

We assume, without loss of generality, that [φ>s,uν]db′ = > and [φ>s,uν]db′′ = ⊥. From this and
φ>s,u = ψ>s,u ∧ γ>s,u, it follows that [ψ>s,uν]db′ = > and [ψ>s,uν]db′′ = ⊥ or [γ>s,uν]db′ = > and
[γ>s,uν]db′′ = ⊥. We assume, without loss of generality, that [ψ>s,uν]db′ = > and [ψ>s,uν]db′′ =
⊥. From this, it follows that securedata

P,u (r, i `u ψ>s,uν) does not hold. From the induction
hypothesis, it follows that securedata

P,u (r, i `u ψ>s,uν) holds leading to a contradiction. The proof
of securedata

P,u (r, i `u φ⊥s,uν) is analogous.
2. φ := ψ ∨ γ. The proof of this case is similar to that of φ := ψ ∧ γ.
1With a slight abuse of notation, we denote by db(S) the materializaton of S in db.
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3. φ := ¬ψ. Assume, for contradiction’s sake, that securedata
P,u (r, i `u φ>s,uν) does not hold. From

this and securedata
P,u ’s definition, it follows that there are two M -system states s′ = 〈db′, U, sec,

T, V 〉 and s′′ = 〈db′′, U, sec, T, V 〉 in JsysState(last(ri))Kdata
M,u such that [φ>s,uν]db′ 6= [φ>s,uν]db′′ .

We assume, without loss of generality, that [φ>s,uν]db′ = > and [φ>s,uν]db′′ = ⊥. From this
and φ>s,u = ¬ψ⊥s,u, it follows that [ψ⊥s,uν]db′ = ⊥ and [ψ⊥s,uν]db′′ = >. From this, it follows
that securedata

P,u (r, i `u ψ⊥s,uν) does not hold. From the induction hypothesis and φ := ¬ψ, it
follows that securedata

P,u (r, i `u ψ⊥s,uν) holds leading to a contradiction. The proof of securedata
P,u (r,

i `u φ⊥s,uν) is analogous.
4. φ := ∃x. ψ. Assume, for contradiction’s sake, that securedata

P,u (r, i `u φ>s,uν) does not hold. From
this and securedata

P,u ’s definition, it follows that there are two M -system states s′ = 〈db′, U, sec,
T, V 〉 and s′′ = 〈db′′, U, sec, T, V 〉 in JsysState(last(ri))Kdata

M,u such that [φ>s,uν]db′ 6= [φ>s,uν]db′′ .
We assume, without loss of generality, that [φ>s,uν]db′ = > and [φ>s,uν]db′′ = ⊥. From this and
φ>s,u = ∃x. ψ>s,u, it follows that there is a v′ ∈ dom such that [ψ>s,uν[x 7→ v′]]db′ = > and there
is no v′′ ∈ dom such that [ψ>s,uν[x 7→ v′′]]db′′ = >. Therefore, [ψ>s,uν[x 7→ v′]]db′ = > and
[ψ>s,uν[x 7→ v′]]db′′ = ⊥. Note that ν[x 7→ v′] is well-formed for ψ>s,u. From this, it follows that
securedata

P,u (r, i `u ψ>s,uν[x 7→ v′]) does not hold. However, from the fact that ν[x 7→ v′] is well-
formed for ψ>s,u and the induction hypothesis, it follows that securedata

P,u (r, i `u ψ>s,uν[x 7→ v′])
holds leading to a contradiction. The proof of securedata

P,u (r, i `u φ⊥s,uν) is analogous.
5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Lemma C.7 states that the result of the bound function is the same for any two data indistin-
guishable states.

Lemma C.7. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′,
T ′, V ′〉 be two partial M-states, u ∈ U be a user, v ∈ {>,⊥}, and φ be a D-formula. If s ∼=data

M,u s
′,

then bound(φ, s, u, x, v) = bound(φ, s′, u, x, v).

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉
be two partial M -states, u ∈ U be a user, v ∈ {>,⊥}, and φ be a D-formula. We prove our claim by
induction on the structure of the formula φ.
Base Case There are four cases:

1. φ := y = z. The result of bound(φ, s, u, x, v) and bound(φ, s′, u, x, v) does not depend on s.
Therefore, bound(φ, s, u, x, v) = bound(φ, s′, u, x, v).

2. φ := >. bound(φ, s, u, x, v) = bound(φ, s′, u, x, v) = ⊥.
3. φ := ⊥. bound(φ, s, u, x, v) = bound(φ, s′, u, x, v) = ⊥.
4. φ := R(x). The result of bound(φ, s, u, x, v) and bound(φ, s′, u, x, v) depend only on the sets
Rvs,u and Rvs′,u, which in turn depend on the content of the sets Rvs , Rvs′ , AUTH ∗s,u, and
AUTH ∗s′,u. Assume that s ∼=data

M,u s
′. From this, it follows that Rvs = Rvs′ (because D is the

same and V = V ′) and AUTH ∗s,u = AUTH ∗s′,u (because sec = sec′). From this, it follows that
bound(φ, s, u, x, v) = bound(φ, s′, u, x, v).

This completes the proof of the base case.
Induction Step Assume that our claim holds for all sub-formulae of φ. We now show that our claim
holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ ∧ γ. Assume that s ∼=data
M,u s

′. From this and the induction hypothesis, it follows that
bound(ψ, s, u, x, v) = bound(ψ, s′, u, x, v) and bound(γ, s, u, x, v) = bound(γ, s′, u, x, v). From
this and bound(φ, s, u, x, v) := bound(ψ, s, u, x, v) ∨ bound(γ, s, u, x, v), it follows that bound(φ,
s, u, x, v) = bound(φ, s′, u, x, v).

2. φ := ψ ∨ γ. The proof of this case is similar to that of φ := ψ ∧ γ.
3. φ := ¬ψ. Assume that s ∼=data

M,u s′. From this and the induction hypothesis, it follows that
bound(ψ, s, u, x, v) = bound(ψ, s′, u, x, v). From this, bound(¬ψ, s, u, x, v) = bound(ψ, s, u, x,
¬v), and bound(¬ψ, s′, u, x, v) = bound(ψ, s′, u, x,¬v), it follows that bound(φ, s, u, x, v) =
bound(φ, s′, u, x, v).

4. φ := ∃y. ψ. Assume that s ∼=data
M,u s

′. There are two cases:
(a) x = y. In this case, the proof is trivial as bound(φ, s, u, x, v) = bound(φ, s′, u, x, v) = ⊥.
(b) x 6= y. In this case, bound(φ, s, u, x, v) = bound(ψ, s, u, x, v) ∧ bound(ψ, s, u, y, v) and

bound(φ, s′, u, x, v) = bound(ψ, s′, u, x, v) ∧ bound(ψ, s′, u, y, v). From s ∼=data
M,u s′ and

the induction hypothesis, it follows that bound(ψ, s, u, x, v) = bound(ψ, s′, u, x, v) and
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bound(ψ, s, u, y, v) = bound(ψ, s′, u, y, v). From this, bound(φ, s, u, x, v) = bound(ψ, s, u,
x, v) ∧ bound(ψ, s, u, y, v), and bound(φ, s′, u, x, v) = bound(ψ, s′, u, x, v) ∧ bound(ψ, s′, u,
y, v), it follows that bound(φ, s, u, x, v) = bound(φ, s′, u, x, v).

5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.
This completes the proof of the induction step.

This completes the proof of our claim.

Lemma C.8 states that the formulae resulting from our rewriting are the same for any two data
indistinguishable states.

Lemma C.8. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′,
sec′, T ′, V ′〉 be two partial M-states, u ∈ U be a user, and φ be a D-formula. If s ∼=data

M,u s′, then
φ>s,u = φ>s′,u, φ⊥s,u = φ⊥s′,u, and φrw

s,u = φrw
s′,u.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉
be two partial M -states, u ∈ U be a user, and φ be a D-formula. We prove our claim by induction
on the structure of the formula φ.
Base Case There are four cases:

1. φ := x = y. The claim holds trivially. Indeed, φ>s,u = φ⊥s,u = φ.
2. φ := >. The proof of this case is similar to that of φ := x = y.
3. φ := ⊥. The proof of this case is similar to that of φ := x = y.
4. φ := R(x). The formulae φ>s,u and φ>s′,u depend only on the sets R>s,u and R>s′,u, which in turn

depends on R>s , R>s′ , AUTH ∗s,u, and AUTH ∗s′,u. If s ∼=data
M,u s

′, then R>s = R>s′ (because D is the
same and V = V ′) and AUTH ∗s,u = AUTH ∗s′,u (because sec = sec′). Therefore, φ>s,u = φ>s′,u.
The proof for φ⊥s,u is analogous.

This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than φ. We now
show that our claim holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ ∧ γ. Assume that s ∼=data
M,u s

′. From this and the induction hypothesis, it follows that
ψ>s,u = ψ>s′,u and γ>s,u = γ>s′,u. From this, φ := ψ∧γ, φ>s,u := ψ>s,u∧γ>s,u, and φ>s′,u := ψ>s′,u∧γ>s′,u,
it follows that φ>s,u = φ>s′,u. The proof of φ⊥s,u = φ⊥s′,u is analogous.

2. φ := ψ ∨ γ. The proof of this case is similar to that of φ := ψ ∧ γ.
3. φ := ¬ψ. Assume that s ∼=data

M,u s′. From this and the induction hypothesis, it follows that
ψ>s,u = ψ>s′,u and ψ⊥s,u = ψ⊥s′,u. From this, φ := ¬ψ, φ>s,u := ¬ψ⊥s,u, and φ>s′,u := ¬ψ⊥s′,u, it
follows that φ>s,u = φ>s′,u. The proof of φ⊥s,u = φ⊥s′,u is analogous.

4. φ := ∃x. ψ. Assume that s ∼=data
M,u s′. From this and the induction hypothesis, it follows

that ψ>s,u = ψ>s′,u. We remark that bound(ψ, s, u, x,>) = bound(ψ, s′, u, x,>), as proved in
Lemma C.7. There are two cases:
(a) bound(ψ, s, u, x,>) = >. From this, bound(ψ, s, u, x,>) = bound(ψ, s′, u, x,>), ψ>s,u =

ψ>s′,u, φ := ∃x. ψ, φ>s,u := ∃x. ψ>s,u, and φ>s′,u := ∃x. ψ>s′,u, it follows that φ>s,u = φ>s′,u.
(b) bound(ψ, s, u, x,>) = ⊥. From this, bound(ψ, s, u, x,>) = bound(ψ, s′, u, x,>), and φ>s,u’s

definition, it follows that φ>s′,u = φ>s′,u = ⊥.
The proof of φ⊥s,u = φ⊥s′,u is analogous.

5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.
This completes the proof of the induction step.

The equivalence φrw
s,u = φrw

s′,u follows trivially from φrw
s,u’s definition and the fact that φ>s,u = φ>s′,u

and φ⊥s,u = φ⊥s′,u. This completes the proof of our claim.

Before proving the domain independence of φ>s,u and φ⊥s,u, we introduce some notation. The
relation gen, introduced in [160], is the smallest relation defined by the rules in Figure C.1. Note
that we extended gen by adding the rules Equiv, Const 1, and Const 2. A relational calculus formula
φ is allowed iff it satisfies the following conditions:

• for all x ∈ free(φ), gen(x, φ) holds,
• for every sub-formula ∃x.ψ in φ, gen(x, ψ) holds, and
• for every sub-formula ∀x.ψ in φ, gen(x,¬ψ) holds.

As shown in [160], every allowed formula is domain independent. Note that the addition of the Equiv,
Const 1, and Const 2 rules does not modify this result.

Lemma C.9 presents some useful equivalences that we use in our proof of domain independence.

Lemma C.9. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system state,
u ∈ U be a user, and v ∈ {>,⊥}. For any formulae φ and ψ, the following equivalences hold:

• (¬φ)vs,u ≡ ¬φ¬vs,u,
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x ∈ x
gen(x,R(x)) Pred

gen(x, push(¬φ))
gen(x,¬φ)

Neg

x 6= y gen(x, φ)
gen(x,∃y.φ) Exists

x 6= y gen(x, φ)
gen(x, ∀y.φ) For all

gen(x, φ) gen(x, ψ)
gen(x, φ ∨ ψ) Or

gen(x, ψ) φ ≡ ψ
gen(x, φ)

Equiv

v ∈ dom
gen(x, x = v) Const 1 v ∈ dom

gen(x, v = x) Const 2

gen(x, φ)
gen(x, φ ∧ ψ) And 1

gen(x, ψ)
gen(x, φ ∧ ψ) And 2

push(φ) =



¬ψ ∨ ¬γ if φ := ¬(ψ ∧ γ)
¬ψ ∧ ¬γ if φ := ¬(ψ ∨ γ)
∀x.¬ψ if φ := ¬∃x.ψ
∃x.¬ψ if φ := ¬∀x.ψ
ψ if φ := ¬¬ψ
x 6= y if φ := ¬(x = y)
x = y if φ := ¬(x 6= y)

Figure C.1: Rules defining the gen relation.

• (φ)vs,u ∧ (ψ)vs,u ≡ (φ ∧ ψ)vs,u,
• (φ)vs,u ∨ (ψ)vs,u ≡ (φ ∨ ψ)vs,u,
• (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u, and
• (∀x. φ)vs,u ≡ (¬∃x.¬φ)vs,u.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M -system state, u ∈ U
be a user, v ∈ {>,⊥}, and φ, ψ be two formulae.

• (¬φ)vs,u ≡ ¬φ¬vs,u. This case follows trivially from the definition of the rewriting.
• (φ)vs,u ∧ (ψ)vs,u ≡ (φ ∧ ψ)vs,u. This case follows trivially from the definition of the rewriting.
• (φ)vs,u ∨ (ψ)vs,u ≡ (φ ∨ ψ)vs,u This case follows trivially from the definition of the rewriting.
• (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u. There are two cases:

1. bound(φ, s, u, x, v) = >. From this, it follows that (∃x. φ)vs,u = ∃x. φvs,u. From (¬φ)vs,u ≡
¬φ¬vs,u, it follows that (¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u. From the definition of bound, it follows
that bound(¬φ, s, u, x,¬v) = bound(φ, s, u, x,¬¬v). From this and v = ¬¬v, it follows that
bound(¬φ, s, u, x,¬v) = bound(φ, s, u, x, v). From this and bound(φ, s, u, x, v) = ⊥, it fol-
lows that bound(¬φ, s, u, x,¬v) = >. From this, it follows that (∀x.¬φ)¬vs,u = ∀x. (¬φ)¬vs,u.
From this and (¬φ)vs,u ≡ ¬φ¬vs,u, it follows that (∀x.¬φ)¬vs,u ≡ ∀x.¬φvs,u. From this and
(¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u, it follows that (¬∀x.¬φ)vs,u ≡ ¬∀x.¬φvs,u. From this and
standard RC equivalences, it follows that (¬∀x.¬φ)vs,u ≡ ∃x. φvs,u.

2. bound(φ, s, u, x, v) = ⊥. From this, it follows that (∃x. φ)vs,u = ¬v. From (¬φ)vs,u ≡ ¬φ¬vs,u
and (¬∀x.¬φ)vs,u, it follows that (¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u. From the definition of
bound, it follows that bound(¬φ, s, u, x,¬v) = bound(φ, s, u, x,¬¬v). From this and v =
¬¬v, it follows that bound(¬φ, s, u, x,¬v) = bound(φ, s, u, x, v). From this and bound(φ,
s, u, x, v) = ⊥, it follows that bound(¬φ, s, u, x,¬v) = ⊥. From this, it follows that
(∀x.¬φ)¬vs,u = v. From this and (¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u, it follows that (¬∀x.¬φ)vs,u ≡
¬v. From this and (∃x. φ)vs,u = ¬v, it follows that (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u.

• (∀x. φ)vs,u ≡ (¬∃x.¬φ)vs,u. The proof of this case is similar to that of (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u.
This completes the proof.

Lemma C.10. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, u ∈ U be a user, v ∈ {>,⊥}, and φ be a formula. Furthermore, let x ∈ free(φ) ∩ free(φvs,u). If
gen(x, φ) holds, then gen(x, φvs,u) holds.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M -system state, u ∈ U
be a user, v ∈ {>,⊥}, and φ be a formula. Furthermore, let x ∈ free(φ) ∩ free(φvs,u). We prove our
claim by induction on the length of φ. In the following, the length of φ is the number of predicates,
quantifiers, negations, conjunctions, and disjunctions in φ.
Base Case There are four cases:
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1. φ := x = y. In this case, the claim holds trivially.
2. φ := >. In this case, the claim holds trivially.
3. φ := ⊥. In this case, the claim holds trivially.
4. φ := R(x). Assume gen(x, φ) holds. From this, it follows that x is one of the free variables in
x. Furthermore, from x ∈ free(φvs,u), it follows that Rvs,u 6= ∅. There are two cases:
(a) φvs,u is a conjunction of predicates S(x) such that gen(x, S(x)) holds. From the rule And

1, it follows that gen(x, φvs,u) holds.
(b) φvs,u is a disjunction of predicates S(x) such that gen(x, S(x)) holds. From the rule Or, it

follows that gen(x, φvs,u) holds.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than φ’s length.
We now show that our claim holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ ∧ γ. Assume that gen(x, φ) holds. From this and the rules And 1 and And 2, it follows
that either gen(x, ψ) or gen(x, γ) hold. Assume, without loss of generality, that gen(x, ψ)
holds. From this and the induction hypothesis, it follows that gen(x, ψvs,u) holds. From this,
φvs,u := ψvs,u ∧ γvs,u, and the rule And 1, it follows that gen(x, φvs,u) holds.

2. φ := ψ ∨ γ. Assume that gen(x, φ) holds. From this and the rule Or, it follows that both
gen(x, ψ) and gen(x, γ) hold. From this and the induction hypothesis, it follows that both
gen(x, ψvs,u) and gen(x, γvs,u) hold. From this, φvs,u := ψvs,u ∨ γvs,u, and the rule Or, it follows
that gen(x, φvs,u) holds.

3. φ := ¬ψ. Assume that gen(x, φ) holds. From this and the rule Not, it follows that gen(x,
push(¬ψ)). There are a number of cases depending on ψ. In the following, we exploit stan-
dard relational calculus equivalences, see, for instance, [10], and the equivalences we proved in
Lemma C.9.
(a) ψ := (α ∧ β). In this case, push(¬ψ) is (¬α ∨ ¬β). From this and gen(x, push(¬ψ)),

it follows gen(x, (¬α ∨ ¬β)). From this and the Or rule, it follows that gen(x,¬α) and
gen(x,¬β) hold. From this and the induction hypothesis, it follows that gen(x, (¬α)vs,u)
and gen(x, (¬β)vs,u). From this and the Or rule, it follows that gen(x, (¬α)vs,u ∨ (¬β)vs,u).
From this, (¬α)vs,u ∨ (¬β)vs,u ≡ (¬α ∨ ¬β)vs,u, and the Equiv rule, it follows that gen(x,
(¬α ∨ ¬β)vs,u). From this, (¬α ∨ ¬β)vs,u ≡ (¬(α ∧ β))vs,u, and the Equiv rule, it follows
that gen(x, (¬(α ∧ β))vs,u). From this, (¬(α ∧ β))vs,u ≡ ¬(α ∧ β)¬vs,u, and the Equiv rule, it
follows that gen(x,¬(α ∧ β)¬vs,u). From this and ψ := α ∧ β, it follows that gen(x,¬ψ¬vs,u).
From this and φvs,u := ¬ψ¬vs,u, it follows that gen(x, φvs,u) holds.

(b) ψ := (α ∨ β). The proof is similar to the ψ := ¬(α ∧ β) case.
(c) ψ := ∃y. α. In this case, push(¬ψ) is ∀y.¬α. From this and gen(x, push(¬ψ)), it

follows gen(x, ∀y.¬α). From this and the induction hypothesis, it follows that gen(x,
(∀y.¬α)vs,u). From this, ¬¬(∀y.¬α)vs,u ≡ (∀y.¬α)vs,u, and the Equiv rule, it follows that
gen(x,¬¬(∀y.¬α)vs,u). From this, ¬¬(∀y.¬α)vs,u ≡ ¬(¬∀y.¬α)¬vs,u, and the Equiv rule, it
follows that gen(x,¬(¬∀y.¬α)¬vs,u). From this, ¬(¬∀y.¬α)¬vs,u ≡ ¬(∃y.¬¬α)¬vs,u, and the
Equiv rule, it follows that gen(x,¬(∃y.¬¬α)¬vs,u). From this, ¬(∃y.¬¬α)¬vs,u ≡ ¬(∃y. α)¬vs,u,
and the Equiv rule, it follows that gen(x,¬(∃y. α)¬vs,u). From this and ψ := ∃y. α, it follows
that gen(x,¬ψ¬vs,u). From this and φvs,u := ¬ψ¬vs,u, it follows that gen(x, φvs,u) holds.

(d) ψ := ∀y. α. The proof is similar to the ψ := ¬∃y. α case.
(e) ψ := ¬α. In this case, push(¬ψ) is α. From this and gen(x, push(¬ψ)), it follows gen(x, α).

From this and the induction hypothesis, it follows that gen(x, αvs,u). From this, ¬¬αvs,u ≡
αvs,u, and the Equiv rule, it follows that gen(x,¬¬αvs,u). From this, ¬¬αvs,u ≡ ¬(¬α)¬vs,u,
and the Equiv rule, it follows that gen(x,¬(¬α)¬vs,u). From this and ψ := ¬α, it follows
that gen(x,¬ψ¬vs,u). From this and φvs,u := ¬ψ¬vs,u, it follows that gen(x, φvs,u) holds.

(f) ψ := x = y. The proof for this case is trivial.
(g) ψ := x 6= y. The proof for this case is trivial.

4. φ := ∃x. ψ. Assume that gen(x, φ) holds. From this and the rule Exists, it follows that gen(x, ψ)
holds. From this and the induction hypothesis, it follows that gen(x, ψvs,u) holds. From this,
φvs,u := ∃x. ψvs,u, and the rule Exists, it follows that gen(x, φvs,u) holds.

5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.
This completes the proof of the induction step.

This completes the proof of our claim.

Lemma C.11. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, u ∈ U be a user, v ∈ {>,⊥}, and φ be a formula. For every sub-formula ∃x. ψ of φ, if gen(x, ψ)
holds and x ∈ free(ψ) ∩ free(ψvs,u), then gen(x, ψvs,u) holds.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M -system state, u ∈ U
be a user, v ∈ {>,⊥}, and φ be a formula. We prove our claim by induction on the length of φ.



210 Appendix C. Proofs for Chapter 6

In the following, the size of φ is the number of predicates, quantifiers, negations, conjunctions, and
disjunctions in φ.
Base Case The claim is vacuously satisfied for the base cases as there is no sub-formula of the form
∃x. ψ.
Induction Step Assume that our claim holds for all formulae whose length is less than φ. We now
show that our claim holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ ∧ γ. Let α be a sub-formula of φ of the form ∃x. β such that gen(x, β) holds and
x ∈ free(β)∩ free(βvs,u). The formula α is either a sub-formula of ψ or a sub-formula of γ. From
this and the induction hypothesis, it follows that gen(x, βsv,u) holds.

2. φ := ψ ∨ γ. The proof of this case is similar to that of φ := ψ ∧ γ.
3. φ := ¬ψ. Let α be a sub-formula of φ of the form ∃x. β such that gen(x, β) holds and x ∈

free(β) ∩ free(βvs,u). Since φ := ¬ψ, the formula α is also a sub-formula of ψ. From this and
the induction hypothesis, it follows that gen(x, βsv,u) holds.

4. φ := ∃x. ψ. Let α be a sub-formula of φ of the form ∃x. β such that gen(x, β) holds and
x ∈ free(β) ∩ free(βvs,u). There are two cases:
(a) α is a sub-formula of ψ. From this and the induction hypothesis, it follows that gen(x, βsv,u)

holds.
(b) α = φ. From gen(x, β), x ∈ free(β) ∩ free(βvs,u), and Lemma C.10, it follows that gen(x,

βvs,u) holds.
5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Lemma C.12. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, u ∈ U be a user, v ∈ {>,⊥}, and φ be a formula. For every sub-formula ∀x. ψ of φ, if gen(x, ψ)
holds and x ∈ free(ψ) ∩ free(ψvs,u), then gen(x, (¬ψ)vs,u) holds.

Proof. The proof is similar to that of Lemma C.11.

Lemma C.13. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, u ∈ U be a user, v ∈ {>,⊥}, and φ be a formula. Let Q ∈ {∃, ∀} be a quantifier and subsQ(φ)
be the set of sub-formulae of φ of the form Qx.ψ. There is a surjective function f from subsQ(φ) to
subsQ(φvs,u) such that for any Qx.ψ in subsQ(φ), if f(Qx.ψ) is defined, then f(Qx.ψ)vs,u = Qx.ψvs,u.

Proof. The claim directly follows from the definition of φvs,u.

Finally, Proposition C.8 states that our rewriting is domain independent whenever the original
formula and the views can be proved to be allowed (which implies that they are domain independent).

Proposition C.8. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be an M-system
state, u ∈ U be a user, and φ be a formula. If φ is allowed and all views in V are allowed, then φ>s,u,
φ⊥s,u, and φrw

s,u are domain independent.

Proof. From Lemmas C.10–C.13, it follows that if φ is allowed, then both φ>s,u and φ⊥s,u are allowed.
Since every allowed formula is domain independent [160], it follows that both φ>s,u and φ⊥s,u are
domain independent. Finally, the domain independence of φrw

s,u follows easily from its definition and
the domain independence of φ>s,u and φ⊥s,u.

C.4.4 The secure function is a sound under-approximation of data security
We now prove the main result about our rewriting, namely that the secure function is, indeed, a

sound, under-approximation of the notion of judgment’s security.

Proposition C.9. Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, u ∈ U be a user,
r ∈ traces(L) be an L-run, φ ∈ RCbool be a sentence, and 1 ≤ i ≤ |r|. Furthermore, let s be the i-th
state in r. The following statements hold:

1. Given a judgment r, i `u φ, if secure(u, φ, s) = >, then securedata
P,u (r, i `u φ) holds.

2. Given a judgment r, i `u φ, if secure(u, φ, s) = >, then secureP,u(r, i `u φ) holds.

Proof. Note that the second statement follows trivially from Proposition C.7 and the first statement.
Therefore, in the following we prove just that given a judgment r, i `u φ, if secure(u, φ, s) = >, then
securedata

P,u (r, i `u φ) holds.
Let P = 〈M, f〉 be an extended configuration, L be the P -LTS, u ∈ U be a user, r ∈ traces(L) be

an L-run, φ ∈ RCbool be a sentence, and 1 ≤ i ≤ |r|. Furthermore, let s = 〈db, U, sec, T, V, c〉 be the i-
th state in r. Assume that secure(u, φ, s) = >. From this and secure’s definition, [φrw

s,u]db = ⊥. In the
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following, with a slight abuse of notation we ignore the inline and ext functions in φrw
s,u’s definition.

This is without loss of generality since inline and ext do not modify φ’s result. From this and φrw
s,u’s

definition, it follows that either [φ>s,u]db = > or [φ⊥s,u]db = ⊥. Note that from Lemma C.6, it follows
that securedata

P,u (r, i `u φ>s,u) and securedata
P,u (r, i `u φ⊥s,u). Furthermore, let ∆ be the equivalence class

JsysState(s)Kdata
M,u. There are two cases:

1. [φ>s,u]db = >. From securedata
P,u (r, i `u φ>s,u), it follows that for all s′, s′′ ∈ ∆, [φ>s,u]s′.db =

[φ>s,u]s′′.db. From this, s ∈ ∆, and [φ>s,u]db = >, it follows that [φ>s,u]s′.db = > for all s′ ∈ ∆.
From Lemma C.8, it follows that for all s′, s′′ ∈ ∆, φ>s,u = φ>s′,u = φ>s′′,u. From this and the
fact that for all s′ ∈ ∆, [φ>s,u]s′.db = >, it follows that for all s′ ∈ ∆, [φ>s′,u]s′.db = >. From
this and Lemma C.5, it follows that for all s′ ∈ ∆, [φ]s′.db = >. From this, it follows that
for all s′, s′′ ∈ ∆, [φ]s′.db = [φ]s′′.db. From this, r’s definition, and securedata

P,u , it follows that
securedata

P,u (r, i `u φ).
2. [φ⊥s,u]db = ⊥. From securedata

P,u (r, i `u φ⊥s,u), it follows that for all s′, s′′ ∈ ∆, [φ⊥s,u]s′.db =
[φ⊥s,u]s′′.db. From this, s ∈ ∆, and [φ⊥s,u]db = ⊥, it follows that [φ⊥s,u]s′.db = ⊥ for all s′ ∈ ∆.
From Lemma C.8, it follows that for all s′, s′′ ∈ ∆, φ⊥s,u = φ⊥s′,u = φ⊥s′′,u. From this and the
fact that for all s′ ∈ ∆, [φ⊥s,u]s′.db = ⊥, it follows that for all s′ ∈ ∆, [φ⊥s′,u]s′.db = ⊥. From
this and Lemma C.5, it follows that for all s′ ∈ ∆, [φ]s′.db = ⊥. From this, it follows that
for all s′, s′′ ∈ ∆, [φ]s′.db = [φ]s′′.db. From this, r’s definition, and securedata

P,u , it follows that
securedata

P,u (r, i `u φ).
This completes the proof of our claim.

Lemma C.14 states that the secure function produces the same result for indistinguishable states.

Lemma C.14. Let M be a system configuration, u ∈ U be a user, s, s′ ∈ ΩM be two M-states such
that sysState(s) ∼=data

M,u sysState(s′), and φ be a sentence. Then, secure(u, φ, s) = > iff secure(u, φ,
s′) = >.

Proof. Let M be a system configuration, u ∈ U be a user, s = 〈db, U, sec, T, V, c〉 and s′ = 〈db′, U ′,
sec′, T ′, V ′, c′〉 be twoM -states such that sysState(s) ∼=data

M,u sysState(s′), and φ be a sentence. We now
prove that secure(u, φ, s) = secure(u, φ, s′). Assume, for contradiction’s sake, that secure(u, φ, s) 6=
secure(u, φ, s′). From this, it follows that [φrw

s,u]db 6= [φrw
s′,u]db′ . From sysState(s) ∼=data

M,u sysState(s′)
and Lemma C.8, it follows that φrw

s,u = φrw
s′,u. From this and [φrw

s,u]db 6= [φrw
s′,u]db′ , it follows that

[φrw
s,u]db 6= [φrw

s,u]db′ . This contradicts securedata
P,u (r, i `u φrw

s,u), which has been proved in Lemma C.6.
This completes the proof of our claim.

C.4.5 Auxiliary results about fconf

Here we prove some auxiliary results about fconf .
Lemma C.15 states that the result of fuconf is the same for all data indistinguishable states.

Lemma C.15. Let M = 〈D,Γ〉 be a system configuration, u ∈ U be a user, s, s′ ∈ ΩM be two
M-states such that sysState(s) ∼=data

M,u sysState(s′), invoker(s) = invoker(s′), and tr(s) = tr(s′), and
a be an action in AD,U . Then, fuconf (s, a) = fuconf (s′, a).

Proof. Let M = 〈D,Γ〉 be a system configuration, u ∈ U be a user, s = 〈db, U, sec, T, V, c〉 and
s′ = 〈db′, U ′, sec′, T ′, V ′, c′〉 be two M -states such that sysState(s) ∼=data

M,u sysState(s′), invoker(s) =
invoker(s′), and tr(s) = tr(s′), and a be an action in AD,u. There are a number of cases depending
on the action a.

1. a = 〈u′, SELECT, φ〉. Assume, for contradiction’s sake, that fuconf ,(s, a) 6= fuconf (s′, a). This hap-
pens iff secure(u, φ, s) 6= secure(u, φ, s′). This contradicts Lemma C.14 because sysState(s) ∼=data

M,u

sysState(s′).
2. a = 〈u′, INSERT, R, t〉. We claim that noLeak(s, a, u) = noLeak(s′, a, u). Assume, for contradic-

tion’s sake, that fuconf (s, a) 6= fuconf (s′, a). This happens iff there is a formula φ, which has been
derived using the getInfo, getInfoV , or getInfoD functions, such that secure(u, φ, s) 6= secure(u,
φ, s′). This contradicts Lemma C.14 because sysState(s) ∼=data

M,u sysState(s′).
We prove our claim that noLeak(s, a, u) = noLeak(s′, a, u) for any two states s and s′ such
that sysState(s) ∼=data

M,u sysState(s′). Assume, for contradiction’s sake, that this is not the case.
Without loss of generality we assume that noLeak(s, a, u) = > and noLeak(s′, a, u) = ⊥. From
noLeak(s, a, u) = >, it follows that for all views V such that 〈⊕, SELECT, V 〉 ∈ permissions(s,
u) and R ∈ tDet(V, s,M), for all o ∈ tDet(V, s,M), 〈⊕, SELECT, o〉 is in permissions(s, u).
From sysState(s) ∼=data

M,u sysState(s′), it follows that sec = sec′. From this, permissions(s, u) =
permissions(s′, u). From noLeak(s′, a, u) = ⊥, there are two views or tables V ′ and o such that
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〈⊕, SELECT, V ′〉 ∈ permissions(s′, u), 〈⊕, SELECT, o〉 6∈ permissions(s′, u), R ∈ tDet(V ′, s′,M),
and o ∈ tDet(V ′, s′,M). Note that tDet(V ′, s′,M) = tDet(V ′, s,M) because query determinacy
does not consider the database state. From this and permissions(s, u) = permissions(s′, u), it
follows that there is a view V ′ such that 〈⊕, SELECT, V ′〉 ∈ permissions(s, u) and R ∈ tDet(V ′,
s,M), such that there is a table o ∈ tDet(V ′, s,M) for which 〈⊕, SELECT, o〉 6∈ permissions(s, u).
This contradicts noLeak(s, a, u) = >.

3. a = 〈u′, DELETE, R, t〉. The proof of this case is similar to the a = 〈u′, INSERT, R, t〉 case.
4. a = 〈op, u′′, p, u′〉, where op ∈ {⊕,⊕∗}. Assume, for contradiction’s sake, that fuconf ,(s,
a) 6= fuconf (s′, a). Note that this happens iff p = 〈SELECT, o〉 for some o. Without loss of
generality, we further assume that fuconf ,(s, a) = > and fuconf (s′, a) = ⊥. From fuconf ,(s, a) = >,
it follows that 〈⊕, SELECT, o〉 ∈ permissions(s, u). From sysState(s) ∼=data

M,u sysState(s′), it fol-
lows permissions(s, u) = permissions(s′, u). From this and 〈⊕, SELECT, o〉 ∈ permissions(s, u),
it follows that 〈⊕, SELECT, o〉 is in permissions(s′, u). From fuconf ,(s′, a) = ⊥, it follows that
〈⊕, SELECT, o〉 6∈ permissions(s, u). This contradicts 〈⊕, SELECT, o〉 ∈ permissions(s′, u).

5. For any other action a, the proof is trivial.
This completes the proof of our claim.

Lemma C.16. Let P be an extended configuration, L be the P -LTS, r ∈ traces(L) be a run, u
be a user, γ be a sentence, and Φ be a set of sentences such that Φ |=fin γ. If, for all φ ∈ Φ,
secureP,u(r, i `u φ) holds and [φ]last(r).db = >, then secureP,u(r, i `u γ) holds and [γ]last(ri).db = >.

Proof. Let P be an extended configuration, L be the P -LTS, r ∈ traces(L) be a run, u be a user, γ be
a sentence, and Φ be a set of sentences such that Φ |=fin γ such that for all φ ∈ Φ, secureP,u(r, i `u φ)
holds and [φ]last(ri).db = >. We now show that secureP,u(r, i `u γ) holds and [γ]last(ri).db = >. From
Φ |=fin γ,[φ]last(ri).db = > for all φ ∈ Φ, and |=fin ’s definition, it follows that [γ]last(ri).db = >. Assume,
for contradiction’s sake, that secureP,u(r, i `u γ) does not hold. From this and [γ]last(ri).db = >, it
follows that there is a run r′ ∈ traces(L) such that ri ∼=P,u r

′ such that [γ]last(r′).db = ⊥. We claim
that for all φ ∈ Φ, [φ]last(r′).db = >. From this and Φ |=fin γ, it follows that [γ]last(r′).db = >, which
contradicts [γ]last(r′).db = ⊥.

We now prove our claim that for all φ ∈ Φ, [φ]last(r′).db = > for any trace r′ such that ri ∼=P,u r
′.

From secureP,u(r, i `u φ), it follows that [φ]last(ri).db = [φ]last(r′).db. From this and [φ]last(ri).db = >,
it follows that [φ]last(r′).db = >.

Lemma C.17 states that the result of fuser(a,s)
conf is the same for all data indistinguishable states.

Lemma C.17. Let M = 〈D,Γ〉 be a system configuration, a be an action in AD,U , and s, s′ ∈
ΩM be two M-states such that sysState(s) ∼=data

M,user(a,s) sysState(s′), invoker(s) = invoker(s′), and
trigger(s) = trigger(s′). Then, fuser(a,s)

conf (s, a) = > iff f
user(a,s′)
conf (s′, a) = >.

Proof. Let s = 〈db, U, sec, T, V, c〉 and s′ = 〈db′, U ′, sec′, T ′, V ′, c′〉 be two M -states. We assume
that s and s′ satisfy sysState(s) ∼=data

M,user(a,s) sysState(s′), invoker(s) = invoker(s′), and trigger(s) =
trigger(s′). We first show that user(a, s) = user(a, s′). Since trigger(s) = trigger(s′), there are two
cases:

• trigger(s) = ε. In this case, the result of user(a, s) depends just on a. Therefore, user(a,
s) = user(a, s′).

• trigger(s) 6= ε. In this case, user(a, s) = invoker(s) and user(a, s′) = invoker(s′). From
invoker(s) = invoker(s′), it follows that user(a, s) = user(a, s′).

Let u be the user user(a, s). From Lemma C.15, it follows that fuconf (s, a) = fuconf (s′, a). This
completes the proof.

C.4.6 Equivalence class preservation
We now introduce the concept of an action that preserves the equivalence class induced by an

indistinguishability relation ∼=. We use this concept in our confidentiality proof (instantiated with
the indistinguishability relation ∼=P,u). In the following, given an extended configuration P , a run r,
and an indistinguishability relation ∼=, we denote by JrKP,∼= the equivalence class of r defined by ∼=
over traces(L), where L is the P -LTS.

Definition C.1. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system
configuration and f is an M -PDP, L be the P -LTS, r ∈ traces(L) be a run, and a be an action
in AD,U ∪ T RIGGERD. We denote by extend(r, a), where r is a run and a is an action, the run
r′ ∈ traces(L), where s ∈ ΩM and r′ = r·a·s, obtained by executing the action a at the end of the
run r′. If there is no such run, then extend(r, a) is undefined. We say that a preserves the equivalence
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class for r, P , and ∼= iff (1) extend(r, a) is defined, and (2) there is a bijection b between JrKP,∼= and
Jextend(r, a)KP,∼= such that for all r′ ∈ JrKP,∼=, extend(r′, a) is defined and b(r′) = extend(r′, a). �

Furthermore, given a formula φ, we denote by tables(φ) the set of relation schemas used in φ′,
where φ′ is obtained from φ by replacing all views with their definitions until we reach a fixpoint.

Lemma C.18. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system configu-
ration and f is an M-PDP, L be the P -LTS, u be a user in U , r be a run in traces(L), a ∈ AD,u be an
INSERT or DELETE action 〈u, op, R, t〉, φ be a sentence, i be such that 1 ≤ i ≤ |r|, triggers(last(ri)) = ε,
and ri+1 = extend(ri, a), and ∼= be an indistinguishability relation. If (1) a preserves the equivalence
class for ri, P , and ∼=, and (2) the execution of a does not change any table in tables(φ) for any run
v ∈ JriKP,∼=, then secureP,∼=(r, i `u φ) holds iff secureP,∼=(r, i+ 1 `u φ) holds.

Proof. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system configuration
and f is anM -PDP, L be the P -LTS, u be a user in U , r be a run in traces(L), a ∈ AD,u be an INSERT
or DELETE action 〈u, op, R, t〉, φ be a sentence, and i be such that 1 ≤ i ≤ |r|, triggers(last(ri)) = ε,
and ri+1 = extend(ri, a). Assume that (1) a preserves the equivalence class for ri, P , and ∼=, and
(2) the execution of a does not change any table in tables(φ) for any run v ∈ JriKP,∼=. Without loss of
generality, assume that a is an INSERT action. In the following, we denote the extend function by e.
Furthermore, we also denote the fact that secureP,∼=(r, i, u, φ) does not hold as ¬secureP,∼=(r, i, u, φ).
From Definition C.1 and a preserves the equivalence class for ri, P , and ∼=, it follows that e(r′, a) is
defined for any r′ ∈ JriKP,∼=. Assume, for contradiction’s sake, that our claim does not hold. There
are two cases:

• secureP,∼=(r, i `u φ) holds and secureP,∼=(r, i+1 `u φ) does not hold. From secureP,∼=(r, i `u φ),
it follows that for all r′ ∈ JriKP,∼=, [φ]last(r′).db = [φ]last(ri).db. We claim that [φ]last(r′).db =
[φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=. From this and [φ]last(r′).db = [φ]last(ri).db for all
r′ ∈ JriKP,∼=, it follows that [φ]last(ri).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=. From
¬secureP,u(r, i+ 1 `u φ), it follows that there is a run r′ ∈ Jri+1KP,∼= such that [φ]last(ri+1).db 6=
[φ]last(r′).db. From this, [φ]last(r′).db = [φ]last(e(r′,a)).db for any r′ ∈ JriKP,∼=, and e(ri, a) = ri+1,
it follows that [φ]last(ri).db 6= [φ]last(r′).db. Let b be the bijection showing that a preserves the
equivalence class with respect to ri, P , and ∼=. From e(ri, a) = ri+1 and r′ ∈ Jri+1KP,∼=, it
follows that r′ ∈ Je(ri, a)KP,u. From this, it follows that there is an r′′ = b−1(r′) such that
r′′ ∈ JriKP,∼= and e(r′′, a) = r′. From this and [φ]last(v).db = [φ]last(e(v,a)).db for any v ∈ JriKP,∼=, it
follows that [φ]last(r′′).db = [φ]last(r′).db. From this and [φ]last(ri).db 6= [φ]last(r′).db, it follows that
[φ]last(ri).db 6= [φ]last(r′′).db and r′′ ∈ JriKP,∼=. This contradicts the fact that for all r′ ∈ JriKP,∼=,
[φ]last(r′).db = [φ]last(ri).db. Indeed, r′′ ∈ JriKP,∼= and [φ]last(ri).db 6= [φ]last(r′′).db.
We prove our claim that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=. Assume that
this is not the case. This implies that the content of one of the relations that determines φ
is different in last(r′).db and last(e(r′, a)).db. This is impossible. Indeed, if a’s execution has
been successful, i.e., secEx(last(e(r′, a))) = ⊥ and Ex(last(e(r′, a))) = ∅, then a’s execution
does not change any table in tables(φ), and the set of relations that determines φ is always a
subset of tables(φ). This leads to a contradiction, and, therefore, [φ]last(r′).db = [φ]last(e(r′,a)).db

holds. Similarly, if a’s execution has not been successful, i.e., secEx(last(e(r′, a))) = > or
Ex(last(e(r′, a))) 6= ∅, then last(r′).db is the same as last(e(r′, a)).db, and the claim holds
trivially.

• secureP,∼=(r, i + 1 `u φ) holds and secureP,∼=(r, i `u φ) does not hold. We have already shown
that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JrKP,∼=. From ¬secureP,∼=(r, i `u φ), it
follows that there is r′ ∈ JriKP,∼= such that [φ]last(ri).db 6= [φ]last(r′).db. Let b the bijection
showing that a preserves the equivalence class with respect to r, P , and ∼=. Since r′ ∈ JriKP,∼=,
then let r′′ = b(r′) = e(r′, a). From [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=,
it follows that [φ]last(ri).db 6= [φ]last(e(r′,a)).db. From this, e(ri, a) = ri+1, and [φ]last(r′).db =
[φ]last(e(r′,a)).db for all r′ ∈ JrKP,∼=, it follows that [φ]last(ri+1).db 6= [φ]last(e(r′,a)).db. From this
and e(r′, a) ∈ Jri+1KP,∼=, it follows ¬secureP,∼=(r, i + 1 `u φ). This contradicts the fact that
secureP,∼=(r, i+ 1 `u φ) holds.

This completes the proof.

Lemma C.19. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system config-
uration and f is an M-PDP, L be the P -LTS, u be a user in U , r be a run in traces(L), a ∈ AD,u
be a SELECT or CREATE action, φ be a sentence, ∼= be an indistinguishability relation, and i be such
that 1 ≤ i ≤ |r|, triggers(last(ri)) = ε, and ri+1 = extend(ri, a). If a preserves the equivalence class
for ri, P , and ∼=, then secureP,∼=(r, i `u φ) holds iff secureP,∼=(r, i+ 1 `u φ) holds.
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Proof. The proof of this statement is similar to that of Lemma C.18.

Lemma C.20. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system config-
uration and f is an M-PDP, L be the P -LTS, u be a user in U , r be a run in traces(L), a ∈ AD,u be
a GRANT or REVOKE action, φ be a sentence, ∼= be an indistinguishability relation, and i be such that
1 ≤ i ≤ |r|, triggers(last(ri)) = ε, and ri+1 = extend(ri, a). If a preserves the equivalence class for
ri, P , and ∼=, then secureP,∼=(r, i `u φ) holds iff secureP,∼=(r, i+ 1 `u φ) holds.

Proof. The proof of this statement is similar to that of Lemma C.18.

Lemma C.21. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system configu-
ration and f is an M-PDP, L be the P -LTS, u be a user in U , r be a run in traces(L), a be a trigger
in T RIGGERD, φ be a sentence, ∼= be an indistinguishability relation, and i be such that 1 ≤ i ≤ |r|,
invoker(last(ri)) = u, and ri+1 = extend(ri, a). If (1) a preserves the equivalence class for ri, P , and
∼=, (2) if a’s action is either an INSERT or DELETE, then t’s execution does not change any table in
tables(φ) for any run v ∈ JriKP,∼=, and (3) secEx(last(extend(v, a)) = ⊥ and Ex(last(extend(v, a)) = ∅
for any run v ∈ JriKP,∼=, then secureP,∼=(r, i `u φ) holds iff secureP,∼=(r, i+ 1 `u φ) holds.

Proof. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system configuration
and f is an M -PDP, L be the P -LTS, u be a user in U , r be a run in traces(L), ∼= be an indistin-
guishability relation, a be a trigger in T RIGGERD, φ be a sentence, and i be such that 1 ≤ i ≤ |r|,
invoker(last(ri)) = u, and ri+1 = extend(ri, a). Assume also that (1) a preserves the equivalence
class for ri, P , and ∼=, and (2) secEx(last(extend(ri, a)) = ⊥ and Ex(last(extend(ri, a)) = ∅. In the
following, we denote the extend function by e. Furthermore, we also denote the fact that secureP,∼=(r,
i `u φ) does not hold as ¬secureP,∼=(r, i `u φ). From Definition C.1 and the fact that a preserves the
equivalence class for ri, P , and ∼=, it follows that e(r′, a) is defined for any r′ ∈ JriKP,∼=. Assume, for
contradiction’s sake, that our claim does not hold. There are two cases:

• secureP,∼=(r, i `u φ) holds and secureP,∼=(r, i+1 `u φ) does not hold. From secureP,∼=(r, i `u φ),
it follows that [φ]last(ri).db = [φ]last(r′).db for any r′ ∈ JriKP,∼=. We claim that [φ]last(r′).db =
[φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=. From ¬secureP,∼=(r, i+ 1 `u φ), it follows that there
is a r′′ ∈ Jri+1KP,∼= such that [φ]last(r′′).db 6= [φ]last(ri+1).db. Let b the bijection showing that a
preserves the equivalence class with respect to ri, P , and ∼=. Since ri+1 = e(ri, a) and r′ ∈ Je(r,
a)KP,∼=, then there is a run v ∈ JriKP,∼= such that v = b−1(r′′). From this, [φ]last(r′).db =
[φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=, and the fact that [φ]last(r′′).db 6= [φ]last(ri+1).db, it
follows that [φ]last(v).db 6= [φ]last(ri+1).db. From this, [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any
r′ ∈ JriKP,∼=, and ri+1 = e(ri, a), it follows [φ]last(v).db 6= [φ]last(ri).db. This contradicts the fact
that [φ]last(ri).db = [φ]last(r′).db for any r′ ∈ JriKP,∼=.
We now prove that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=. Assume, for
contradiction’s sake, that there is a run r′ ∈ JriKP,∼= such that [φ]last(r′).db 6= [φ]last(e(r′,a)).db.
Since executing the trigger does not throw security or integrity exceptions in any run r′ ∈
JriKP,∼=, there are three cases:
– the trigger a is not enabled in e(r′, a). From this and the LTS semantics, it follows

that last(r′).db = last(e(r′, a)).db. From this, it therefore follows that [φ]last(r′).db =
[φ]last(e(r′,a)).db. This contradicts our assumption.

– the trigger a is enabled in e(r′, a) and its action is a GRANT or a REVOKE command. From
this and the LTS semantics, it therefore follows that last(r′).db = last(e(r′, a)).db. From
this, it thus follows that [φ]last(r′).db = [φ]last(e(r′,a)).db. This contradicts our assumption.

– the trigger a is enabled in e(r′, a) and its action is a INSERT or a DELETE command. Thus,
from [φ]last(r′).db 6= [φ]last(e(r′,a)).db, it follows that the content of one of the relations that
determines φ is different in last(r′).db and last(e(r′, a)).db. This contradicts the fact that
the a’s execution does not change the tables in tables(φ) for any run r′ ∈ JriKP,∼=.

• secureP,∼=(r, i + 1 `u φ) holds and secureP,∼=(r, i `u φ) does not hold. We have already shown
that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JrKP,∼=. From ¬secureP,∼=(r, i `u φ), it
follows that there is r′ ∈ JriKP,∼= such that [φ]last(ri).db 6= [φ]last(r′).db. Let b the bijection showing
that a preserves the equivalence class with respect to r, P , and ∼=. Since r′ ∈ JriKP,u, then let
r′′ = b(r′) = e(r′, a). From [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,∼=, it follows
that [φ]last(ri).db 6= [φ]last(e(r′,a)).db. From this, e(ri, a) = ri+1, and the fact that [φ]last(r′).db =
[φ]last(e(r′,a)).db holds for any r′ ∈ JrKP,∼=, it follows that [φ]last(ri+1).db 6= [φ]last(e(r′,a)).db. From
this and e(r′, a) ∈ Jri+1KP,∼=, it follows ¬secureP,∼=(r, i+ 1 `u φ). This contradicts secureP,∼=(r,
i+ 1 `u φ).

This completes the proof.
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C.4.7 Auxiliary results about getInfoV and getInfoS
Proposition C.10 states that the getInfoS and getInfoV functions correctly capture the informa-

tion an attacker may learn by an integrity exception (or its absence).

Proposition C.10. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system
configuration and f is an M-PDP, L be the P -LTS, a ∈ AD,u be an INSERT or DELETE action,
and r be a run such that (1) extend(r, a) is defined and (2) secEx(last(extend(r, a))) = ⊥. For any
constraint γ in Dep(Γ, a), the following statements hold:

• [getInfoS(γ, a)]last(r).db = > iff γ 6∈ Ex(last(extend(r, a))), and
• [getInfoV (γ, a)]last(r).db = > iff γ ∈ Ex(last(extend(r, a))).

Proof. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system configuration
and f is an M -PDP, L be the P -LTS, a ∈ AD,u be an INSERT or DELETE action, and and r be a run
such that (1) extend(r, a) is defined and (2) secEx(last(extend(r, a))) = ⊥. Furthermore, let γ be a
constraint in Dep(Γ, a). We first note that getInfoS(γ, a) = ¬getInfoV (γ, a). From this, it follows
trivially that proving one of the two claims is enough. We thus prove that [getInfoS(γ, a)]last(r).db = >
iff γ 6∈ Ex(last(extend(r, a))). There are two cases:

1. a = 〈u, INSERT, R, t〉. There are two cases depending on γ:
(a) γ is of the form ∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) ⇒ y = y′). Let t be (v, w, q), db

be the state last(r).db, and db′ be the state db[R⊕ t].
(⇒). Assume that [getInfoS(γ, a)]last(r).db = >. From this and getInfoS(γ, a)’s definition,
it follows that for all tuples (v, w′, q′) ∈ db(R), then w′ = w. From a’s definition and the
LTS semantics, it follows that db′(R) = db(R)∪{(v, w, q)}. From this and the fact that for
all tuples (v, w′, q′) ∈ db(R), then w′ = w, it follows that for all tuples (v, w′, q′) ∈ db′(R),
then w′ = w. Furthermore, since db ∈ ΩΓ

D, it follows that for all tuples (v′, w′, q′), (v′′, w′′,
q′′) ∈ db′(R), if v′ = v′′ and v′ 6= v, then w′ = w. Therefore, it follows that for all tuples
(v′, w′, q′), (v′′, w′′, q′′) ∈ db′(R), if v′ = v′′, then w′ = w. Therefore, [γ]db′ = >. From
this and the LTS semantics, it follows that γ 6∈ Ex(last(extend(r, a))).
(⇐). Assume that γ 6∈ Ex(last(extend(r, a)))). From this and the LTS semantics, it
follows that [γ]db′ = >. Therefore, for any two tuples (v′, w′, q′) and (v′′, w′′, q′′) ∈ db′(R),
if v′ = v′′, then w′ = w. Assume, for contradiction’s sake, that [getInfoS(γ, a)]db = ⊥. This
means that there is a tuple (v, w′, q′) in db(R) such that w′ 6= w. From db′ = db[R⊕ (v, w,
q)] and the LTS semantics, it follows that both (v, w′, q′) and (v, w, q) are in db′(R). From
this and w′ 6= w, it follows that there are two tuples (v, w, q) and (v, w′, q′) in db(R) such
that w′ 6= w. From this and the relational calculus semantics, it follows that [γ]db = ⊥.
This is in contradiction with [γ]db′ = >.

(b) γ is of the form ∀x, z.R(x, z) ⇒ ∃w. S(x,w). Let t be (v, w), db be the state last(r).db,
and db′ be the state db[R⊕ t].
(⇒). Assume that [getInfoS(γ, a)]db = >. From this and getInfoS(γ, a)’s definition, it
follows that there is a tuple (v, y) in db(S). From a’s definition and the LTS semantics,
it follows that db′(S) = db(S). From this, it follows that there is a tuple (v, y) in db′(S).
Furthermore, since db ∈ ΩΓ

D, it follows that for all tuples (v′, w′) ∈ db(R), if v′ 6= v, there
is a tuple (v′, y′) ∈ db(S). From this and db′ = db[R⊕ (v, w)], it follows that for all tuples
(v′, w′) ∈ db′(R), there is a tuple (v′, y′) ∈ db′(S). Therefore, [γ]db′ = >. From this and
the LTS semantics, it follows that γ 6∈ Ex(last(extend(r, a))).
(⇐). Assume that γ 6∈ Ex(last(extend(r, a))). From this and the LTS semantics, it follows
that [γ]db′ = >. Therefore, for any tuple (v′, w′) ∈ db′(R), there is a tuple (v′, y′) ∈ db′(S).
Assume, for contradiction’s sake, that [getInfoS(γ, a)]db = ⊥. This means that for any
tuple (v′, y′) in db(S), v′ 6= v. From db′(S) = db(S), it follows that for any tuple (v′, y′)
in db′(S), v′ 6= v. From db′ = db[R ⊕ (v, w)], it follows that there is a tuple (v, w) in
db′(R) such that there is no tuple (v, y′) in db′(S). From this and the relational calculus
semantics, it follows that [γ]db = ⊥. This is in contradiction with [γ]db′ = >.

2. a = 〈u, DELETE, R, t〉. In this case, γ is of the form ∀x, z. S(x, z)⇒ ∃w.R(x,w). Let t be (v, w),
db be the state last(r).db, and db′ be the state db[R	 t].
(⇒). Assume that [getInfoS(γ, a)]db = >. From this and getInfoS(γ, a)’s definition, it follows
that either there is no tuple (v, y) in db(S) or there is a tuple (v, w′) in db(R) such that w′ 6= w.
There are two cases:
(a) there is no tuple (v, y) in db(S). From this, a’s definition, and the LTS semantics, it follows

that there is no tuple (v, y) in db′(S). From db ∈ ΩΓ
D, it follows that for all tuples (v′, y′) in

db(S) such that v′ 6= v, there is a tuple (v′, w′) in db(R). From this, db′(R) = db(R) \ {(v,
w)}, db′(S) = db(S), and there is no tuple (v, y) in db′(S), it follows that for all tuples
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(v′, y′) in db(S), there is a tuple (v′, w′) in db(R). Therefore, [γ]db′ = >. From this and
the LTS semantics, it follows that γ 6∈ Ex(last(extend(r, a))).

(b) there is a tuple (v, w′) in db(R) such that w′ 6= w. From this, a’s definition, and the
LTS semantics, it follows that there is a tuple (v, w′) in db′(R) such that w′ 6= w. From
db ∈ ΩΓ

D, it follows that for all tuples (v′, y′) in db(S) such that v′ 6= v, there is a tuple
(v′, w′′) in db(R). From this, db′(R) = db(R) \ {(v, w)}, db′(S) = db(S), and there is a
tuple (v, w′) in db′(R) such that w′ 6= w, it follows that for all tuples (v′, y′) in db(S),
there is a tuple (v′, w′) in db(R). Therefore, [γ]db′ = >. From this and the LTS semantics,
it follows that γ 6∈ Ex(last(extend(r, a))).

(⇐). Assume that γ 6∈ Ex(last(extend(r, a))). From this and the LTS semantics, it follows that
[γ]db′ = >. Therefore, for any tuple (v′, y′) ∈ db′(S), there is a tuple (v′, w′) ∈ db′(R). Assume,
for contradiction’s sake, that [getInfoS(γ, a)]db = ⊥. Therefore, there is a tuple (v, y) in db(S)
and for all tuples (v, w′′) in db(R), w′′ = w. From this, db′(S) = db(S), and db′ = db[R	(v, w)],
it follows that there is a tuple (v, y) in db′(S) and for all tuples (v′′, w′′) in db′(R), v′′ 6= v. From
this and the relational calculus semantics, it follows that [γ]db = ⊥. This is in contradiction
with [γ]db′ = >.

This completes the proof.

Proposition C.11 extends Proposition C.10 to triggers.

Proposition C.11. Let P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a system
configuration and f is an M-PDP, L be the P -LTS, t ∈ T RIGGERD be a trigger whose action is
an INSERT or DELETE command, and r be a run such that (1) extend(r, t) is defined, (2) the trigger
t is enabled, and (3) secEx(last(extend(r, t))) = ⊥. Furthermore, we denote by a the actual action
performed by the trigger t. For any constraint γ in Dep(Γ, a), the following statements hold:

• [getInfoS(γ, a)]last(r).db = > iff γ 6∈ Ex(last(extend(r, t))), and
• [getInfoV (γ, a)]last(r).db = > iff γ ∈ Ex(last(extend(r, t))).

Proof. The proof of this statement is almost identical to that of Proposition C.10.

C.4.8 Auxiliary results about f
Lemma C.22 states that the PDP f returns the same result in any two data-indistinguishable

states.

Lemma C.22. Let M = 〈D,Γ〉 be a system configuration, s, s′ ∈ ΩM be two M-states such that
sysState(s) ∼=data

M,user(a,s) sysState(s′), tuple(s) = tuple(s′), invoker(s) = invoker(s′), and trigger(s) =
trigger(s′), and f be the PDP as above. The following conditions hold:

1. If trigger(s) = ε, then f(s, a) = > iff f(s′, a) = > for any action a in AD,U .
2. If trigger(s) ∈ T RIGGERD, then f(s, trigCond(s)) = > iff f(s′, trigCond(s)) = >.
3. If trigger(s) ∈ T RIGGERD, trigCond(s) = 〈u, SELECT, ψ〉, and [ψ]s.db = [ψ]s′.db = >, then

f(s, trigAct(s)) = > iff f(s′, trigAct(s′)) = >.

Proof. We prove our three claims by contradiction.
1. Assume, for contradiction’s sake, that there are two states s and s′ and an action a such that

trigger(s) = trigger(s′) = ε, sysState(s) ∼=data
M,user(a,s) sysState(s′), f(s, a) = >, and f(s′, a) = ⊥.

From f ’s definition, f(s, a) = >, f(s′, a) = ⊥, and Lemma C.17, it follows that fint(s, a) = >,
fint(s′, a) = ⊥, and fuser(a,s)

conf (s, a) = f
user(a,s′)
conf (s′, a) = >. From fint(s′, a) = ⊥, it follows that

s′ 6 approx
auth a. From fint(s, a) = >, it follows s approx

auth a. From this, a ∈ AD,U , and Lemma C.1,
it follows s′  approx

auth a, which contradicts s′ 6 approx
auth a. This completes the proof for the first

claim.
2. Assume, for contradiction’s sake, that there are two states s and s′ such that trigger(s) =

trigger(s′), trigger(s) 6= ε, sysState(s) ∼=data
M,user(a,s) sysState(s′), f(s, a) = >, and f(s′, a) = ⊥,

where trigCond(s) = trigCond(s′) = a (this follows from tuple(s) = tuple(s′), invoker(s) =
invoker(s′), and trigger(s) = trigger(s′)). From f ’s definition, f(s, a) = >, f(s′, a) = ⊥, and
Lemma C.17, it follows that fint(s, a) = >, fint(s′, a) = ⊥, and fuser(a,s)

conf (s, a) = f
user(a,s′)
conf (s′,

a) = >. From fint ’s definition, trigger(s′) 6= ε, and a = trigCond(s′), it follows that fint(s′,
a) = >, which contradicts fint(s′, a) = ⊥. This completes the proof for the second claim.

3. Assume, for contradiction’s sake, that there are two states s and s′ such that trigger(s) =
trigger(s′) = t, trigger(s) 6= ε, sysState(s) ∼=data

M,user(a,s) sysState(s′), [ψ]s.db = [ψ]s′.db = >,
f(s, a) = >, and f(s′, a) = ⊥, where a = trigAct(s) = trigAct(s′) (this follows from tuple(s) =
tuple(s′), invoker(s) = invoker(s′), and trigger(s) = trigger(s′)). From f ’s definition, f(s,
a) = >, f(s′, a) = ⊥, and Lemma C.17, it follows that fuser(a,s)

conf (s, a) = f
user(a,s′)
conf (s′, a) = >,
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fint(s, a) = >, and fint(s′, a) = ⊥. From this, it follows that s′ 6 approx
auth t. From fint(s, a) = >,

it follows s approx
auth t. There are two cases depending on t’s security mode:

(a) mode(t) = A. From this and s  approx
auth t, it follows that s  approx

auth a and s  approx
auth a′,

where a′ = action(statement(t), owner(t), tuple(s)) is the trigger’s action associated with
the trigger’s owner. Note that s and s′ are data indistinguishable. From this, a, a′ ∈ AD,U ,
and Lemma C.1, it follows that s′  approx

auth a and s′  approx
auth a′. From s′  approx

auth a,
s′  approx

auth a′, [ψ]s′.db = >, and the rule EXECUTE TRIGGER - 2, it follows that s′  approx
auth t,

which contradicts s′ 6 approx
auth t.

(b) mode(t) = O. From this and s  approx
auth t, it follows that s  approx

auth a. Note that s and
s′ are data indistinguishable. From this, a, a′ ∈ AD,U , and Lemma C.1, it follows that
s′  approx

auth a. From this, [ψ]s′.db = >, and the rule EXECUTE TRIGGER - 1, it follows that
s′  approx

auth t, which contradicts s′ 6 approx
auth t.

This completes the proof for the third claim.
This completes the proof.

C.4.9 f preserves the equivalence class
In Lemmas C.23 and C.24, we prove that, whenever we use f as PDP, actions and triggers preserve

the equivalence class.

Lemma C.23. Let u be a user in U , P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉
is a system configuration and f is the PDP from Section 6.8, and L be the P -LTS. For any run
r ∈ traces(L) and any action a ∈ AD,u, if extend(r, a) is defined, then a preserves the equivalence
class for r, P , and ∼=P,u.

Proof. Let u be a user in U , P = 〈M, f〉 be an extended configuration, whereM = 〈D,Γ〉 is a system
configuration and f is the PDP from Section 6.8, and L be the P -LTS. In the following, we use e
to refer to the extend function. We prove our claim by contradiction. Assume, for contradiction’s
sake, that there is a run r ∈ traces(L) and an action a ∈ AD,u such that e(r, a) is defined and a does
not preserve the equivalence class for r, P , and ∼=P,u. According to the LTS semantics, the fact that
e(r, a) is defined implies that triggers(last(r)) = ε. Therefore, triggers(last(r′)) = ε holds as well for
any for any r′ ∈ JrKP,u (because r and r′ are indistinguishable and, therefore, their projections are
consistent), and, thus, e(r′, a) is defined as well for any r′ ∈ JrKP,u. There are a number of cases
depending on a:

1. a = 〈u, SELECT, q〉. There are two cases:
(a) secEx(last(e(r, a))) = ⊥. From the LTS rules and secEx(last(e(r, a))) = ⊥, it follows that

f(last(r), a) = >. From this and Lemma C.22, it follows that f(last(r′), a) = > for any
r′ ∈ JrKP,u. From this and the LTS rules, it follows secEx(last(e(r′, a))) = ⊥ for any
r′ ∈ JrKP,u. From f(last(r′), a) = > for any r′ ∈ JrKP,u, it follows fuser(last(r′),a)

conf (last(r′),
a) = > for any r′ ∈ JrKP,u. Note that user(last(r′), a) = u for any r′ ∈ JrKP,u because
trigger(last(r′)) = ε and u ∈ AD,u. From this, fuser(last(r′),a)

conf (last(r′), a) = > for any r′ ∈
JrKP,u, and fuconf ’s definition, it follows that secure(u, q, last(r′)) = > for any r′ ∈ JrKP,u.
From this and Proposition C.9, it follows that [q]last(r′).db = [q]last(r).db for all r′ ∈ JrKP,u.
Furthermore, it follows trivially from the LTS rule SELECT Success, that the state after
a’s execution is data indistinguishable from last(r). It is also easy to see that e(r′, a) is
well-defined for any r′ ∈ JrKP,u. From the considerations above and r′ ∈ JrKP,u, it follows
trivially that e(r′, a) ∈ Je(r, a)KP,u. The bijection b is trivially b(r′) = e(r′, a). This leads
to a contradiction.

(b) secEx(last(e(r, a))) = >. From the LTS rules and secEx(last(e(r, a))) = >, it follows that
f(last(r), a) = ⊥. From this and Lemma C.22, it follows that f(last(r′), a) = ⊥ for any
r′ ∈ JrKP,u. From this and the LTS rules, it follows secEx(last(e(r′, a))) = > for any
r′ ∈ JrKP,u. The data indistinguishability between last(e(r′, a)) and last(e(r, a)) follows
trivially from the data indistinguishability between last(r′) and last(r). Therefore, for any
run r′ ∈ JrKP,u, there is exactly one run e(r′, a). From the considerations above, it follows
trivially that e(r′, a) ∈ Je(r, a)KP,u. The bijection b is trivially b(r′) = e(r′, a). This leads
to a contradiction.

Both cases leads to a contradiction. This completes the proof for a = 〈u, SELECT, q〉.
2. a = 〈u, INSERT, R, t〉. In the following, we denote by gI the function getInfo, by gS the function

getInfoS , and by gV the function getInfoV . There are three cases:
(a) secEx(last(e(r, a))) = ⊥ and Ex(last(e(r, a))) = ∅. From the LTS rules and secEx(last(e(r,

a))) = ⊥, it follows that f(last(r), a) = >. From this and Lemma C.22, it follows
that f(last(r′), a) = > for any r′ ∈ JrKP,u. From this and the LTS rules, it follows
that secEx(last(e(r′, a))) = ⊥ for any r′ ∈ JrKP,u. From f(last(r), a) = >, it follows
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that fuconf (last(r), a) = > because user(last(r), a) = u since trigger(last(r), a) = ε and
a ∈ AD,u. From this and fuconf ’s definition, it follows that secure(u, gS(γ, act), last(r)) = >
for any integrity constraint γ in Dep(Γ, a). From Ex(last(e(r, a))) = ∅ and Proposi-
tion C.10, it follows [gS(γ, act)]last(r).db = >. From this, secure(u, gS(γ, act), last(r)), and
Proposition C.9, it follows that [gS(γ, act)]last(r′).db = > for any r′ ∈ JrKP,u. From this and
Proposition C.10, it follows that Ex(last(e(r′, a))) = ∅ for any r′ ∈ JrKP,u. We claim that,
for any r′ ∈ JrKP,u, last(e(r, a)) and last(e(r′, a)) are data indistinguishable. From this
and the above considerations, it follows trivially that e(r′, a) ∈ Je(r, a)KP,u. The bijection
b is trivially b(r′) = e(r′, a). This leads to a contradiction.
We now prove our claim that for any r′ ∈ JrKP,u, last(e(r, a)) and last(e(r′, a)) are data
indistinguishable. We prove the claim by contradiction. Let s2 = 〈db2, U2, sec2, T2, V2〉 be
sysState(last(e(r, a))), s′2 = 〈db′2, U ′2, sec′2, T ′2, V ′2 〉 be sysState(last(e(r′, a))), s1 = 〈db1, U1,
sec1, T1, V1〉 be sysState(last(r)), and s′1 = 〈db′1, U ′1, sec′1, T ′1, V ′1 〉 be sysState(last(r′)). In
the following, we denote the permissions function by p. Furthermore, note that s1 and s′1
are data-indistinguishable because r′ ∈ JrKP,u. There are a number of cases:
i. U2 6= U ′2. Since a is an INSERT operation, it follows that U1 = U2 and U ′1 = U ′2.

Furthermore, from s1 ∼=data
M,u s

′
1, it follows that U1 = U ′1. Therefore, U2 = U ′2 leading

to a contradiction.
ii. sec2 6= sec′2. The proof is similar to the case U2 6= U ′2.
iii. T2 6= T ′2. The proof is similar to the case U2 6= U ′2.
iv. V2 6= V ′2. The proof is similar to the case U2 6= U ′2.
v. there is a table R′ for which 〈⊕, SELECT, R〉 ∈ p(s2, u) and db2(R′) 6= db′2(R′). Note

that p(s2, u) = p(s1, u). There are two cases:
• R = R′. From s1 ∼=data

M,u s
′
1 and 〈⊕, SELECT, R〉 ∈ p(s2, u), it follows that db1(R′) =

db′1(R′). From this and the fact that a has been executed successfully both in e(r,
a) and e(r′, a), it follows that db2(R′) = db1(R′)∪{t} and db′2(R′) = db′1(R′)∪{t}.
From this and db1(R′) = db′1(R′), it follows that db2(R′) = db′2(R′) leading to a
contradiction.

• R 6= R′. From s1 ∼=data
M,u s

′
1 and 〈⊕, SELECT, R〉 ∈ p(s2, u), it follows that db1(R′) =

db′1(R′). From this and the fact that a does not modify R′, it follows that
db1(R′) = db2(R′) and db′1(R′) = db′2(R′). From this and db1(R′) = db′1(R′),
it follows that db2(R′) = db′2(R′) leading to a contradiction.

vi. there is a view v for which 〈⊕, SELECT, v〉 ∈ p(s2, u) and db2(v) 6= db′2(v). Note that
p(s2, u) = p(s1, u). Since a has been successfully executed in both states, we know
that leak(s1, a, u) holds. There are two cases:
• R 6∈ tDet(v, s,M). Then, v(s1) = v(s2) and v(s′1) = v(s′2) (because R’s content

does not determine v’s materialization). From s1 ∼=data
M,u s′1 and the fact that a

modifies only R, it follows that v(db2) = v(db′2) leading to a contradiction.
• R ∈ tDet(v, s,M) and for all o ∈ tDet(v, s,M), 〈⊕, SELECT, o〉 ∈ p(s1, u). From

this and s1 ∼=data
M,u s′1, it follows that, for all o ∈ tDet(v, s,M), o(s1) = o(s′1).

If o 6= R, o(s1) = o(s′1) = o(s2) = o(s′2). From 〈⊕, SELECT, R〉 ∈ p(s1, u) and
s1 ∼=data

M,u s
′
1, it follows that db1(R) = db′1(R). From this and the fact that a has

been executed successfully both in e(r, a) and e(r′, a), it follows that db2(R) =
db1(R) ∪ {t} and db′2(R) = db′1(R) ∪ {t}. From this and db1(R) = db′1(R), it
follows that db2(R) = db′2(R). From this and for all o ∈ tDet(v, s,M) such that
o 6= R, o(s2) = o(s′2), it follows that for all o ∈ tDet(v, s,M), o(s2) = o(s′2). Since
the content of all tables determining v is the same in s2 and s′2, it follows that
db2(v) = db′2(v) leading to a contradiction.

All the cases lead to a contradiction.
(b) secEx(last(e(r, a))) = ⊥ and Ex(last(e(r, a))) 6= ∅. From the LTS rules and secEx(last(e(r,

a))) = ⊥, it follows that f(last(r), a) = >. From this and Lemma C.22, it follows that
f(last(r′), a) = > for any r′ ∈ JrKP,u. From this and the LTS rules, it follows that
secEx(last(e(r′, a))) = ⊥ for any r′ ∈ JrKP,u. Assume that the exception has been caused
by the constraint γ, i.e., γ ∈ Ex(last(e(r, a))). From this and Proposition C.10, it follows
that gV (γ, a) holds in last(r).db. From f(last(r), a) = > and f ’s definition, it follows that
fuconf (last(r), a) = > because user(last(r), a) = u since trigger(last(r)) = ε and a ∈ AD,u.
From this and fuconf ’s definition, it follows that secure(u, gV (γ, a), last(r)) holds. From this,
Proposition C.9, and [gV (γ, a)]last(r).db = >, it follows that also [gV (γ, act)]last(r′).db = >
for any r′ ∈ JrKP,u. From this and Proposition C.10, it follows that γ ∈ Ex(last(e(r′, a)))
for any r′ ∈ JrKP,u. The data indistinguishability between last(e(r, a)) and last(e(r′, a))
follows trivially from the data indistinguishability between last(r) and last(r′) for any
r′ ∈ JrKP,u. Therefore, for any run r′ ∈ JrKP,u, there is exactly one run e(r′, a). From
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the considerations above, it follows trivially that e(r′, a) ∈ Je(r, a)KP,u. The bijection b is
trivially b(r′) = e(r′, a). This leads to a contradiction.

(c) secEx(last(e(r, a))) = >. From the LTS rules and secEx(last(e(r, a))) = >, it follows that
f(last(r), a) = ⊥. From this and Lemma C.22, it follows that f(last(r′), a) = ⊥ for any
r′ ∈ JrKP,u. From this and the LTS rules, it follows secEx(last(e(r′, a))) = > for any
r′ ∈ JrKP,u. The data indistinguishability between last(e(r, a)) and last(e(r′, a)) follows
trivially from that between last(r) and last(r′) for any r′ ∈ JrKP,u. Therefore, for any run
r′ ∈ JrKP,u, there is exactly one run e(r′, a). From the considerations above, it follows
trivially that e(r′, a) ∈ Je(r, a)KP,u. The bijection b is trivially b(r′) = e(r′, a). This leads
to a contradiction.

All cases lead to a contradiction. This completes the proof for a = 〈u, INSERT, R, t〉.
3. a = 〈u, DELETE, R, t〉. The proof is similar to that for a = 〈u, INSERT, R, t〉.
4. a = 〈⊕, u′, p, u〉. There are two cases:

(a) secEx(last(e(r, a))) = ⊥. We assume that p = 〈SELECT, O〉 for some O ∈ D ∪ V . If this is
not the case, the proof is trivial. Furthermore, we also assume that u′ = u, otherwise the
proof is, again, trivial since the new permission does not influence u’s permissions. From
the LTS rules and secEx(last(e(r, a))) = ⊥, it follows that f(last(r), a) = >. From this and
Lemma C.22, it follows that f(last(r′), a) = > for any r′ ∈ JrKP,u. From this and the LTS
rules, it follows that secEx(last(e(r′, a))) = ⊥ for any r′ ∈ JrKP,u. From secEx(last(e(r′,
a))) = ⊥ and fuconf ’s definition, it follows that last(r′).sec = last(e(r′, a)).sec. Therefore,
since last(r) and last(r′) are data indistinguishable, for any r′ ∈ JrKP,u, then also last(e(r,
a)) and last(e(r′, a)) are data indistinguishable. Therefore, for any run r′ ∈ JrKP,u, there
is exactly one run e(r′, a). From the considerations above, it follows trivially that e(r′,
a) ∈ Je(r, a)KP,u. The bijection b is trivially b(r′) = e(r′, a). This leads to a contradiction.

(b) secEx(last(e(r, a))) = >. From the LTS rules and secEx(last(e(r, a))) = >, it follows
f(last(r), a) = ⊥. From this and Lemma C.22, it follows that f(last(r′), a) = ⊥ for any
r′ ∈ JrKP,u. From this and the LTS rules, it follows secEx(last(e(r′, a))) = > for any
r′ ∈ JrKP,u. The data indistinguishability between last(e(r′, a)) and last(e(r, a)) follows
trivially from the data indistinguishability between last(r′) and last(r). Therefore, for any
run r′ ∈ JrKP,u, there is exactly one run e(r′, a). From the considerations above, it follows
trivially e(r′, a) ∈ Je(r, a)KP,u. The bijection b is trivially b(r′) = e(r′, a). This leads to a
contradiction.

Both cases lead to a contradiction. This completes the proof for a = 〈⊕, u′, p, u〉.
5. a = 〈⊕∗, u′, p, u〉. The proof is similar to that for a = 〈⊕, u′, p, u〉.
6. a = 〈	, u′, p, u〉. The proof is similar to that for a = 〈u, SELECT, q〉. The only difference is

in proving that for any r′ ∈ JrKP,u, last(e(r, a)) and last(e(r′, a)) are data indistinguishable.
Assume, for contradiction’s sake, that this is not the case. Let s2 = 〈db2, U2, sec2, T2, V2〉
be sysState(last(e(r, a))) and s′2 = 〈db′2, U ′2, sec′2, T ′2, V ′2 〉 be sysState(last(e(r′, a))). Further-
more, let s1 = 〈db1, U1, sec1, T1, V1〉 be sysState(last(r)) and s′1 = 〈db′1, U ′1, sec′1, T ′1, V ′1 〉 be
sysState(last(r′)). In the following, we denote the permissions function by p. Furthermore,
note that s1 and s′1 are data-indistinguishable because r′ ∈ JrKP,u. There are a number of
cases:
(a) U2 6= U ′2. Since a is an REVOKE operation, it follows that U1 = U2 and U ′1 = U ′2. Fur-

thermore, from s1 ∼=data
M,u s′1, it follows that U1 = U ′1. Therefore, U2 = U ′2 leading to a

contradiction.
(b) sec2 6= sec′2. From s1 ∼=data

M,u s
′
1, it follows that sec1 = sec′1. From a’s definition and the LTS

rules, it follows that sec2 = revoke(sec1, u
′, p, u) and sec′2 = revoke(sec′1, u′, p, u). From

this and sec1 = sec′1, it follows that sec2 = sec′2 leading to a contradiction.
(c) T2 6= T ′2. The proof is similar to the case U2 6= U ′2.
(d) V2 6= V ′2. The proof is similar to the case U2 6= U ′2.
(e) there is a table R for which 〈⊕, SELECT, R〉 ∈ p(s2, u) and db2(R) 6= db′2(R). Since a is an

REVOKE operation, it follows that db1 = db2 and db′1 = db′2. Furthermore, from s1 ∼=data
M,u s

′
1,

it follows that db1(R) = db′1(R). From this, db1 = db2, and db′1 = db′2, it follows that
db2(R) = db′2(R) leading to a contradiction.

(f) there a view v for which 〈⊕, SELECT, v〉 ∈ p(s2, u) and db2(v) 6= db′2(v). Since a is an REVOKE
operation, it follows that db1 = db2 and db′1 = db′2. Furthermore, from s1 ∼=data

M,u s′1, it
follows that db1(v) = db′1(v). From this, db1 = db2, and db′1 = db′2, it follows that
db2(v) = db′2(v) leading to a contradiction.

All the cases lead to a contradiction.
7. a = 〈u, CREATE, o〉. The proof is similar to that for a = 〈	, u′, p, u〉.
8. a = 〈u, ADD_USER, u′〉. The proof is similar to that for a = 〈	, u′, p, u〉.
This completes the proof.
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Lemma C.24. Let u be a user in U , P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉
is a system configuration and f is the PDP from Section 6.8, and L be the P -LTS. For any run
r ∈ traces(L) such that invoker(last(r)) = u and any trigger t ∈ T RIGGERD, if extend(r, t) is
defined, then t preserves the equivalence class for r, M , and ∼=P,u.

Proof. Let u be a user in U , P = 〈M, f〉 be an extended configuration, where M = 〈D,Γ〉 is a
system configuration and f is the PDP from Section 6.8, and L be the P -LTS. In the following,
we use e to refer to the extend function. The proof in cases where the trigger t is not enabled is
similar to the proof of the SELECT case of Lemma C.23. In the following, we therefore assume that
the trigger t is enabled. We also assume that its WHEN condition is secure. We handle the case of
triggers with an insecure WHEN condition separately. We prove our claim by contradiction. Assume,
for contradiction’s sake, that there is a run r ∈ traces(L) such that invoker(last(r)) = u and a
trigger t such that e(r, t) is defined and t does not preserve the equivalence class for r, P , and ∼=P,u.
Since invoker(last(r)) = u and e(r, t) is defined, then e(r′, t) is defined as well for any r′ ∈ JrKP,u
(indeed, from invoker(last(r)) = u, it follows that the last action in r is either an action issued by
u or a trigger invoked by u. From this, the fact that e(r, t) is defined, and the fact that r and r′

are indistinguishable, it follows that trigger(last(r)) = trigger(last(r′)) = t). Let a be t’s action and
w = 〈u′, SELECT, q〉 be the SELECT command associated with t’s WHEN condition. Let s be the state
last(r), s′ be the state obtained just after the execution of the WHEN condition, and s′′ be the state
last(e(r, t)). There are a number of cases depending on t’s action a:

1. a = 〈u′, INSERT, R, t〉. There are three cases:
(a) secEx(last(e(r, a))) = ⊥ and Ex(last(e(r, a))) = ∅. The proof of this case is similar to that

of the corresponding case in Lemma C.23.
(b) secEx(last(e(r, a))) = ⊥ and Ex(last(e(r, a))) 6= ∅. The only difference between the proof

of this case with respect to the corresponding case in Lemma C.23 is that we have to
establish again the data indistinguishability between last(e(r, t)) and last(e(r′, t)). Indeed,
for triggers the roll-back state is, in general, different from the one immediately before the
trigger’s execution, i.e., it may be that sysState(last(e(r, t))) 6= sysState(last(r)). We
now prove that last(e(r, t)) and last(e(r′, t)) are data indistinguishable. From the LTS
semantics, it follows that r = p·s0·〈invoker(last(r)), op, R′, v〉·s1·t1· . . . ·sn−1·tn·sn, where
p ∈ traces(L) and t1, . . . , tn ∈ T RIGGERD. Similarly, r′ = p′·s′0·〈invoker(last(r)), op, R′,
v〉·s′1·t1· . . . ·s′n−1·tn·s′n, where p′ ∈ traces(L), p ∼=P,u p

′, and all states si and s′i are data
indistinguishable. Then, the roll-back states are, respectively, s0 and s′0, which are data
indistinguishable. From the LTS rules, last(e(r, a)) = s0 and last(e(r′, a)) = s′0. Therefore,
the data indistinguishability between last(e(r, a)) and last(e(r′, a)) follows trivially for any
r′ ∈ JrKP,u.

(c) secEx(e(r, a)) = >. The proof is similar to the previous case.
All cases lead to a contradiction. This completes the proof for a = 〈u′, INSERT, R, t〉.

2. a = 〈u′, DELETE, R, t〉. The proof is similar to that for a = 〈u′, INSERT, R, t〉.
3. a = 〈⊕, u′′, p, u′〉. There are two cases:

(a) secEx(last(e(r, a))) = ⊥. In this case, the proof is similar to the corresponding case in
Lemma C.23.

(b) secEx(last(e(r, a))) = >. The proof is similar to the secEx(last(e(r, a))) = > case of
a = 〈u′, INSERT, R, t〉.

Both cases lead to a contradiction. This completes the proof for a = 〈⊕, u′′, p, u′〉.
4. a = 〈⊕∗, u′′, p, u′〉. The proof is similar to that for a = 〈⊕, u′′, p, u′〉.
5. a = 〈	, u′′, p, u′〉. The proof is similar to that for a = 〈u′, INSERT, R, t〉.

This completes the proof.
We now consider the case of a trigger whose WHEN condition is not secure. From this, it follows

that f blocks the trigger’s execution and throws a security exception. Observe that this happens for
any r′ ∈ JrKP,u (see Lemma C.22). We thus only need to prove that the roll-back states are data
indistinguishable for any r′ ∈ JrKP,u. We already proved this in the case 1.(b) above. This completes
the proof.

C.4.10 f provides Data Confidentiality
In Theorem C.2, we finally prove the main result of this section, namely that f provides data

confidentiality.

Theorem C.2. Let M be a system configuration, f be the PDP from Section 6.8, and P = 〈M, f〉 be
an extended configuration. For any user u ∈ U , the PDP f provides data confidentiality with respect
to P , u, AT Ku, and ∼=P,u.
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Proof. Let u be a user in U , P = 〈M, f〉 be an extended configuration, whereM = 〈D,Γ〉 is a system
configuration and f is the PDP from Section 6.8, and L be the P -LTS. Furthermore, let r be a run
in traces(L), i be an integer such that 1 ≤ i ≤ |r|, and φ be a sentence such that r, i `u φ holds. We
claim that secureP,u(r, i `u φ) holds. The theorem follows trivially from the claim.

We now show that for all r ∈ traces(L), all i such that 1 ≤ i ≤ |r|, and all sentences φ such that
r, i `u φ holds, then secureP,u(r, i `u φ) holds as well. We prove our claim by induction on the length
of the derivation r, i `u φ. In the following, we denote by e the function extend.
Base Case: Assume that |r, i `u φ| = 1. There are a number of cases depending on the rule used
to obtain r, i `u φ.

1. SELECT Success - 1. Let i be such that ri = ri−1·〈u, SELECT, φ〉·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM , last(ri−1) = s′, and s′ = 〈db, U, sec, T, V, c′〉. From the rules, it follows that f(s′, 〈u,
SELECT, φ〉) = >. From this and f ’s definition, it follows that fint(s′, 〈u, SELECT, φ〉) = > and
fuconf (s′, 〈u, SELECT, φ〉) = >, because user(s′, 〈u, SELECT, φ〉) = u. From fuconf (s′, 〈u, SELECT,
φ〉) = >, it follows secure(u, φ, s′) = >. From this, Lemma C.14, and sysState(s) = sysState(s′),
it follows secure(u, φ, s) = >. From this, Proposition C.9, and last(ri) = s, it follows that
secureP,u(r, i `u φ) holds.

2. SELECT Success - 2. The proof for this case is similar to that of SELECT Success - 1.
3. INSERT Success. Let i be such that ri = ri−1·〈u, INSERT, R, t〉·s , where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be R(t). Then, secureP,u(r, i `u R(t))
holds. Indeed, in all runs r′ (P, u)-indistinguishable from ri the last action is 〈u, INSERT, R, t〉.
Furthermore, the action has been executed successfully. Therefore, according to the LTS rules,
t ∈ last(r′).db(R) for all runs r′ ∈ JriKP,u. From this and the relational calculus semantics, it
follows that [R(t)]last(r′).db = > for all runs r′ ∈ JriKP,u. Hence, secureP,u(r, i `u R(t)) holds.

4. INSERT Success - FD. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db,
U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w.
From the rule’s definition, it follows that secEx(s) = ⊥. From this and the LTS rules, it
follows that f(s′, 〈u, INSERT, R, (v, w, q)〉) = >. From this and f ’s definition, it follows that
fuconf (s′, 〈u, INSERT, R, (v, w, q)〉) = >, because user(s′, 〈u, INSERT, R, (v, w, q)〉) = u. From this
and fuconf ’s definition, it follows that secure(u, φ, last(ri−1)) = > holds because φ is equivalent
to getInfoS(γ, a) for some γ ∈ Dep(Γ, a), where a = 〈u, INSERT, R, (v, w, q)〉. From this and
Proposition C.9, it follows that secureP,u(r, i−1 `u φ) holds. We claim that securedata

P,u (r, i `u φ)
holds. From this and Proposition C.7, it follows that also secureP,u(r, i `u φ) holds.
We now prove our claim that securedata

P,u (r, i `u φ) holds. Let s′ be the state last(ri−1). Note
that, for brevity’s sake, in the following we omit the sysState function where needed. For
instance, with a slight abuse of notation, we write Js′Kdata

M,u instead of JsysState(s′)Kdata
M,u. There

are two cases:
(a) the INSERT command has caused an integrity constraint violation, i.e., Ex(s) 6= ∅. From

secure(u, φ, s′) = > and Proposition C.9, it follows that securedata
P,u (r, i − 1 `u φ) holds.

From this, it follows that [φ]v = [φ]s′ for any v ∈ Js′Kdata
M,u. From this and the fact that

the INSERT command caused an exception (i.e., s′ = s), it follows that [φ]v = [φ]s for any
v ∈ JsKdata

M,u. From this, it follows that securedata
P,u (r, i `u φ) holds.

(b) the INSERT command has not caused exceptions, i.e., Ex(s) = ∅. From secure(u, φ, s′) = >
and Proposition C.9, it follows that securedata

P,u (r, i − 1 `u φ) holds. From this, it follows
that [φ]v = [φ]s′ for any v ∈ Js′Kdata

M,u. Furthermore, from Proposition C.10 and Ex(s) = ∅,
it follows that φ holds in s′. Let As′,R,t be the set {〈db[R⊕ t], U, sec, T, V 〉 ∈ ΠM | ∃db′ ∈
ΩD. 〈db′, U, sec, T, V 〉 ∈ Js′Kdata

M,u}. It is easy to see that JsKdata
M,u ⊆ As′,R,t. We now show

that φ holds for any z ∈ As′,R,t. Let z1 ∈ Js′Kdata
M,u. From [φ]v = [φ]s′ for any v ∈ Js′Kdata

M,u

and the fact that φ holds in s′, it follows that [φ]z1 = >. Therefore, for any (k1, k2,
k3) ∈ R(z1) such that |k1| = |v|, |k2| = |w|, and |k3| = |z|, if k1 = v, then k2 = w. Then,
for any (k1, k2, k3) ∈ R(z1) ∪ {(v, w, q)} such that |k1| = |v|, |k2| = |w|, and |k3| = |z|,
if k1 = v, then k2 = w. Therefore, φ holds also in z1[R ⊕ t] ∈ AsysState(s′),R,t. Hence,
[φ]z = > for any z ∈ As′,R,t. From this and JsKdata

M,u ⊆ As′,R,t, it follows that [φ]z = > for
any z ∈ JsKdata

M,u. From this, it follows that securedata
P,u (r, i `u φ) holds.

5. INSERT Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
6. DELETE Success. The proof for this case is similar to that of INSERT Success.
7. DELETE Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
8. INSERT Exception. Let i be such that ri = ri−1·〈u, INSER, R, t〉·s, where s = 〈db, U, sec, T, V, c〉 ∈

ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬R(t). From the rule’s definition, it follows
that secEx(s) = ⊥. From this and the LTS rules, it follows that f(s′, 〈u, INSERT, R, t〉) = >.
From this and f ’s definition, it follows that fuconf (s′, 〈u, INSERT, R, t〉) = >, because user(s′, 〈u,
INSERT, R, t〉) = u. From this and fuconf ’s definition, it follows that secure(u, φ, last(ri−1)) = >
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holds because φ = getInfo(〈u, INSERT, R, t〉). From this and Proposition C.9, it follows that
secureP,u(r, i − 1 `u φ) holds. From the LTS semantics, it follows that sysState(s) ∼=data

M,u

sysState(last(ri−1)). From this, secure(u, φ, last(ri−1)) = >, and Lemma C.14, it follows that
secure(u, φ, last(ri)) = >. From this and Proposition C.9, it follows that secureP,u(r, i `u φ)
holds.

9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
10. INSERT FD Exception. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db,

U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∃y, z. R(v, y, z) ∧ y 6= w.
From the rule’s definition, it follows that secEx(s) = ⊥. From this and the LTS rules, it
follows that f(s′, 〈u, INSERT, R, (v, w, q)〉) = >. From this and f ’s definition, it follows that
fuconf (s′, 〈u, INSERT, R, (v, w, q)〉) = >, because user(s′, 〈u, INSERT, R, t〉) = u. From this and
fuconf ’s definition, it follows that secure(u, φ, last(ri−1)) = > because φ = getInfoV (γ, 〈u,
INSERT, R, (v, w, q)〉) for some constraint γ ∈ Dep(Γ, 〈u, INSERT, R, (v, w, q)〉). From this and
Proposition C.9, it follows that secureP,u(r, i − 1 `u φ) holds. From the LTS semantics, it
follows that sysState(s) ∼=data

M,u sysState(last(ri−1)). From this, Lemma C.14, and secure(u, φ,
last(ri−1)) = >, it follows that secure(u, φ, last(ri)) = >. From this and Proposition C.9, it
follows that also secureP,u(r, i `u φ) holds.

11. INSERT ID Exception. The proof for this case is similar to that of INSERT FD Exception.
12. DELETE FD Exception. The proof for this case is similar to that of INSERT FD Exception.
13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state

s = 〈db, U, sec, T, V, c〉 ∈ ΩM and any γ ∈ Γ, [γ]db = > by definition.
14. Learn GRANT/REVOKE Backward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V,

c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and
whose action is either a GRANT or a REVOKE. From the rule’s definition, it follows that secEx(s) =
⊥. From this and the LTS rules, it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >, where u′
is either the trigger’s owner or the trigger’s invoker depending on the security mode. From
this and f ’s definition, it follows fuconf (last(ri−1), 〈u′, SELECT, φ〉) = >, because user(last(ri−1),
〈u′, SELECT, φ〉) = u because t’s invoker is u according to the rules. From this and fuconf ’s
definition, it follows secure(u, φ, last(ri−1)) = >. From this and Proposition C.9, it follows that
secureP,u(r, i− 1 `u φ) holds.

15. Trigger GRANT Disabled Backward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T,
V, c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, t be a trigger whose WHEN condition is ψ, and
φ be ¬ψ. From the rule’s definition, it follows that secEx(s) = ⊥. From this and the LTS
rules, it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >, where u′ is either the trigger’s owner or
the trigger’s invoker depending on the security mode. From this and f ’s definition, it follows
fuconf (last(ri−1), 〈u′, SELECT, φ〉) = >, as user(last(ri−1), 〈u′, SELECT, φ〉) = u because t’s invoker
is u according to the rules. From this and fuconf ’s definition, it follows that also secure(u, φ,
last(ri−1)) = >. From this and Proposition C.9, it follows that secureP,u(r, i− 1 `u φ) holds.

16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT
Disabled Backward.

17. Trigger INSERT FD Exception. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and
whose action act is a INSERT statement 〈u′, INSERT, R, (v, w, q)〉. Furthermore, let φ be ∃y,
z. R(v, y, z) ∧ y 6= w. From the rule’s definition, it follows that secEx(s) = ⊥. From this and
the LTS rules, it follows that f(last(ri−1), act) = >. From this and f ’s definition, it follows that
fuconf (last(ri−1), act) = >, because user(last(ri−1), act) = u because t’s invoker is u according
to the rules. From this and fuconf ’s definition, it follows that secure(u, φ, last(ri−1)) = > because
φ = getInfoV (γ, act) for some constraint γ ∈ Dep(Γ, act). From this and Proposition C.9, it
follows that secureP,u(r, i− 1 `u φ) holds.

18. Trigger INSERT ID Exception. The proof for this case is similar to that of Trigger INSERT ID
Exception.

19. Trigger DELETE ID Exception. The proof for this case is similar to that of Trigger DELETE ID
Exception.

20. Trigger Exception. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and whose action
is act. From the rule’s definition, it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >, where u′ is
either the trigger’s owner or the trigger’s invoker depending on the security mode. From this
and f ’s definition, it follows fuconf (last(ri−1), 〈u′, SELECT, φ〉) = >, because user(last(ri−1), 〈u′,
SELECT, φ〉) = u since t’s invoker is u according to the rules. From this and fuconf ’s definition,
it follows that secure(u, φ, last(ri−1)) = >. From this and Proposition C.9, it follows that
secureP,u(r, i− 1 `u φ) holds.

21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
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23. Trigger Rollback INSERT. Let i be such that ri = ri−n−1·〈u, INSERT, R, t〉·s1·t1·s2· . . . ·tn·sn,
where s1, s2, . . . , sn ∈ ΩM and t1, . . . , tn ∈ T RIGGERD, and φ be ¬R(t). Furthermore, let
last(ri−n−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉 and sn be 〈db, U, sec, T, V, c〉. From the rule’s defini-
tion, it follows that secEx(s1) = ⊥. From this, it follows that f(last(ri−n−1), 〈u, INSERT, R,
t〉) = >. From this and f ’s definition, it follows fuconf (last(ri−n−1), 〈u, INSERT, R, t〉) = > since
user(last(ri−n−1), 〈u, INSERT, R, t〉) = u. From this and fuconf ’s definition, it follows secure(u,
φ, last(ri−n−1)) = > because φ = getInfo(〈u, INSERT, R, t〉). From the LTS semantics, it fol-
lows that last(ri−n−1) ∼=data

M,u sn because sysState(last(ri−n−1)) = sysState(sn). From this,
Lemma C.14, and secure(u, φ, last(ri−n−1)) = >, it follows secure(u, φ, sn) = >. From this and
Proposition C.9, it follows that secureP,u(r, i `u φ) holds.

24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.
25. Learn from deny – actions. We prove this case by contradiction. Assume that we can derive

r, i − 1 `u φ using the rule Learn from deny – actions. There are r, r′, r′′ ∈ traces(L), 1 <
i ≤ |r|, a ∈ AD,u, s, s′ ∈ ΩM , and φ such that: ri = ri−1·a·s, r′ = r′′·a·s′, ri−1 ∼=P,u r′′,
secEx(s′) 6= secEx(s), [φ]last(ri−1).db = >, and [φ]last(r′′).db = ⊥. From ri = ri−1·a·s and
r′ = r′′·a·s′, it follows that extend(ri−1, a) and extend(r′′, a) are well-defined. From this,
Lemma C.23, and a ∈ AD,u, a preserves the equivalence class for ri−1, P , and ∼=P,u. From
this, ri−1 ∼=P,u r

′′, extend(ri−1, a) = ri, and extend(r′′, a) = r′, it follows that ri ∼=P,u r
′. This,

however, contradicts secEx(s′) 6= secEx(s).
26. Learn from deny – triggers. The proof is similar to that of the case Learn from deny – actions.

However, we use Lemma C.24 instead of Lemma C.23.
This completes the proof of the base step.
Induction Step: Assume that the claim hold for any derivation of r, j `u ψ such that |r, j `u
ψ| < |r, i `u φ|. We now prove that the claim also holds for r, i `u φ. There are a number of cases
depending on the rule used to obtain r, i `u φ.

1. View. The proof of this case follows trivially from the semantics of the relational calculus
extended over views.

2. Propagate Forward SELECT. Let i be such that ri+1 = ri·〈u, SELECT, ψ〉·s, where s = 〈db, U, sec,
T, V, c〉 ∈ ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule, it follows that r, i `u φ
holds. From this and the induction hypothesis, it follows that secureP,u(r, i `u φ) holds. From
Lemma C.23, the action 〈u, SELECT, ψ〉 preserves the equivalence class with respect to ri, P ,
and ∼=P,u. From this, Lemma C.19, and secureP,u(r, i `u φ), it follows that also secureP,u(r,
i+ 1 `u φ) holds.

3. Propagate Forward GRANT/REVOKE. Let i be such that ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db,
U, sec, T, V, c〉 ∈ ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule, it follows that
r, i `u φ holds. From this and the induction hypothesis, it follows that secureP,u(r, i `u φ)
holds. From Lemma C.23, the action 〈op, u′, p, u〉 preserves the equivalence class with respect
to ri, P , and ∼=P,u. From this, Lemma C.20, and secureP,u(r, i `u φ), it follows that also
secureP,u(r, i+ 1 `u φ) holds.

4. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward
SELECT.

5. Propagate Backward SELECT. Let i be such that ri+1 = ri·〈u, SELECT, ψ〉·s, where s = 〈db′, U ′,
sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule, it follows that r, i+1 `u φ
holds. From this and the induction hypothesis, it follows that secureP,u(r, i + 1 `u φ) holds.
From Lemma C.23, the action 〈u, SELECT, ψ〉 preserves the equivalence class with respect to
ri, P , and ∼=P,u. From this, Lemma C.19, and secureP,u(r, i + 1 `u φ), it follows that also
secureP,u(r, i `u φ) holds.

6. Propagate Backward GRANT/REVOKE. Let i be such that ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db′,
U ′, sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule, it follows that r,
i+1 `u φ holds. From this and the induction hypothesis, it follows that secureP,u(r, i+1 `u φ)
holds. From Lemma C.23, the action 〈op, u′, p, u〉 preserves the equivalence class with respect
to ri, P , and ∼=P,u. From this, Lemma C.20, and secureP,u(r, i + 1 `u φ), it follows that also
secureP,u(r, i `u φ) holds.

7. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate
Backward SELECT.

8. Propagate Backward CREATE VIEW. Note that the formulae ψ and replace(ψ, o) are semantically
equivalent. This is the only difference between the proof for this case and the one for the
Propagate Backward SELECT case.

9. Rollback Backward - 1. Let i be such that ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn, where s1,
s2, . . . , sn ∈ ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT, DELETE}. Furthermore, let
sn be 〈db′, U ′, sec′, T ′, V ′, c′〉 and last(ri−n−1) be 〈db, U, sec, T, V, c〉. From the rule’s definition,
r, i `u φ holds. From this and the induction hypothesis, it follows that secureP,u(r, i `u φ) holds.
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From Lemma C.24, the trigger tj preserves the equivalence class with respect to ri−n−1+j , P ,
and ∼=P,u for any 1 ≤ j ≤ n. Therefore, for any v ∈ Jri−1KP,u, the run e(v, tn) contains the roll-
back. Therefore, for any v ∈ Jri−1KP,u, the state last(e(v, tn)) is the state just before the action
〈u, op, R, t〉. Let A be the set of system states associated with the roll-back states. It is easy to
see that A is the same as {sysState(last(t′)) | t′ ∈ Jri−n−1KP,u}. From secureP,u(r, i `u φ), it
follows that φ has the same result over all states in A. From this and A = {sysState(last(t′)) |
t′ ∈ Jri−n−1KP,u}, it follows that φ has the same result over all states in {sysState(last(t′)) |
t′ ∈ Jri−n−1KP,u}. From this, it follows that secureP,u(r, i− n− 1 `u φ) holds.

10. Rollback Backward - 2. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where s = 〈db′, U ′, sec′,
T ′, V ′, c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and op is one of {INSERT, DELETE}. From
the rule’s definition, r, i `u φ holds. From this and the induction hypothesis, it follows that
secureP,u(r, i `u φ) holds. From Lemma C.23, the action 〈u, op, R, t〉 preserves the equivalence
class with respect to ri−1, P , and ∼=P,u. From this, Lemma C.18, the fact that the action does
not modify the database state, and secureP,u(r, i `u φ), it follows secureP,u(r, i− 1 `u φ).

11. Rollback Forward - 1. Let i be such that ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn, where
s1, s2, . . . , sn ∈ ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT, DELETE}. Further-
more, let sn be 〈db, U, sec, T, V, c〉 and last(ri−n−1) be 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i − n − 1 `u φ holds. From this and the induction hypothesis, it follows that
secureP,u(r, i − n − 1 `u φ) holds. From Lemma C.24, the trigger tj preserves the equiv-
alence class with respect to ri−n−1+j , P , and ∼=P,u for any 1 ≤ j ≤ n. Independently on
the cause of the roll-back (either a security exception or an integrity constraint violation), we
claim that the set A of roll-back system states is {sysState(last(t′)) | t′ ∈ Jri−n−1KP,u}. From
secureP,u(r, i − n − 1 `u φ), the result of φ is the same for all states in A. From this and
A = {sysState(last(t′)) | t′ ∈ Jri−n−1KP,u}, it follows that also secureP,u(r, i `u φ) holds.
We now prove our claim. It is trivial to see (from the LTS semantics) that the set of rollback
states is a subset of {last(v) | v ∈ Jri−n−1KP,u}. Assume, for contradiction’s sake, that there is
a state in {last(v) | v ∈ Jri−n−1KP,u} that is not a rollback state for the runs in JriKP,u. This
is impossible since all triggers t1, . . . , tn preserve the equivalence class.

12. Rollback Forward - 2. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op ∈ {INSERT, DELETE},
s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s defini-
tion, r, i − 1 `u φ holds. From this and the induction hypothesis, it follows that secureP,u(r,
i−1 `u φ) holds. From Lemma C.23, the action 〈u, op, R, t〉 preserves the equivalence class with
respect to ri−1, P , and ∼=P,u. From this, Lemma C.18, the fact that the action does not modify
the database state, and secureP,u(r, i− 1 `u φ), it follows that also secureP,u(r, i `u φ) holds.

13. Propagate Forward INSERT/DELETE Success. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where
op ∈ {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉.
From the rule’s definition, r, i − 1 `u φ holds. From this and the induction hypothesis, it
follows that secureP,u(r, i − 1 `u φ) holds. From Lemma C.23, the action 〈u, op, R, t〉 pre-
serves the equivalence class with respect to ri−1, P , and ∼=P,u. From revise(ri−1, φ, ri), it
follows that the execution of 〈u, op, R, t〉 does not alter the content of the tables in tables(φ)
for any v ∈ Jri−1KP,u. From this, Lemma C.18, and secureP,u(r, i − 1 `u φ), it follows that
secureP,u(r, i `u φ) holds.

14. Propagate Forward INSERT Success - 1. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op
is one of {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM , and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′,
c′〉. From the rule’s definition, r, i − 1 `u φ holds. From this and the induction hypothesis, it
follows that secureP,u(r, i− 1 `u φ) holds. From Lemma C.23, the action 〈u, op, R, t〉 preserves
the equivalence class with respect to ri−1, P , and ∼=P,u. We claim that the execution of 〈u,
INSERT, R, t〉 does not alter the content of the tables in tables(φ). From this, Lemma C.18, and
secureP,u(r, i− 1 `u φ), it follows that secureP,u(r, i `u φ) holds.
We now prove our claim that the execution of 〈u, INSERT, R, t〉 does not alter the content of
the tables in tables(φ). From the rule’s definition, it follows that r, i − 1 `u R(t) holds. From
this and Proposition C.1, it follows that [R(t)]last(ri−1).db = >. From r, i − 1 `u R(t) and
the induction hypothesis, it follows that secureP,u(r, i − 1 `u R(t)) holds. From this and
[R(t)]last(ri−1).db = >, it follows that [R(t)]last(v).db = > for any v ∈ Jri−1KP,u. From this and
the relational calculus semantics, it follows that the execution of 〈u, op, R, t〉 does not alter the
content of the tables in tables(φ) for any v ∈ Jri−1KP,u.

15. Propagate Forward DELETE Success - 1. The proof for this case is similar to that of Propagate
Forward INSERT Success - 1.

16. Propagate Backward INSERT/DELETE Success. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where
op ∈ {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉.
From the rule’s definition, r, i `u φ holds. From this and the induction hypothesis, it follows that
secureP,u(r, i `u φ) holds. From Lemma C.23, the action 〈u, op, R, t〉 preserves the equivalence
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class with respect to ri−1, P , and ∼=P,u. From revise(ri−1, φ, ri), it follows that the execution
of 〈u, op, R, t〉 does not alter the content of the tables in tables(φ) for any v ∈ Jri−1KP,u. From
this, Lemma C.18, and secureP,u(r, i `u φ), it follows that secureP,u(r, i− 1 `u φ) holds.

17. Propagate Backward INSERT Success - 1. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op is
one of {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉.
From the rule’s definition, r, i `u φ holds. From this and the induction hypothesis, it follows
that secureP,u(r, i `u φ) holds. From Lemma C.23, the action 〈u, op, R, t〉 preserves the equiv-
alence class with respect to ri−1, P , and ∼=P,u. We claim that the execution of 〈u, INSERT, R, t〉
does not alter the content of the tables in tables(φ) for any v ∈ Jri−1KP,u (the proof of this claim
is in the proof of the Propagate Forward INSERT Success - 1 case). From this, Lemma C.18,
and secureP,u(r, i `u φ), it follows that secureP,u(r, i− 1 `u φ) holds.

18. Propagate Backward DELETE Success - 1. The proof for this case is similar to that of Propagate
Forward DELETE Success - 1.

19. Reasoning. Let ∆ be a subset of {δ | r, i `u δ} and last(ri) = 〈db, U, sec, T, V, c〉. From the
induction hypothesis, it follows that secureP,u(r, i `u δ) holds for any δ ∈ ∆. Note that,
given any δ ∈ ∆, from r, i `u δ and Proposition C.1, it follows that δ holds in last(ri). From
this, secureP,u(r, i `u δ) holds for any δ ∈ ∆, ∆ |=fin φ, and Lemma C.16, it follows that
secureP,u(r, i `u φ) holds.

20. Learn INSERT Backward - 3. Let i be such that ri = ri−1·〈u, INSERT, R, t〉·s, where s = 〈db′,
U ′, sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be ¬R(t). From the rule’s
definition, secEx(s) = ⊥. From this and the LTS rules, it follows that f(last(ri−1), 〈u, INSERT,
R, t〉) = >. From this and f ’s definition, it follows that fuconf (last(ri−1), 〈u, INSERT, R, t〉) = >
because user(last(ri−1), 〈u, INSERT, R, t〉) = u. From this and fuconf ’s definition, it follows
secure(u, φ, last(ri−1)) = > because φ = getInfo(〈u, INSERT, R, t〉). From this and Proposi-
tion C.9, it follows that secureP,u(r, i− 1 `u φ) holds.

21. Learn DELETE Backward - 3. The proof is similar to that of Learn INSERT Backward - 3.
22. Propagate Forward Disabled Trigger. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V,

c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger. Furthermore, let ψ be t’s condition
where all free variables are replaced with tpl(last(ri−1)). From the rule, it follows that r, i−1 `u
φ. From this and the induction hypothesis, it follows that secureP,u(r, i−1 `u φ) holds. Further-
more, from Lemma C.24, it follows that t preserves the equivalence class with respect to ri−1, P ,
and ∼=P,u. If the trigger’s action is an INSERT or a DELETE operation, we claim that the operation
does not change the content of any table in tables(φ) for any run v ∈ Jri−1KP,u. We also claim
that executing the trigger t in any run v ∈ Jri−1KP,u does not generate security or integrity ex-
ceptions. From this, the fact that t preserves the equivalence class with respect to ri−1, P , and
∼=P,u, Lemma C.21, and secureP,u(r, i− 1 `u φ), it follows that also secureP,u(r, i `u φ) holds.
We now prove our claim. Assume that t’s action is an INSERT or a DELETE operation. From
the rule, it follows that r, i− 1 `u ¬ψ. From this and Proposition C.1, [ψ]last(ri−1) = ⊥. From
r, i−1 `u ¬ψ and the induction hypothesis, it follows that secureP,u(r, i−1 `u ψ) holds. From
this and [ψ]last(ri−1).db = ⊥, it follows that [ψ]v.db = ⊥ for any run v ∈ Jri−1KP,u. Therefore, the
trigger t is disabled in any run v ∈ Jri−1KP,u. From this and the LTS semantics, it follows that
t’s execution does not change the content of any table in tables(φ) for any run v ∈ Jri−1KP,u.
We now show that executing the trigger t in any run v ∈ Jri−1KP,u does not generate security
or integrity exceptions. From the rule, it follows that executing the trigger t in ri−1 does not
generate security and integrity exceptions. From this and the fact that t preserves the equiva-
lence class (see Lemma C.24), it immediately follows that executing the trigger t in v does not
generate security and integrity exceptions for any v ∈ Jri−1KP,u.

23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate
Forward Disabled Trigger.

24. Learn INSERT Forward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger, and φ be R(t). Furthermore, let ψ be t’s
condition where all free variables are replaced with tpl(last(ri−1)). From the rule’s definition,
it follows that t’s action is 〈u′, INSERT, R, t〉 and that r, i− 1 `u ψ holds. From Proposition C.1
and r, i− 1 `u ψ, it follows that [ψ]last(ri−1).db = >. From this, secEx(s) = ⊥, and Ex(s) = ∅,
it follows that t’s action has been executed successfully. From this, it follows that t ∈ s.db(R).
From r, i− 1 `u ψ and the induction hypothesis, it follows that secureP,u(r, i− 1 `u ψ). From
this and [ψ]last(ri−1).db = >, it follows that [ψ]last(v).db = > for any v ∈ Jri−1KP,u. From this, it
follows that the trigger t is enabled in any run v ∈ Jri−1KP,u. From Lemma C.24, it follows that
t preserves the equivalence class with respect to ri−1, P , and ∼=P,u. From this, secEx(s) = ⊥,
Ex(s) = ∅, and the fact that the trigger t is enabled in any run v ∈ Jri−1KP,u, it follows that t’s
action is executed successfully in any run e(v, t), where v ∈ Jri−1KP,u. From this, it follows that
db′′(R), where db′′ = t ∈ last(e(v, t)).db, for any v ∈ Jri−1KP,u. Therefore, secureP,u(r, i `u φ)
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holds.
25. Learn INSERT - FD. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,

last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w.
Furthermore, let ψ be t’s condition where all free variables are replaced with the values in
tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be t’s actual action. From the rule, it follows that r,
i−1 `u ψ. From this and Proposition C.1, it follows that [ψ]last(ri−1).db = >. From this, Ex(s) =
∅, and secEx(s) = ⊥, it follows that f(s′, 〈u′, INSERT, R, t〉) = >, where s′ is the state just after
the execution of the SELECT statement associated with t’s WHEN clause. From this and f ’s
definition, it follows that fuconf (s′, 〈u′, INSERT, R, t〉) = > because user(s′, 〈u′, INSERT, R, t〉) = u
since u is t’s invoker. From this and fuconf ’s definition, it follows that secure(u, φ, s′) = >. From
this, sysState(s′) = sysState(last(ri−1)), and Lemma C.14, it follows secure(u, φ, last(ri−1)) =
>. From this and Proposition C.9, it follows secureP,u(r, i−1 `u φ). We claim that securedata

P,u (r,
i `u φ) holds. From this and Proposition C.7, it follows that also secureP,u(r, i `u φ) holds.
We now prove our claim that securedata

P,u (r, i `u φ) holds. Let s′ be the state just after the ex-
ecution of the SELECT statement associated with t’s WHEN clause and s′′ be the state last(ri−1).
Furthermore, for brevity’s sake, in the following we omit the sysState function where needed.
For instance, with a slight abuse of notation, we write Js′Kdata

M,u instead of JsysState(s′)Kdata
M,u.

From secure(u, φ, s′) = >, s′ ∼=data
M,u s′′, Lemma C.14, and Proposition C.9, it follows that

securedata
P,u (r, i − 1 `u φ) holds. From this, it follows that [φ]v = [φ]s′′ for any v ∈ Js′′Kdata

M,u.
Furthermore, from Proposition C.10 and Ex(s) = ∅, it follows that φ holds in s′′. Let As′′,R,t
be the set {〈db′[R⊕ t], U, sec, T, V 〉 ∈ ΠM | 〈db′, U, sec, T, V 〉 ∈ Js′′Kdata

M,u}. It is easy to see that
JsKdata

M,u ⊆ As′′,R,t. We now show that φ holds for any z ∈ As′′,R,t. Let z1 ∈ Js′′Kdata
M,u. From

[φ]v = [φ]s′′ for any v ∈ Js′′Kdata
M,u and the fact that φ holds in s′′, it follows that [φ]z1 = >.

Therefore, for any (k1, k2, k3) ∈ R(z1) such that |k1| = |v|, |k2| = |w|, and |k3| = |q|, if k1 = v,
then k2 = w. Then, for any (k1, k2, k3) ∈ R(z1) ∪ {(v, w, q)} such that |k1| = |v|, |k2| = |w|,
and |k3| = |q|, if k1 = v, then k2 = w. Therefore, φ holds also in z1[R ⊕ t] ∈ AsysState(s′′),R,t.
Hence, [φ]z = > for any z ∈ As′′,R,t. From this and JsKdata

M,u ⊆ As′′,R,t, it follows that [φ]z = >
for any z ∈ JsKdata

M,u. From this, it follows that securedata
P,u (r, i `u φ) holds.

26. Learn INSERT - FD - 1. The proof of this case is similar to that of Learn INSERT - FD.
27. Learn INSERT - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the

proof of INSERT Success - ID.
28. Learn INSERT - ID - 1. The proof of this case is similar to that of Learn INSERT - ID.
29. Learn INSERT Backward - 1. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′, T ′, V ′,

c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD, and φ be t’s actual WHEN con-
dition, where all free variables are replaced with the values in tpl(last(ri−1)). From the rule’s
definition, it follows that secEx(s) = >. From this, the LTS semantics, and secEx(s) = >,
it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >. From this and f ’s definition, it follows
fuconf (last(ri−1), 〈u′, SELECT, φ〉) = > because user(last(ri−1), 〈u′, SELECT, φ〉) = u since u is
t’s invoker. From this and fuconf ’s definition, it follows that secure(u, φ, last(ri−1)) = >. From
this and Proposition C.9, it follows that also secureP,u(r, i− 1 `u φ) holds.

30. Learn INSERT Backward - 2. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD, and φ be ¬R(t). Furthermore,
let act = 〈u′, INSERT, R, t〉 be t’s actual action and γ be t’s actual WHEN condition obtained by
replacing all free variables with the values in tpl(last(ri−1)). From the rule’s definition, it follows
secEx(s) = > and there is a ψ such that r, i− 1 `u ψ and r, i `u ¬ψ. We claim that [γ]db = >.
From this and secEx(s) = >, it follows that f(s′, 〈u′, INSERT, R, t〉) = >, where s′ is the state
obtained after the evaluation of t’s WHEN condition. From this and f ’s definition, it follows
fuconf (s′, 〈u′, INSERT, R, t〉) = > as user(s′, 〈u′, INSERT, R, t〉) = u because u is t’s invoker. From
this and fuconf ’s definition, it follows secure(u, φ, s′) = > since φ is equivalent to getInfo(〈u′,
INSERT, R, t〉). From this, Lemma C.14, and sysState(s′) = sysState(last(ri−1)), it follows
secure(u, φ, last(ri−1)) = >. From this and Proposition C.9, it follows secureP,u(r, i− 1 `u φ).
We now prove our claim that [γ]db = >. Assume, for contradiction’s sake, that this is not
the case. From this and the LTS rules, it follows that db = db′. From the rule’s definition, it
follows that there is a ψ such that r, i − 1 `u ψ and r, i `u ¬ψ. From this, Proposition C.1,
s = 〈db′, U ′, sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that [ψ]db = > and
[¬ψ]db′ = >. Therefore, [ψ]db = > and [ψ]db′ = ⊥. Hence, db 6= db′, which contradicts db = db′.

31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
32. Learn DELETE - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the

proof of DELETE Success - ID.
33. Learn DELETE - ID - 1. The proof of this case is similar to that of Learn DELETE - ID.
34. Learn DELETE Backward - 1. The proof is similar to that of Learn INSERT Backward - 1.



C.4. Data Confidentiality Proofs 227

35. Learn DELETE Backward - 2. The proof is similar to that of Learn INSERT Backward - 2.
36. Propagate Forward Trigger Action. Let i be such that ri = ri−1·t·s, where t is a trigger,

s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s defini-
tion, r, i − 1 `u φ holds. From this and the induction hypothesis, it follows that secureP,u(r,
i− 1 `u φ) holds. From Lemma C.24, the trigger t preserves the equivalence class with respect
to ri−1, P , and ∼=P,u. We claim that (1) the execution of t does not alter the content of the
tables in tables(φ), and (2) executing the trigger in v does not throw integrity or security ex-
ceptions for any v ∈ Jri−1KP,u. From this, Lemma C.21, and secureP,u(r, i− 1 `u φ), it follows
secureP,u(r, i `u φ).
We now prove our claim that the execution of t does not alter the content of the tables in
tables(φ). If the trigger is not enabled, the claim is trivial. In the following, we assume the
trigger is enabled. There are four cases:

• t’s action is an INSERT statement. This case amount to claiming that the INSERT statement
〈u′, INSERT, R, t〉 does not alter the content of the tables in tables(φ) in case revise(ri−1,
φ, ri) = >. We proved the claim in the Propagate Forward INSERT/DELETE Success case.

• t’s action is an DELETE statement. The proof is similar to that of the INSERT case.
• t’s action is an GRANT statement. In this case, the action does not alter the database state

and the claim follows trivially.
• t’s action is an REVOKE statement. The proof is similar to that of the GRANT case.

We now show that executing the trigger t in any run v ∈ Jri−1KP,u does not generate security
or integrity exceptions. From the rule, it follows that executing the trigger t in ri−1 does not
generate security and integrity exceptions. From this and the fact that t preserves the equiva-
lence class (see Lemma C.24), it immediately follows that executing the trigger t in v does not
generate security and integrity exceptions for any v ∈ Jri−1KP,u.

37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward
Trigger Action.

38. Propagate Forward INSERT Trigger Action. Let i be such that ri = ri−1·t·s, where t is a
trigger, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i−1 `u φ holds. From this and the induction hypothesis, it follows that secureP,u(r,
i− 1 `u φ) holds. From Lemma C.24, the trigger t preserves the equivalence class with respect
to ri−1, P , and ∼=P,u. We claim that (1) the execution of t does not alter the content of the
tables in tables(φ), and (2) executing the trigger in v does not throw integrity or security ex-
ceptions for all v ∈ Jri−1KP,u. From this, Lemma C.21, and secureP,u(r, i − 1 `u φ), it follows
secureP,u(r, i `u φ).
We now prove our claim that the execution of t does not alter the content of the tables in
tables(φ). If the trigger is not enabled, the claim is trivial. In the following, we assume the trig-
ger is enabled. Then, t’s action is an INSERT statement. This case amount to claiming that the
INSERT statement 〈u′, INSERT, R, t〉 does not alter the content of the tables in tables(φ) in case
r, i− 1 `u R(t) holds. We proved the claim in the Propagate Forward INSERT Success - 1 case.
We now show that executing the trigger t in any run v ∈ Jri−1KP,u does not generate security
or integrity exceptions. From the rule, it follows that executing the trigger t in ri−1 does not
generate security and integrity exceptions. From this and the fact that t preserves the equiva-
lence class (see Lemma C.24), it immediately follows that executing the trigger t in v does not
generate security and integrity exceptions for all v ∈ Jri−1KP,u.

39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate
Forward INSERT Trigger Action.

40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Prop-
agate Forward INSERT Trigger Action.

41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Prop-
agate Forward INSERT Trigger Action.

42. Trigger FD INSERT Disabled Backward. Let i be such that ri = ri−1·t·s, where s = 〈db′,
U ′, sec′, T ′, V ′, c′〉 ∈ ΩM , t ∈ T RIGGERD, last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be t’s ac-
tual WHEN condition obtained by replacing all free variables with the values in tpl(last(ri−1)).
Furthermore, let act = 〈u′, INSERT, R, (v, w, q)〉 be t’s actual action and α be ∃y, z.R(v, y,
z) ∧ y 6= w. From the rule’s definition, it follows that secEx(s) = ⊥. From this, it follows
that f(last(ri−1), 〈u′, SELECT, φ〉) = >. From this and f ’s definition, it follows fuconf (last(ri−1),
〈u′, SELECT, φ〉) = > since user(last(ri−1), 〈u′, SELECT, φ〉) = u since u is t’s invoker. From this
and fuconf ’s definition, it follows that secure(u,¬φ, last(ri−1)) = >. From this, it follows that
secure(u, φ, last(ri−1)) = >. From this and Proposition C.9, it follows secureP,u(r, i− 1 `u φ).

43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD
INSERT Disabled Backward.

44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD
INSERT Disabled Backward.
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This completes the proof of the induction step.
This completes the proof.

C.5 Complexity Proofs

Here we prove the complexity of our enforcement mechanism.

C.5.1 Complexity of fint

Theorem C.3 states that fint runs in constant time in terms of data complexity.

Theorem C.3. The data complexity of fint is O(1).

Proof. Let M = 〈D,Γ〉 be some fixed system configuration, a ∈ AD,U be some fixed action, u ∈ U
be some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed policy, T be some
fixed set of triggers over D whose owners are in U , V be some fixed set of views over D whose owners
are in U , and c be some fixed context. Furthermore, let db ∈ ΩΓ

D be a database state such that
〈db, U, sec, T, V, c〉 ∈ ΩM . We denote by s the state 〈db, U, sec, T, V, c〉. By analyzing fint ’s definition
in Section 6.8.2, it is immediate to see that the complexity of fint directly depends on the complexity
of computing  appr

auth . Observe that for all actions a ∈ AD,U , we can compute s  appr
auth a in constant

time in terms of data complexity. Observe also that fint only uses checks statements of the form
s appr

auth a, where a ∈ AD,U . As a result, the overall data complexity is O(1).

Lemma C.25 shows that the data complexity of the apprDet is O(1) as well.

Lemma C.25. The data complexity of apprDet is O(1).

Proof. Let M = 〈D,Γ〉 be a system configuration, T ⊆ D be a set of tables, V ⊆ VIEWowner
D be

a set of views over D, φ be a formula over D, and s be an M -state. An algorithm that computes
apprDet(T, V, φ, s,M) is as follows:

1. Compute the set extend(M, s, V ).
2. Compute the set S of all sub-formulae of φ, i.e., S = subF(φ). Note that φ ∈ subF(φ).
3. Sort by length the set of sub-formulae in such a way that the shortest formula is the first one.
4. Let S′ := ∅.
5. For each sub-formula ψ in the sequence:

(a) Check whether there is a view v ∈ extend(M, s, V ) such that ψ is v’s definition. If this is
the case, let S′ = S′ ∪ subF(ψ).

(b) Perform a case distinction on ψ:
i. If ψ := R(x) and R ∈ T , S′ = S′ ∪ subF(ψ).
ii. If ψ := V (x) and 〈V, u, q, O〉 ∈ V , S′ = S′ ∪ subF(ψ).
iii. If ψ := α ∧ β and α, β ∈ S′, then S′ = S′ ∪ subF(ψ).
iv. If ψ := α ∨ β and α, β ∈ S′, then S′ = S′ ∪ subF(ψ).
v. If ψ := ¬α and α ∈ S′, then S′ = S′ ∪ subF(ψ).
vi. If ψ := ∃x.α and α ∈ S′, then S′ = S′ ∪ subF(ψ).
vii. If ψ := ∀x.α and α ∈ S′, then S′ = S′ ∪ subF(ψ).

6. apprDet(T, V, φ, s,M) = > iff S = S′.
Observe that none of the above steps involve the database state db. Therefore, apprDet can be
executed in constant time in terms of data complexity.

C.5.2 Complexity of fuconf

In this section, we prove that data complexity of fuconf is AC0. Note that the complexity class AC0

identifies those problems that can be solved using constant-depth, polynomial-size boolean circuits
with AND, OR, and NOT gates with unbounded fan-in [10]. Note also that, in the following, with
AC 0 we usually refer to uniform-AC0 [10]. Given a database schemaD and a database state db ∈ ΩΓ

D,
the size of db, denoted also as |db|, is |db| = ΣR∈DΣt∈db(R)|t|, where the size |t| of a tuple t is just
its cardinality. Similarly, the the size of the schema D, denoted |D|, is ΣR∈D|R|. Finally, given a
set of views V over D, the size of the extended vocabulary extVocabulary(D,V ), denoted |extVoc(D,
V )|, is Σo∈R∪V Σ0≤i<|o|

|o|!
(|o| − i)!·i! . Note that, given a view V , we denote by |V | its cardinality.
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Furthermore, given a RC -formula φ, the size of φ, denoted as |φ|, is defined as follows:

|φ| =



1 + |x| if φ := R(x)
1 if φ := >
1 if φ := ⊥
3 if φ := x = y
1 + |ψ|+ |γ| if φ := ψ O γ and O ∈ {∨,∧}
1 + |ψ| if φ := ¬ψ
2 + |ψ| if φ := Qx.ψ and Q ∈ {∃,∀}

Lemma C.27 shows that the rewritten formula φvs,u, for some v ∈ {>,⊥}, is linear in the size of
the original formula φ.

Lemma C.26. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M-state,
u ∈ U be a user, and φ be a D-formula. For all formulae φ and all v ∈ {>,⊥}, |φvs,u| ≤ (|extVoc(D,
V )|+ 1)·|φ|.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M -state, and
u ∈ U be a user. Let φ be an arbitrary formula over D ∪ V and v be an arbitrary value in {>,⊥}.
We now prove that |φvs,u| ≤ m·|φ| by induction over the structure of the formula φ.
Base Case There are four cases:

1. φ := x = y. In this case, φvs,u = φ. From this, |φvs,u| = |φ|. From this, it follows trivially that
|φvs,u| ≤ (|extVoc(D,V )|+ 1)·|φ|.

2. φ := >. The proof of this case is similar to that of φ := x = y.
3. φ := ⊥. The proof of this case is similar to that of φ := x = y.
4. φ := R(x). Without loss of generality, we assume that v = >. From this, it follows that
φ>s,u :=

∨
S∈R>s,u

S(x). From this, it follows that |φ>s,u| = (|R>s,u| − 1) + ΣS∈R>s,u |S(x)|. From
this and |S(x)| = 1 + |x|, it follows that |φ>s,u| = (|R>s,u| − 1) + ΣS∈R>s,u(1 + |x|). From this, it
follows that |φ>s,u| = (|R>s,u|− 1) + |R>s,u|·(1 + |x|). From φ := R(x), it follows that |φ| = 1 + |x|.
From this and |φ>s,u| = (|R>s,u|−1)+|R>s,u|·(1+|x|), it follows that |φ>s,u| = |R>s,u|·|φ|+(|R>s,u|−1).
We claim that |R>s,u| ≤ |extVoc(D,V )|. From this and |φ>s,u| = |R>s,u|·|φ|+(|R>s,u|−1), it follows
that |φ>s,u| ≤ |extVoc(D,V )|·|φ|+ |extVoc(D,V )|. From this, it follows that |φ>s,u| ≤ (|extVoc(D,
V )|+ 1)·|φ|.
We now prove our claim that |R>s,u| ≤ |extVoc(D,V )|. The setR>s,u is a subset of extVocabulary(D,
V ) by construction. The set extVocabulary(D,V ) contains any possible projection of tables in
D and views in V . It is easy to check that the cardinality of extVocabulary(D,V ) is, indeed,
|extVoc(D,V )|.

This completes the proof of the base case.
Induction Step Assume that our claim holds for all sub-formulae of φ. We now show that our claim
holds also for φ. There are a number of cases depending on φ’s structure.

1. φ := ψ ∧ γ. From this, it follows that φvs,u := ψvs,u ∧ γvs,u. From this, it follows that |φvs,u| =
1+|ψvs,u|+|γvs,u|. From the induction hypothesis, it follows that |ψvs,u| ≤ (|extVoc(D,V )|+1)·|ψ|
and |γvs,u| ≤ (|extVoc(D,V )|+ 1)·|γ|. From this and |φvs,u| = 1 + |ψvs,u|+ |γvs,u|, it follows that
|φvs,u| ≤ 1 + (|extVoc(D,V )| + 1)·|ψ| + (|extVoc(D,V )| + 1)·|γ|. From this and |extVoc(D,
V )| ≥ 0, it follows that |φvs,u| ≤ |extVoc(D,V )| + 1 + (|extVoc(D,V )| + 1)·|ψ| + (|extVoc(D,
V )| + 1)·|γ|. From this, it follows that |φvs,u| ≤ (|extVoc(D,V )| + 1)·(1 + |ψ| + |γ|). From this
and |φ| = 1 + |ψ|+ |γ|, it follows that |φvs,u| ≤ (|extVoc(D,V )|+ 1)·|φ|.

2. φ := ψ ∨ γ. The proof of this case is similar to that of φ := ψ ∧ γ.
3. φ := ¬ψ. From this, it follows that φvs,u := ¬ψ¬vs,u. From this, it follows that |φvs,u| = 1 + |ψ¬vs,u|.

From the induction hypothesis, it follows that |ψ¬vs,u| ≤ (|extVoc(D,V )| + 1)·|ψ|. From this
and |φvs,u| = 1 + |ψvs,u|, it follows that |φvs,u| ≤ 1 + (|extVoc(D,V )| + 1)·|ψ|. From this and
|extVoc(D,V )| ≥ 0, it follows that |φvs,u| ≤ |extVoc(D,V )|+ 1 + (|extVoc(D,V )|+ 1)·|ψ|. From
this, it follows that |φvs,u| ≤ (|extVoc(D,V )|+1)·(1+ |ψ|). From this and |φ| = 1+ |ψ|, it follows
that |φvs,u| ≤ (|extVoc(D,V )|+ 1)·|φ|.

4. φ := ∃x. ψ. If φvs,u is ¬v, then the claim holds trivially since |φvs,u| = 1. In the following, we
assume that φvs,u := ∃x. ψvs,u. From this, it follows that |φvs,u| = 2 + |ψvs,u|. From the induction
hypothesis, it follows that |ψvs,u| ≤ (|extVoc(D,V )|+ 1)·|ψ|. From this and |φvs,u| = 2 + |ψvs,u|,
it follows that |φvs,u| ≤ 2 + (|extVoc(D,V )| + 1)·|ψ|. From this and |extVoc(D,V )| ≥ 0, it
follows that |φvs,u| ≤ 2·|extVoc(D,V )| + 2 + (|extVoc(D,V )| + 1)·|ψ|. From this, it follows
that |φvs,u| ≤ (|extVoc(D,V )| + 1)·(2 + |ψ|). From this and |φ| = 2 + |ψ|, it follows that
|φvs,u| ≤ (|extVoc(D,V )|+ 1)·|φ|.

5. φ := ∀x. ψ. The proof of this case is similar to that of φ := ∃x. ψ.
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This completes the proof of the induction step.
This completes the proof of our claim.

Lemma C.27 states that our rewriting has size that is linear in the original formula’s size.

Lemma C.27. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M-state,
u ∈ U be a user, and φ be a D-formula. For all sentences φ and all v ∈ {>,⊥}, |φvs,u| ≤ (|extVoc(D,
V )|+ 1)·|φ| and |¬φ>s,u ∧ φ⊥s,u| ≤ 2(|extVoc(D,V )|+ 1)·|φ|.

Proof. Let M = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec, T, V 〉 be a partial M -state, u ∈ U
be a user, and φ be a D-formula. Furthermore, let φ be a sentence and v be a value in {>,⊥}.
The fact that |φvs,u| ≤ (|extVoc(D,V )| + 1)·|φ| follows trivially from Lemma C.26. Let ψ be the
formula ¬φ>s,u ∧ φ⊥s,u. The size of ψ is 2 + |φ>s,u| + |φ⊥s,u|. From this and Lemma C.26, it follows
that |ψ| ≤ 2 + (|extVoc(D,V )| + 1)·|φ| + (|extVoc(D,V )| + 1)·|φ|. From this, it follows that |ψ| ≤
2(|extVoc(D,V )|+ 1)·|φ|. This completes the proof.

In the following, we study the data complexity of our PDP. Note that, given a PDP f , the data
complexity of f is the data complexity of the following decision problem:

Definition C.2. Let M = 〈D,Γ〉 be some fixed system configuration, a ∈ AD,U be some fixed
action, u ∈ U be some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed policy,
T be some fixed set of triggers over D whose owners are in U , V be some fixed set of views over D
whose owners are in U , and c be some fixed context.
Input: A database state db such that 〈db, U, sec, T, V, c〉 ∈ ΩM .
Question: Is f(〈db, U, sec, T, V, c〉, a) = >? �

We define in a similar way the data complexity of the secure procedure, which we analyze in
Lemma C.28.

Lemma C.28. The data complexity of the secure procedure is AC0.

Proof. Let M = 〈D,Γ〉 be some fixed system configuration, φ be some fixed sentence, u ∈ U be
some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed policy, T be some
fixed set of triggers over D whose owners are in U , V be some fixed set of views over D whose
owners are in U , and c be some fixed context. Furthermore, let db ∈ ΩΓ

D be a database state such
that 〈db, U, sec, T, V, c〉 ∈ ΩM . We denote by s the state 〈db, U, sec, T, V, c〉. We can check whether
secure(u, φ, 〈db, U, sec, T, V, c〉) = > as follows:

1. Compute the formula φrw
s,u.

2. Compute [φrw
s,u]db.

3. secure(u, φ, 〈db, U, sec, T, V, c〉) = > iff [φrw
s,u]db = ⊥.

We claim that the first step can be done in constant time in terms of data complexity. It is well-
known that the data complexity of query execution is AC0 [10]. From this, it follows that the data
complexity of secure is also AC0.

We now prove our claim that computing the formula φrw
s,u can be done in constant time in terms

of data complexity. The extended vocabulary extVocabulary(D,V ) does not depend on the database
state. From this and the definition of Rvs , where R is a predicate symbol and v ∈ {>,⊥}, the set
Rvs (and the time needed to compute it) depends just on the database schema D and the set of
views V . The set AUTH s,u and the time needed to compute it depend just on the size of the policy
sec. Furthermore, the time needed to compute AUTH ∗s,u depends just on the size of the policy sec
and of the extended vocabulary. Therefore, for any predicate R, the set Rvs can be computed in
constant time in terms of database size. The computation of the formula φ′, obtained by replacing
sub-formulae of the form ∃x.R(x, y) with the corresponding predicates in the extended vocabulary,
can be done in linear time in terms of |φ| and in constant time in terms of |db|. Note that the size of
the resulting formula is linear in |φ|. It is easy to see that also computing φ>s,u and φ⊥s,u can be done
in linear time in terms of |φ| and in constant time in terms of |db|. As shown in Lemma C.27, the
size of the resulting formula is linear in |φ|. Finally, we can replace the predicates in the extended
vocabulary with the corresponding sub-formulae again in linear time in terms of |φ|. Note that,
again, the size of the resulting formula is linear in |φ|. Therefore, the overall rewriting process can
be done in linear time in the size of φ and in constant time in the size of db.

Lemma C.29 states that the data complexity of the fuconf ,I,D function is AC0.

Lemma C.29. The data complexity of fuconf ,I,D is AC 0.
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Proof. Let M = 〈D,Γ〉 be some fixed system configuration, a ∈ AD,U be some fixed INSERT or
DELETE action, u ∈ U be some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed
policy, T be some fixed set of triggers over D whose owners are in U , V be some fixed set of views
over D whose owners are in U , and c be some fixed context. Furthermore, let db ∈ ΩΓ

D be a database
state such that 〈db, U, sec, T, V, c〉 ∈ ΩM . We can check whether fuconf ,I,D(〈db, U, sec, T, V, c〉, a) = >
as follows:

1. If trigger(s) = ε and a 6∈ AD,u, return >.
2. If trigger(s) 6= ε and invoker(s) 6= u, return >.
3. Compute the result of noLeak(s, a, u). If noLeak(s, a, u) = ⊥, then returns ⊥.
4. Compute the set Dep(Γ, a).
5. Compute secure(u, getInfo(a), s). If its result is ⊥, return ⊥.
6. For each γ ∈ Dep(Γ, a), compute secure(u, getInfoV (a, γ), s). If its result is ⊥, return ⊥.
7. For each γ ∈ Dep(Γ, a), compute secure(u, getInfoS(a, γ), s). If its result is ⊥, return ⊥.
8. Return >.

The data complexity of the steps 1 and 2 is O(1). We claim that also the data complexity of the third
step is O(1). The complexity of the fourth step is O(|Γ|) and therefore its data complexity is again
O(1). From the definition of getInfo, the resulting formula is constant in the size of the database.
Furthermore, also constructing the formula can be done in constant time in the size of the database.
From this and Lemma C.28, it follows that the data complexity of the fifth step is AC 0. For a similar
reason, the data complexity of the sixth and seventh steps is also AC0. Therefore, the overall data
complexity of the fuconf ,I,D procedure is AC0.

We now prove our claim that the data complexity of the noLeak procedure is O(1). An algorithm
implementing the noLeak procedure is as follows: for each view v ∈ V , for each grant g ∈ sec, if
g = 〈op, u, 〈SELECT, v〉, u′〉, then (1) compute the set tDet(v, s,M). (2) if R ∈ tDet(v, s,M), for each
o ∈ tDet(v, s,M), check whether 〈op, u, 〈SELECT, o〉, u′′〉 ∈ sec. The size of the set tDet(v, s,M) is
at most |D| and its computation depends just on sec. From this, it follows that the complexity
of the step 1.(b) is O(1). From Lemma C.25 and the definition of tDet, the data complexity of
computing tDet(v, s,M) is O(1), and the rest of the computation does not depend on db The overall
data complexity is, therefore, O(1).

Lemma C.30 states that the data complexity of the fuconf ,G function is O(1).

Lemma C.30. The data complexity of fuconf ,G is O(1).

Proof. Let M = 〈D,Γ〉 be some fixed system configuration, a ∈ AD,U be some fixed GRANT action,
u ∈ U be some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed policy, T be
some fixed set of triggers over D whose owners are in U , V be some fixed set of views over D whose
owners are in U , and c be some fixed context. Furthermore, let db ∈ ΩΓ

D be a database state such
that 〈db, U, sec, T, V, c〉 ∈ ΩM . We can check whether fuconf ,G(〈db, U, sec, T, V, c〉, 〈op, u′′, p, u′〉)) = >
as follows.

1. If trigger(s) = ε and a 6∈ AD,u, return >.
2. If trigger(s) 6= ε and invoker(s) 6= u, return >.
3. If p is not a SELECT privilege, return >.
4. If u′′ 6= u, return >.
5. For each g ∈ sec, if g = 〈op, u, p, u′〉, return >.
6. Return ⊥.

The complexity of the fifth step is O(|sec|), whereas the complexity of the other steps is O(1).
Therefore, the overall complexity of the fuconf ,G procedure is O(|sec|). From this, it follows that the
data complexity of fuconf ,G procedure is O(1).

Lemma C.31 states that the data complexity of the fuconf ,S function is AC0.

Lemma C.31. The data complexity of fuconf ,S is AC0.

Proof. Let M = 〈D,Γ〉 be some fixed system configuration, a ∈ AD,U be some fixed SELECT action
〈u′, SELECT, φ〉, u ∈ U be some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed
policy, T be some fixed set of triggers over D whose owners are in U , V be some fixed set of views
over D whose owners are in U , and c be some fixed context. Furthermore, let db ∈ ΩΓ

D be a database
state such that 〈db, U, sec, T, V, c〉 ∈ ΩM . We can check whether fuconf ,S(〈db, U, sec, T, V, c〉, a)) = >
as follows.

1. If trigger(s) = ε and a 6∈ AD,u, return >.
2. If trigger(s) 6= ε and invoker(s) 6= u, return >.
3. Compute secure(u, φ, s) and return its result.
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The complexity of the first and second steps is O(1). From Lemma C.28, it follows that the data
complexity of the third step is AC0. From this, it follows that the data complexity of fuconf ,S procedure
is AC0.

Finally, Theorem C.4 states that the data complexity of fuconf is AC0.

Theorem C.4. The data complexity of fuconf is AC0.

Proof. Let M = 〈D,Γ〉 be some fixed system configuration, a ∈ AD,U be some fixed action, u ∈ U
be some fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed policy, T be some
fixed set of triggers over D whose owners are in U , V be some fixed set of views over D whose owners
are in U , and c be some fixed context. The data complexity of fuconf is the maximum of the data
complexities of fuconf ,I,D, fuconf ,G, and fuconf ,S. From Lemmas C.29–C.31, it follows that: (a) the data
complexity of fuconf ,I,D is AC 0, (b) the data complexity of fuconf ,S is AC0, and (c) the data complexity
of fuconf ,G is O(1). From this, it follows that the data complexity of fuconf is max(AC0, O(1)). Hence,
the data complexity of fuconf is AC0.

C.5.3 Complexity of the overall algorithm
Here we prove the data complexity of the PDP f .

Theorem C.5. The data complexity of f is AC 0.

Proof. From f ’s definition, it follows that f ’s data complexity is the maximum complexity between
fuconf ’s complexity and fint ’s complexity. From this, Theorem C.3, and Theorem C.4, it follows that
the data complexity of f is AC 0.



233

Appendix D

Proofs for Chapter 7

We remark that in the following we consider only sequences of queries, WhileSql programs,
and configurations that are well-defined, i.e., that do not get stuck according to the WhileSql’s
semantics. Observe that this requires, for instance, that all views are used only after their declaration.

D.1 From Database Access Control to Information-flow Control

Here, we prove the main results from Section 7.5, namely Theorems 7.1 and 7.2. In this section,
we refer to terminology, notation, and auxiliary functions taken from Chapters 5 and 6.

D.1.1 Weak indistinguishability
We now introduce a new notion of indistinguishability among database runs. This notion plays

a key role in our proofs. Observe that this indistinguishability notion is strictly weaker than the one
given in Chapter 6.

Definition D.1. Let M be a system configuration, f be an M -PDP, L be the 〈M, f〉-LTS, and
u be a user. We say that two M -system states s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′,
V ′〉 are configuration indistinguishable, written s ∼=conf

M,u s′, iff U = U ′, sec = sec′, T = T ′, and
V = V ′. Moreover, two runs r and r′ in traces(L) are (〈M, f〉, u)-weakly indistinguishable, written
r ∼=W

u,〈M,f〉 r
′, iff

1. r|u and r′|u are consistent.
2. If r|2u = s′·a·s and a 6= ∗, then sysState(last(r|1u)) and sysState(last(r′|1u)) are (M,u)-data

indistinguishable.
3. If r||r|u|u = r||r|u|−1

u · ∗ ·s, then sysState(last(r)) and sysState(last(r′)) are (M,u)-data indistin-
guishable.

4. For all i such that 1 ≤ i ≤ |r|u| − 2, if r|i+2
u = r|iu· ∗ ·s′·a·s and a 6= ∗, then sysState(last(r|i+1

u ))
and sysState(last(r′|i+1

u )) are (M,u)-data indistinguishable.
5. For all i such that 1 ≤ i ≤ |r|u|−1, if r|i+1

u = r|iu·a·s, a 6= ∗, and s ∈ ΩM , then sysState(last(r|iu))
and sysState(last(r′|iu)) are configuration indistinguishable.

6. sysState(last(r)) and sysState(last(r′)) are configuration indistinguishable. �

We denote by JrKW
P,u the equivalence class defined by r with respect to ∼=W

P,u.

D.1.2 Auxiliary notation
Here, we introduce some notation and machinery for (1) moving between WhileSql runs and

database runs from Chapter 5, and (2) moving between a set of initial states (at a certain point in
the run) and the final states obtained by executing a given sequence of queries.
Extension. Let M = 〈D,Γ〉 be a system configuration, f be an M -PDP, L be the 〈M, f〉-LTS, and
r be a run in traces(L). Furthermore, let 〈u, q〉 be a query. We denote by extend(r, 〈u, q〉) the run
obtained by extending r with 〈u, q〉 (if such a run exists). Furthermore, we denote by extend∗(r, 〈u,
q〉) the run obtained by extending r with the action 〈u, q〉 and all triggers executed in response to
〈u, q〉. Similarly, given a trigger t, we denote by extend(r, t) the run obtained by extending r with
t (if such a run exists). We refer the reader to Appendix C for a formal definition of extend. For
conciseness, in the following we use e and e∗ instead of extend and extend∗.
Notation for database access control. Let M = 〈D,Γ〉 be a system configuration, f be an
M -PDP, and L be the 〈M, f〉-LTS. The trigger-free projection of a run r, denoted µ(r), is defined as
follows: µ(ε) = ε, µ(s) = s where s ∈ ΩM ,

µ(r) =


µ(r′)·a·s r′ ∈ traces(L) ∧ s ∈ ΩM ∧ a ∈ AD,U ∧ r = r′·a·s ∧ ¬ID(a)
µ(r′)·a·s r′ ∈ traces(L) ∧ s, s1, . . . , sn ∈ ΩM ∧ t1, . . . , tn ∈ T RIGGER ∧ a ∈ AD,U∧

r = r′·a·s1·t1·s2 . . . ·sn·tn·s ∧ ID(a)
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where ID(a) returns > iff a is an INSERT or DELETE action.
Notation for triggers. Given a run r ∈ traces(L), we denote by triggers(r, i) the sequence of
triggers executed in r in response to the i-th query.
Notation for Reduction 7.1. We denote by code(ctx, q, u) (respectively S(ctx, q, u) and mem(ctx,
q, u)) the programs c1· . . . ·cn (respectively the scheduler S and the memoriesm1· . . . ·mn) constructed
according to Reduction 7.1.

Let M = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism for WhileSql
programs that is sound and stable (as required by Theorem 7.1), u be a user, and dbEnf be the
database access control mechanism constructed using Reduction 7.1. Furthermore, let P be 〈M,
dbEnf 〉 be an extended configuration, L be the P -LTS, and 〈s, ctx〉 be the last state of r, i.e, 〈s,
ctx〉 = last(r). In the following, we use f to refer to dbEnf . With a slight abuse of notation,
given a run r ∈ traces(L) and an action 〈u, q〉, we write [r, 〈u, q〉]ifc to denote the run generated
by the WhileSql programs produced by our reduction and starting from the state and scheduler
resulting from Reduction 7.1. Observe that each program produced by our reduction is processed
by the WhileSql’s semantics in two steps, namely one application of the M-Eval-Step rule and
one application of the M-Eval-End rule. Abusing notation, in the following we ignore the steps
associated with the M-Eval-End rule. Therefore, the i-th statement executed in the run [r, 〈u, q〉]ifc
corresponds to the i-th command executed in µ(e(r, 〈u, q〉) (and |[r, 〈u, q〉]ifc| = |µ(e(r, 〈u, q〉)|).
Notation for epochs. Let ep be a user-based epoch (as defined by the predicates given in Sec-
tion 7.5) in [r, 〈u, q〉]ifc and i be a natural number such that 1 ≤ i ≤ |ep|. We denote by start(ep)
the first state in the epoch and by end(ep) the last state in the epoch. Since our reduction does not
use the memory, with a slight abuse of notation, we ignore memories. For instance, we assume that
start(ep) and end(ep) consist just of database states. Similarly, we write ifEnf (C,S, u, s) instead of
ifEnf (C,M,S, u, s). Furthermore, we denote by code(ep) the initial WhileSql program associated
with the epoch ep, and S(ep) the initial scheduler in ep. We also denote by trace(ep) the trace
associated with ep and by trace(ep, i) the trace obtained after executing i queries in ep. Finally, we
denote by PKu(ep, i) the knowledge PKu(start(ep), code(ep),S(ep), trace(ep, i)).

Given a set of runs R and a sequence of queries q = 〈u1, q1〉· . . . ·〈un, qn〉, we denote by �(R, q) the
set of states obtained by repeatedly extending all runs in R with the commands in q. Furthermore,
we denote by [db(R)] the set {last(r) | r ∈ R}.

D.1.3 Proofs about weak indistinguishability
We now prove that the indistinguishability notion from Chapter 6 implies weak indistinguish-

ability (or, equivalently, that the equivalence class defined by the indistinguishability notion is in-
cluded in the one defined by weak indistinguishability).

Proposition D.1. Let M be a system configuration, f be an M-PDP, L be the 〈M, f〉-LTS, and u
be a user. Furthermore, let r, r′ be two runs in traces(L). The following facts hold:

1. If r ∼=u,〈M,f〉 r
′, then r ∼=W

u,〈M,f〉 r
′.

2. JrKu,〈M,f〉 ⊆ {r′ ∈ traces(L) | r ∼=W
u,〈M,f〉 r

′}.

Proof. We first show that the second claim follows from the first one. Assume, for contradiction’s
sake, that JrKu,〈M,f〉 6⊆ {r′ ∈ traces(L) | r ∼=W

u,〈M,f〉 r
′}. Therefore, there is a run r′′ ∈ JrKu,〈M,f〉 such

that r′′ 6∈ {r′ ∈ traces(L) | r ∼=W
u,〈M,f〉 r

′}. From this, it follows that r ∼=u,〈M,f〉 r
′ and r 6∼=W

u,〈M,f〉 r
′,

which contradicts the first claim.
We now prove that if r ∼=u,〈M,f〉 r

′, then r ∼=W
u,〈M,f〉 r

′. Let M be a system configuration, f be an
M -PDP, L be the 〈M, f〉-LTS, and u be a user. Furthermore, let r, r′ be two runs in traces(L) such
that r ∼=u,〈M,f〉 r

′. From this, it follows:
(a) r|u and r′|u are consistent, and
(b) sysState(last(r)) and sysState(last(r′)) are (M,u)-data indistinguishable, and
(c) for all i such that 1 ≤ i ≤ |r|u|−1, if r|i+1

u = r|iu·a·s, a 6= ∗, and s ∈ ΩM , then sysState(last(r|iu))
and sysState(last(r′|iu)) are (M,u)-data indistinguishable.

From (b), it follows that sysState(last(r)) and sysState(last(r′)) are configuration indistinguish-
able (since data indistinguishability implies configuration indistinguishability). From (c), it follows
that (1) if r|2u = s′·a·s and a 6= ∗, then sysState(last(r|1u)) and sysState(last(r′|1u)) are (M,u)-
data indistinguishable, (2) if r||r|u|u = r||r|u|−1

u · ∗ ·s, then sysState(last(r)) and sysState(last(r′))
are (M,u)-data indistinguishable, and (3) for all i such that 1 ≤ i ≤ |r|u| − 2, if r|i+2

u = r|iu· ∗
·s′·a·s and a 6= ∗, then sysState(last(r|i+1

u )) and sysState(last(r′|i+1
u )) are (M,u)-data indistin-

guishable, and (4) for all i such that 1 ≤ i ≤ |r|u| − 1, if r|i+1
u = r|iu·a·s, a 6= ∗, and s ∈

ΩM , then sysState(last(r|iu)) and sysState(last(r′|iu)) are data indistinguishable, which implies that
sysState(last(r|iu)) and sysState(last(r′|iu)) are configuration indistinguishable. Therefore, it follows
that r ∼=W

u,〈M,f〉 r
′.
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Using Proposition D.1, we now show that judgment security with respect to weak indistinguish-
ability implies judgment security with respect to Chapter 6’s indistinguishability. The same applies
to data confidentiality.

Proposition D.2. Let M be a system configuration, f be an M-PDP, P = 〈M, f〉, L be the P -LTS,
A be an attacker model, and u be a user. The following facts hold:
(1) secureP,∼=W

P,u
(r, i `u φ) implies secureP,∼=P,u(r, i `u φ).

(2) If f provides data confidentiality with respect to P , u, A, and ∼=W
P,u, then f provides data confi-

dentiality with respect to P , u, A, and ∼=P,u.

Proof. Let M be a system configuration, f be an M -PDP, P = 〈M, f〉, L be the P -LTS, A be an
attacker model, and u be a user. We first prove that secureP,∼=W

P,u
(r, i `u φ) implies secureP,∼=P,u(r,

i `u φ). Assume, for contradiction’s sake, that this is not the case. From secureP,∼=W
P,u

(r, i `u φ), it

follows that for all r′ ∈ traces(L) such that ri ∼=W
P,u r

′, it holds that [φ]db = [φ]db′ , where last(ri) =
〈db, U,S , T, V, c〉 and last(r′) = 〈db′, U ′,S ′, T ′, V ′, c′〉. From the fact that secureP,∼=P,u(r, i `u φ) does
not hold, it follows that there is a run r′ ∈ traces(L) such that ri ∼=P,u r

′ and [φ]db 6= [φ]db′ , where
last(ri) = 〈db, U,S , T, V, c〉 and last(r′) = 〈db′, U ′,S ′, T ′, V ′, c′〉. From this and Proposition D.1, it
follows that there is a run r′ ∈ traces(L) such that ri ∼=W

P,u r
′ and [φ]db 6= [φ]db′ , where last(ri) = 〈db,

U,S , T, V, c〉 and last(r′) = 〈db′, U ′,S ′, T ′, V ′, c′〉. This contradicts secureP,∼=W
P,u

(r, i `u φ).
We now prove the second claim. Assume that f provides data confidentiality with respect to P ,

u, A, and ∼=W
P,u. From this, it follows that secureP,∼=W

P,u
(r, i `u φ) holds for all judgments r, i `u φ

that hold in A. From this and the first claim, it follows that secureP,∼=P,u(r, i `u φ) for all judgments
r, i `u φ that hold in A. From this, it follows that f provides data confidentiality with respect to P ,
u, A, and ∼=P,u.

D.1.4 Correctness of Reduction 7.1
Here we prove some facts about Reduction 7.1 and how it relates to the database runs.

Proposition D.3. Let M = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism
for WhileSql programs, u be a user, and dbEnf be the database access control mechanism constructed
using Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the
P -LTS. Let r be a run in traces(L) and 〈u, q〉 be a database command such that e(r, 〈u, q〉) is defined.
The run r1 = [r, 〈u, q〉]ifc produced by executing code(ctx, q, u) starting from 〈mem(ctx, q, u), init〈s,
ctx〉〉 with scheduler S(ctx, q, u), where ctx is the context in the last state of r and s is the last state
in r, satisfies the following conditions:

1. For 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, the i-th query executed in µ(e(r, 〈u, q〉)) is 〈ui, qi〉 iff the
i-th statement executed in r1 is 〈ui, x ← qi〉 if secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥ and skip
otherwise.

2. The (|µ(e(r, 〈u, q〉))|−1)-th query executed in µ(e(r, 〈u, q〉)) is 〈u, q〉 iff the (|µ(e(r, 〈u, q〉))|−1)-
th statement executed in r1 is 〈u, x← q〉.

3. For all 1 ≤ i ≤ |µ(e(r, 〈u, q〉))|, (1) last(µ(e∗(r, 〈u, q〉))i) = 〈s, ctx〉 iff the i-th configuration in
r1 is 〈C,M, 〈s, ctx ′〉,S〉, and (2) inTrigger(ctx) = inTrigger(ctx ′) = ⊥.

4. For all 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, if the i-th query 〈ui, qi〉 in µ(e(r, 〈u, q〉)) is authorized and
no triggers associated with qi throw integrity or security exceptions (i.e., secEx(last(µ(e(r, 〈u,
q〉))i+1)) = ⊥ and Ex(last(µ(e(r, 〈u, q〉))i+1)) = ∅), then the result of 〈ui, qi〉 in µ(e(r, 〈u, q〉))
is k iff the i-th step in r1 is associated with the label 〈u′, qi, k, τ〉, where u′ = Usr(ui, x← qi).

5. For all 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, if the i-th query 〈ui, qi〉 in µ(e(r, 〈u, q〉)) is authorized
(i.e., secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥) and the query itself has caused an exception (i.e.,
Ex(last(µ(e(r, 〈u, q〉)))i+1) 6= ∅ and triggers(e(r, 〈u, q〉), i) = ε), then Ex(last(µ(e(r, 〈u, q〉))i+1))
= K iff the i-th step in r1 is associated with the label 〈db(u), qi, 〈IntEx,K〉, ε〉.

6. For all 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, if the i-th query 〈ui, qi〉 in µ(e(r, 〈u, q〉)) is authorized (i.e.,
secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥) and the trigger t executed in response to q has caused an ex-
ception (i.e., Ex(last(µ(e(r, 〈u, q〉))i+1)) 6= ∅ and triggers(e(r, 〈u, q〉), i) = t·t), then Ex(last(µ(e(r,
〈u, q〉))i+1)) = K iff the i-th step in r1 is associated with the label (db(u), qi, 〈t, B, IntEx,K〉, τ).

7. For all 1 ≤ i < |µ(e(r, 〈u, q〉))|−1, the label 〈u, q,m, τ ·〈public, t, q〉·τ ′〉 is associated with the i-th
step in r1 iff the trigger t is successfully executed in response to the i-th query in µ(e(r, 〈u, q〉)),
its condition is enabled, and it modified the security policy (and it has been the |τ |+1-th trigger
to do so in the i-th step).

Proof. LetM = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism for WhileSql
programs, u be a user, and dbEnf be the database access control mechanism constructed using
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Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the P -LTS.
Let r be a run in traces(L) and 〈u, q〉 be a database command such that e(r, 〈u, q〉) is defined. Finally,
let r1 = [r, 〈u, q〉]ifc be the run produced by executing code(ctx, q, u) starting from 〈mem(ctx, q, u),
init〈s, ctx〉〉 with scheduler S(ctx, q, u), where 〈s, ctx〉 is the database state in the last state of r.
Proof of (1). The first claim directly follows from the construction of Reduction 7.1. The reduction
associates a WhileSql program ci = 〈ui, si〉 to each query 〈ui, qi〉 in µ(r) such that si is x ← qi if
qi is authorized (i.e., secEx(last(µ(r)i+1)) = ⊥) and si = skip otherwise. Furthermore, the order in
which the WhileSql programs are executed is directly dictated by the run e(r, 〈u, q〉). In particular,
the i-th step in r1 is associated to the program ci, i.e., to the i-th query in µ(e(r, 〈u, q〉)) (and all
the associated triggers). Let i be a value such that 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1. The i-th statement
executed in r1 is exactly the program ci. From this, it follows that the i-th query executed in µ(e(r, 〈u,
q〉)) is 〈ui, qi〉 iff the i-th statement executed in r1 is (ui, x← qi) if secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥
and skip otherwise (by construction). This completes the proof of the first claim.
Proof of (2). The proofs of the second claim also directly follows from the construction of Reduc-
tion 7.1. From e(r, 〈u, q〉) being defined, it follows that inTrigger(ctx) = ⊥. From this, the last query
in L′ is not part of the history in ctx. Therefore, the program c|L′| is (u, x← q). This together with
|L′| = |µ(e(r, 〈u, q〉))− 1| gives the second claim.
Proof of (3). We now prove, by induction on i, that for all 1 ≤ i ≤ |µ(e(r, 〈u, q〉))|, last(µ(e(r∗,
〈u, q〉))i) = 〈s, ctx〉 iff the i-th configuration in r1 is 〈C,M, 〈s, ctx ′〉,S〉, inTrigger(ctx) = ⊥, and
inTrigger(ctx ′) = ⊥. The proof of the base case i = 1 is trivial. Indeed, the reduction directly ex-
tracts the initial system state from s and ctx. From this, the initial configuration in r1 is 〈code(ctx, q,
u),M, s,S(ctx, q, u)〉 and s = last(µ(e∗(r, 〈u, q〉)))1 by construction. For the induction’s step, assume
that last(µ(e∗(r, 〈u, q〉))j) = 〈s′, ctx〉 and the j-th configuration in r1 is 〈C′,M ′, 〈s′, ctx ′〉,S ′〉 and
inTrigger(ctx) = inTrigger(ctx ′) = ⊥ for any j < i. We now prove that last(µ(e∗(r, 〈u, q〉))i) = 〈s,
ctx〉 and the i-th configuration in r1 is 〈C,M, 〈s, ctx ′〉,S〉 and inTrigger(ctx) = inTrigger(ctx ′) = ⊥.
There are two cases:

1. Assume that ci−1 = 〈ui−1, skip〉. From this, it directly follows that the i-th configuration in
r1 is 〈C,M, 〈s, ctx ′〉,S ′〉. From this and the E-Skip and M-Eval-Step rules, it follows that 〈s,
ctx ′〉 are the same as those in the (i−1)-th configuration in r1. Furthermore, from the first two
claims, it follows that the (i− 1)-th query (or one of the associated triggers) in µ(e∗(r, 〈u, q〉))
has not been authorized. Therefore, from the database operational semantics, it follows that
(1) s is the same as the (i − 1)-th database state in e∗(r, 〈u, q〉), and (2) inTrigger(ctx) = ⊥.
From these facts, we can derive that last(µ(e∗(r, 〈u, q〉))i) = 〈s, ctx〉 and the i-th configuration
in r1 is 〈C,M, 〈s, ctx ′〉,S〉 and inTrigger(ctx) = inTrigger(ctx ′) = ⊥ (by applying the induction
hypothesis to the (i− 1)-th states).

2. Assume that ci−1 = 〈ui−1, x← qi−1〉. From this and the WhileSql’s semantics, it follows that
the 〈s, ctx ′〉 is the database state obtained by executing the query 〈ui−1, qi−1〉 (together with all
associated triggers) on the state 〈s1, ctx1〉 in the (i−1)-th configuration in r1. Similarly, the i-th
state 〈s, ctx〉 in µ(e∗(r, 〈u, q〉)) is obtained by executing the query 〈ui−1, qi−1〉 (and all associated
triggers) on the (i−1)-th configuration 〈s2, ctx2〉 in e(r, 〈u, q〉). Furthermore, from the first two
claims, we know that the query and the associated triggers have all been authorized by dbEnf .
Finally, since ci−1 6= 〈ui−1, skip〉, we know that the execution of x ← qi−1 (and of the associ-
ated triggers) does not throw security exceptions according to the WhileSql semantics. From
the induction hypothesis, it follows that s1 = s2 and inTrigger(ctx1) = inTrigger(ctx2) = ⊥.
From this and the determinism of the database operational semantics, it follows that s = s′

and inTrigger(ctx) = inTrigger(ctx ′) = ⊥.
This completes the proof of the third claim.
Proof of (4). We now prove our fourth claim. Namely that for all 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1,
if secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥ and Ex(last(µ(e(r, 〈u, q〉))i+1)) = ∅, then the result of the i-th
query 〈ui, qi〉 in µ(e(r, 〈u, q〉)) is k iff the i-th step in r1 is associated with the label 〈u′, qi, k〉, where
u′ = Usr(ui, x ← qi). Let i be a value such that 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, secEx(last(µ(e(r, 〈u,
q〉))i+1)) = ⊥, and Ex(last(µ(e(r, 〈u, q〉))i+1)) = ∅. From the third claim, it follows that the i-th
database state in µ(e(r, 〈u, q〉)) is 〈s′, ctx ′〉 and the database state in the i-th configuration of r1 is 〈s′,
ctx ′′〉. From this and WhileSql’s semantics, it follows that the result of the query qi is k and JqK(〈s′,
ctx ′′〉, ui) = 〈s′′, k, ε, ε〉. From this, 〈u′, qi, k〉 is one of the labels associated with the i-th step in r1.
Proof of (5). We now prove that for all 1 ≤ i < |µ(e(r, 〈u, q〉))|−1, if secEx(last(µ(e(r, 〈u, q〉))i+1)) =
⊥, Ex(last(µ(e(r, 〈u, q〉))i+1)) 6= ∅, and triggers(r, i) = ε then Ex(last(µ(e(r, 〈u, q〉))i+1)) = K iff the
i-th step in r1 is associated with the label 〈db(u), qi, 〈IntEx,K〉, ε〉. Let i be a value such that
1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥, Ex(last(µ(e(r, 〈u, q〉))i+1)) 6= ∅,
triggers(r, i) = ε, and K 6= ∅. From the third claim, it follows that the i-th database state in
µ(e(r, 〈u, q〉)) is 〈s′, ctx ′〉 and the database state in the i-th configuration of r1 is 〈s′, ctx ′′〉. From
this, Ex(last(µ(e(r, 〈u, q〉))i+1)) = K, triggers(r, i) = ε, and WhileSql’s semantics, it follows that



D.1. From Database Access Control to Information-flow Control 237

JqK(〈s′, ctx ′〉, ui) is 〈s′′, †, 〈IntEx,K〉, ε〉, where 〈s′, ctx ′〉 is the i-th database state in r1. From this,
it follows that 〈db(u), qi, 〈IntEx,K〉, ε〉 is the label associated with the i-th step in r1.
Proof of (6). We now prove that for all 1 ≤ i < |µ(e(r, 〈u, q〉))|−1, if secEx(last(µ(e(r, 〈u, q〉))i+1)) =
⊥, Ex(last(µ(e(r, 〈u, q〉))i+1)) 6= ∅, and triggers(r, i) = t·t then Ex(last(µ(e(r, 〈u, q〉))i+1)) = K iff
the i-th step in r1 is associated with the label 〈db(u), qi, 〈t, B, IntEx,K〉, τ〉. Let i be a value such
that 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, secEx(last(µ(e(r, 〈u, q〉))i+1)) = ⊥, Ex(last(µ(e(r, 〈u, q〉))i+1)) 6= ∅,
triggers(r, i) = t·t, and K 6= ∅. From the third claim, it follows that the i-th database state in
µ(e(r, 〈u, q〉)) is 〈s′, ctx ′〉 and the database state in the i-th configuration of r1 is 〈s′, ctx ′′〉. From
this, Ex(last(µ(e(r, 〈u, q〉))i+1)) = K, triggers(r, i) = t·t, and WhileSql’s semantics, it follows that
JqK(〈s′, ctx ′〉, ui) is 〈s′′, †, 〈t, B, IntEx,K〉, τ〉, where 〈s′, ctx ′〉 is the i-th database state in r1. From
this, it follows that 〈db(u), qi, 〈t, B, IntEx,K〉, τ〉 is the label associated with the i-th step in r1.
Proof of (7). Finally, we prove our claim that for all 1 ≤ i < |µ(e(r, 〈u, q〉))| − 1, the label 〈u,
q,m, τ ·〈public, t, q〉·τ ′〉 is associated with the i-th step in r1 iff the trigger t is successfully executed
in response to the i-th query in µ(e(r, 〈u, q〉)), its condition is enabled, it has modified the security
policy, and t was the |τ | + 1 trigger executed in response to the i-th query to modify the policy.
From the third claim, it follows that the i-th database state in µ(e(r, 〈u, q〉)) is 〈s′, ctx ′〉 and the
database state in the i-th configuration of r1 is 〈s′, ctx ′′〉. From this and WhileSql’s semantics (see
the definition of J·K(·) in Figures 7.8–7.9), the label 〈u, q,m, τ ·〈public, t, q〉·τ ′〉 is associated with the
i-th step in r1 iff the trigger t is successfully executed, its condition is enabled, t actually modifies
the policy, and all and only the triggers in the labels in τ have been executed before t.

Proposition D.4. Let M = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism
for WhileSql programs, u be a user, and dbEnf be the database access control mechanism constructed
using Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the
P -LTS. Let r be a run in traces(L), t be a trigger such that e(r, t) is defined, and 〈u, q〉 be a command.
Finally, let r′ be the run obtained by extending e(r, t) with all scheduled triggers until either all triggers
are executed or an exception is thrown. The run r1 = [r, 〈u, q〉]ifc produced by executing code(ctx, q, u)
starting from 〈mem(ctx, q, u), init〈s, ctx〉〉 with scheduler S(ctx, q, u), where ctx is the context in the
last state of r and s is the last state in r, satisfies the following conditions:

1. For 1 ≤ i < |µ(r′)|, the i-th query executed in µ(r′) is 〈ui, qi〉 iff the i-th statement executed in
r1 is 〈ui, x← qi〉 if secEx(last(µ(r′)i+1)) = ⊥ and skip otherwise.

2. For all 1 ≤ i ≤ |µ(r′)|, last(µ(r′)i) = 〈s, ctx〉 iff the i-th configuration in r1 is 〈C,M, 〈s, ctx ′〉,S〉
and inTrigger(ctx) = inTrigger(ctx ′) = ⊥.

3. For all 1 ≤ i < |µ(r′)|, if the i-th query 〈ui, qi〉 in µ(r′) is authorized and no triggers as-
sociated with qi throw integrity or security exceptions (i.e., secEx(last(µ(r′)i+1)) = ⊥ and
Ex(last(µ(r′)i+1)) = ∅), then the result of 〈ui, qi〉 in µ(r′) is k iff the i-th step in r1 is associ-
ated with the label 〈u′, qi, k〉, where u′ = Usr(ui, x← qi).

4. For all 1 ≤ i < |µ(r′)|, if the i-th query 〈ui, qi〉 in µ(r′) is authorized (i.e., secEx(last(µ(r′)i+1)) =
⊥) and the query itself has caused an exception (i.e., Ex(last(µ(r′)i+1)) 6= ∅ and triggers(r′,
i) = ε), then Ex(last(µ(r′)i+1)) = K iff the i-th step in r1 is associated with the label 〈db(u),
qi, 〈IntEx,K〉, ε〉.

5. For all 1 ≤ i < |µ(r′)|, if the i-th query 〈ui, qi〉 in µ(r′) is authorized (i.e., secEx(last(r′)i+1) =
⊥) and the trigger t executed in response to q has caused an exception (i.e., Ex(last(µ(r′)i+1)) 6=
∅ and triggers(r′, i) = t·t), then Ex(last(µ(r′)i+1)) = K iff the i-th step in r1 is associated with
the label 〈db(u), qi, 〈t, B, IntEx,K〉, τ〉.

6. For all 1 ≤ i < |µ(r′)|, the label 〈u, q,m, τ ·〈public, t, q〉·τ ′〉 is associated with the i-th step in r1
iff the trigger t is successfully executed in response to the i-th query in µ(r′), its condition is
enabled, and it modified the security policy (and it has been the |τ |+ 1-th trigger to do so in the
i-th step).

Proof. The proof is similar to that of Proposition D.3. The only insight is that Reduction 7.1 does
not add the query 〈u, q〉 to the list of queries L′ (this follows from the fact that e(r, t) is defined and
therefore inTrigger(ctx) = >).

D.1.5 Equivalence-class preservation
Here, we prove that under proper conditions the enforcement mechanism constructed following

Reduction 7.1 preserves the equivalence classes (as formalized in Chapter C) for weak indistinguish-
ability.

Proposition D.5. Let M = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism
for WhileSql programs, u be a user, and dbEnf be the database access control mechanism constructed
using Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the
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P -LTS. Let r, r′ be two runs in traces(L) and 〈u, q〉 be a database command such that r ∼=W
P,u r′

hold and e(r, 〈u, q〉) and e(r′, 〈u, q〉) are defined. The runs r1 = [r, 〈u, q〉]ifc and r2 = [r′, 〈u, q〉]ifc
produced by executing code(ctx, q, u) starting from 〈mem(ctx, q, u), init〈s, ctx〉〉 with scheduler S(ctx, q,
u) and code(ctx ′, q, u) starting from 〈mem(ctx ′, q, u), init〈s′, ctx ′〉〉 with scheduler S(ctx ′, q, u), where
〈s, ctx〉 = last(r) and 〈s′, ctx ′〉 = last(r′), satisfy the following conditions:

• r1 and r2 terminate,
• f(r1, ctx) and f(r2, ctx ′) are u-epoch-equivalent, where f(r, ctx) is the run obtained from r by re-

placing the observations produced by the execution of the last statement with ε if inTrigger(ctx) =
⊥, and

• the last statement executed in both runs is the same.

Proof. LetM = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism for WhileSql
programs, u be a user, and dbEnf be the database access control mechanism constructed using
Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the P -LTS.
Let r, r′ be two runs in traces(L) such that r ∼=W

P,u r
′ hold, 〈u, q〉 be a database command, and M

be a sequence of memories. Finally, let r1 and r2 be the runs r1 = [r, 〈u, q〉]ifc and r2 = [r′, 〈u,
q〉]ifc produced by executing code(ctx, q, u) starting from 〈mem(ctx, q, u), init〈s, ctx〉〉 with scheduler
S(ctx, q, u) and code(ctx ′, q, u) starting from 〈mem(ctx ′, q, u), init〈s′, ctx ′〉〉 with scheduler S(ctx ′, q,
u) respectively, where 〈s, ctx〉 = last(r) and 〈s′, ctx ′〉 = last(r′), The reduction constructs programs
without while statements, and therefore r1 and r2 trivially terminate. Similarly, the construction
ensures that the last statement executed both in r1 and r2 is the same. Indeed, the last statement
in both runs is 〈u, x← q〉, which corresponds to the query 〈u, q〉.

We now prove that f(r1, ctx) and f(r2, ctx ′) are u-epoch-equivalent. Given a run, we denote by
idx(e, r), where e is an epoch in JEuserK(r), the position of the epoch e in the run, e.g., idx(e, r) = 3
if e is the third epoch in r. Furthermore, we denote by idx(e, r, u) the position of the epoch e in
r when restricting ourselves to u-epochs, namely idx(e, r, u) = k iff e is the k-th epoch in r where
all commands are executed by u. Let ν be the mapping from JEuserK(f(r1, ctx)) to JEuserK(f(r2,
ctx ′)) defined as follows: ν(e) = e′, where idx(e, f(r1, ctx), u) = idx(e′, f(r2, ctx ′), u). We claim
that ν is a bijection from JEuser , Suser

u K(f(r1, ctx)) to JEuser , Suser
u K(f(r2, ctx ′)). Note that ν is order

preserving by construction. To show that f(r1, ctx) and f(r2, ctx ′) are u-epoch-equivalent we just
have to show that for all e1 ∈ JEuser , Suser

u K(f(r1, ctx)), the initial configurations in e1 and ν(e1) are
indistinguishable for u and the traces in e1 and ν(e1) are the same.

We now prove that for all e1 ∈ JEuser , Suser
u K(f(r1, ctx)), the traces in e1 and ν(e1) are the same.

The equivalence of the traces in e1 and ν(e1) directly follows from Proposition D.3 and r ∼=W
P,u r

′.
Assume, for contradiction’s sake, that this is not the case. Namely, there is an epoch e1 such that
the traces in e1 and ν(e1) are different. This may happen for two cases:

1. The commands executed in e1 and ν(e1) are different. From the first two points of Proposi-
tion D.3, this happens iff either the queries executed in the portions of r and r′ corresponding
to e1 and ν(e1) are different or the security decisions for a common query is different in the
portions of r and r′ corresponding to e1 and ν(e1). Both cases, however, contradict r ∼=W

P,u r
′.

2. The commands executed in e1 and ν(e1) are the same but they produce different labels. There
are two cases:
(a) The different labels are caused by a query that is not an INSERT or DELETE. From this

and the fourth and fifth points in Proposition D.3, this implies that the queries behaved
differently in r and r′. This directly contradicts r ∼=W

P,u r
′.

(b) The different labels are caused by an INSERT or DELETE query. If the different label is
directly associated with the INSERT or DELETE query, this implies that the queries behaved
differently in r and r′. This directly contradicts r ∼=W

P,u r
′. If the different label is caused

by one of the triggers, this implies that the policy has been modified in a different way in
r and r′. This again contradicts r ∼=W

P,u r
′ (since r ∼=W

P,u r
′ implies that the configuration

is the same in the u-projections of r and r′).
Note that the only case where Proposition D.3 and r ∼=W

P,u r
′ cannot be used to determine that the

labels are the same in e1 and ν(e1) is the last statement 〈u, q〉. In the above proof, this case does not
occur since we reason about f(r1, ctx) and f(r2, ctx ′) (which ignore the result of the last statement)
instead of r1 and r2.

Finally, we prove, by induction on idx(e1, r, u), that the initial configurations in e1 and ν(e1) are
indistinguishable for u. For the base case, let idx(e1, r, u) = 1. Therefore, idx(ν(e1), r, u) = 1. Let
〈M1, 〈s1, ctx1〉〉 be the global state at the beginning of e1 and 〈M2, 〈s2, ctx2〉〉 be the global state at
the beginning of ν(e1). From Proposition D.3, it follows that the corresponding database states in r
and r′ are, respectively, 〈s1, ctx ′1〉 and 〈s2, ctx ′2〉. From this and r ∼=W

P,u r
′, it follows that s1 ≈u s2.

Furthermore, since e1 and ν(e1) are the first epochs for the user u1, the memories associated with
the user u are all set to the (same) initial memory and from r ∼=W

P,u r
′ and Reduction 7.1 it follows

that M1�u = M2�u. Therefore, M1 ≈u M2. Thus, the initial global states in e1 and ν(e1) are
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indistinguishable. For the induction step, the same argument holds for the database state, so we just
have to prove that the memories are u-equivalent. Let M1 and M2 be the memories at the beginning
of ei and ν(ei), where i = idx(e1, r, u) = idx(ν(e1), r, u). Due to the construction of Reduction 7.1,
the memories associated with the programs that still have to be executed are the same inM1 andM2
(and trivially u-indistinguishable). The u-equivalence of the memories associated with the programs
that have been executed before e1 and ν(e1) directly follows, instead, from the fact that the labels
in all previous epochs (the only ones that may modify memories visible for u) are the same in
f(r1, ctx) and f(r2, ctx ′). Therefore, the results of the queries is the same and the memories are
u-indistinguishable.

We now prove our claim that ν is a bijection from JEuser , Suser
u K(f(r1, ctx)) to JEuser , Suser

u K(f(r2,
ctx ′)). The fact that |JEuser , Suser

u K(f(r1, ctx))| = |JEuser , Suser
u K(f(r2, ctx ′))| directly follows from the

construction of Reduction 7.1 and r ∼=W
P,u r

′. Indeed, from r ∼=W
P,u r

′, it follows that r|u and r′|u are
consistent. Therefore, the commands issued by u are the same in r and r′, they are executed in the
same order, and they are interleaved with commands from other users in the same way. From this and
the fact that Reduction 7.1 constructs programs that exactly mimic the database runs by associating a
single statement to a single query (see Proposition D.3), it follows that each sequence of queries issued
by u in, say, r is associated to exactly one epoch in r1 (the same holds for r′ and r2). Furthermore,
ν(e) 6= ν(e′) whenever e 6= e′ for any two e, e′ ∈ JEuser , Suser

u K(f(r1, ctx)) by construction. Therefore,
ν is a bijection from JEuser , Suser

u K(f(r1, ctx)) to JEuser , Suser
u K(f(r2, ctx ′)).

Proposition D.6. Let M = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism
for WhileSql programs, u be a user, and dbEnf be the database access control mechanism constructed
using Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the
P -LTS. For any run r ∈ traces(L) and any action a ∈ AD,u, if the following conditions hold:

1. ifEnf is sound for the progress-sensitive variant of Definition 7.2 given Euser and Suser
u ,

2. ifEnf is u-stable, and
3. extend(r, a) is defined,

a preserves the equivalence class for r, 〈M, dbEnf 〉, and ∼=W
〈M,dbEnf 〉,u.

Proof. LetM = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism for WhileSql
programs that is (1) sound, and (2) stable (as required by the proposition), u be a user, and dbEnf
be the database access control mechanism constructed using Reduction 7.1.

Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration, L be the P -LTS, and 〈s, ctx〉
be the last state of r, i.e, 〈s, ctx〉 = last(r). In the following, we use e to refer to extend and f to
refer to dbEnf . With a slight abuse of notation, given a run r ∈ traces(L) and an action 〈u, q〉, we
write [r, 〈u, q〉]ifc to denote the run generated by the WhileSql programs generated according to
our reduction and starting from the state and scheduler generated by the reduction algorithm. Note
that the i-th statement executed in the run [r, 〈u, q〉]ifc corresponds to the i-th command executed
in µ(e(r, 〈u, q〉) (and |[r, 〈u, q〉]ifc| = |µ(e(r, 〈u, q〉)|).

We prove our claim by contradiction. Assume, by contradiction’s sake, that there is a run r ∈
traces(L) and an action a ∈ AD,u such that e(r, a) is defined and a does not preserve the equivalence
class for r, 〈M, dbEnf 〉, ∼=W

〈M,dbEnf 〉,u, and u. Since e(r, a) is defined, triggers(last(r)) = ε. From this,
it follows that triggers(last(r′)) = ε also for any r′ ∈ JrKW

P,u (because r and r′ are indistinguishable
and, hence, their projections are consistent). From this, it follows that e(r′, a) is defined for any any
r′ ∈ JrKW

P,u. With a slight abuse of notation, we denote the action a ∈ AD,u also as 〈u, q〉, where u is
the user executing the action and q is the action without the invoker (it is trivial to move between
the two notations).

Let r′ be a run such that r ∼=W
P,u r′ holds. From this and Proposition D.5, it follows that

the runs r1 = [r, 〈u, q〉]ifc and r2 = [r′, 〈u, q〉]ifc produced by executing code(ctx, q, u) starting from
〈mem(ctx, q, u), init〈s, ctx〉〉 with scheduler S(ctx, q, u) and code(ctx ′, q, u) starting from 〈mem(ctx ′,
q, u), init〈s′, ctx ′〉〉 with scheduler S(ctx ′, q, u), where 〈s, ctx〉 = last(r) and 〈s′, ctx ′〉 = last(r′), satisfy
the following conditions: (a) r1 and r2 terminate, (b) f(r1, ctx) and f(r2, ctx ′) are u-epoch-equivalent,
where f(r, ctx) is the run obtained from r by replacing the observations produced by the execution of
the last statement with ε if inTrigger(ctx) = ⊥, and (c) the last statement executed in both runs is
the same. From this and the stability of ifEnf , it follows that ifEnf (code(ctx, q, u),S(ctx, q, u), u, 〈s,
ε〉) = ifEnf (code(ctx ′, q, u),S(ctx ′, q, u), u, 〈s′, ε〉). We claim that f(s′′, ctx ′′, 〈u, q〉) = f(s, ctx, 〈u, q〉),
where 〈s′′, ctx ′′〉 = last(r′). There are two cases:

1. f(s, ctx, 〈u, q〉) = >. Let epifc (respectively epifc′) be the last epoch in the run [r, 〈u, q〉]ifc
(respectively [r′, 〈u, q〉]ifc). Furthermore, let init (respectively init′) be the index associated
with the beginning of epifc in e(r, 〈u, q〉) (respectively epifc′ in e(r′, 〈u, q〉)). Note that init (and
init′) are always well-defined (they correspond to the i-th query in the run r, where i is the
number of statements executed in [r, 〈u, q〉]ifc up to the beginning of epifc). Finally, let idx be
the index of the last query (u, c) inside the epoch epifc and qi(epifc) be all the queries executed
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in epifc up to the i-th query (included). Note that idx is also the index of the last query (u, c)
inside epifc′ (this directly follows from our reduction).
We remark that code(epifc) is the same as code(epifc′) (it follows from the reduction’s definition).
Furthermore, the order in which the statements in code(epifc) and code(epifc′) are executed (this
again directly follows from Reduction 7.1). In the rest of the proofs, we ignore the memories in
WhileSql runs as they are never read for programs generated by our reduction. Hence, with
a slight abuse of notation, we use the same notation for global states and runtime states.
We now show that executing 〈u, q〉 produces the same results (and exceptions) both in 〈s, ctx〉
and 〈s′, ctx ′〉. From this and r ∼=W

P,u r′, it directly follows that e(r, 〈u, q〉) ∼=W
P,u e(r′, 〈u, q〉)

(leading to a contradiction with 〈u, q〉 not preserving the equivalence class).
From f ’s construction, f(s, ctx, 〈u, q〉) = >, and ifEnf soundness, it follows that PKu(epifc,

idx) = [start(epifc)]u, PKu(epifc, idx − 1) = [start(epifc)]u, PKu(epifc′, idx) = [start(epifc′)]u,
and PKu(epifc′, idx−1) = [start(epifc′)]u. Furthermore, from our reduction, the notion of user-
based epochs, and r ∼=W

P,u r
′, then start(epifc) and start(epifc′) are data-indistinguishable for u.

From this, [start(epifc)]≈u = [start(epifc′)]≈u (since data indistinguishability is an equivalence
relation). We refer to [start(epifc)]≈u and [start(epifc′)]≈u as C and C′ in the following. From
PKu(epifc, idx) = PKu(epifc, idx − 1) = C, it follows that for all runs starting from s ∈ C,
executing all queries in epifc up to the idx-th query produces the same observations τ (due to the
fact that PK is progress-sensitive). Similarly, from PKu(epifc′, idx) = PKu(epifc′, idx−1) = C′,
it follows that for all runs starting from s ∈ C′, executing all queries in epifc up to the idx-th
query produces the same observations τ ′. There are a number of cases depending on what is
the idx-th command:

• If the idx-th command in epifc is a SELECT command 〈u, SELECT ϕ〉, then the only ob-
servation is 〈db(u), q, r〉, where r is the SELECT’s query result. From this, it follows that
(1) for all database states s ∈ �(C, qidx−1(epifc)), the result of ϕ is the same, and (2)
for all database states s′ ∈ �(C′, qidx−1(epifc′)), the result of ϕ is the same. From this,
[db(JrinitKW

P,u)] ⊆ C, and the fact that all (and only) the queries in qidx−1 have been ex-
ecuted in r, it follows that for all database states 〈s1, ctx1〉 ∈ [db(JrKW

P,u)] the result of
ϕ is the same (since [db(JrKW

P,u)] ⊆ �(C, qidx−1(epifc))). From this, [db(Jr′init′KW
P,u)] ⊆ C′,

and the fact that all (and only) the queries in qidx−1 have been executed in r, it follows
that for all database states (s′1, ctx ′1) ∈ [db(Jr′KW

P,u)] the result of ϕ is the same (since
[db(Jr′KW

P,u)] ⊆ �(C′, qidx−1(epifc′))). From this and C = C′, it follows that the result of ϕ
is the same in 〈s, ctx〉 and 〈s′, ctx ′〉.

• If the idx-th command in epifc is an INSERT or DELETE command, then the query produces
an observation 〈db(u), q, r, τ〉, where r is either > or an exception and τ is a (possibly
empty) sequence of public observations associated with GRANT and REVOKE commands.
For simplicity, we restrict ourselves to integrity exceptions caused by INSERT and DELETE
commands (for exceptions related with GRANT and REVOKE commands see the next case).
From PKu(epifc, idx) = PKu(epifc, idx − 1) = C, it follows that for all states s ∈ �(C,
qidx−1(epifc)), the INSERT or DELETE command (and the triggers executed in response
to it) produces the same results and exceptions (and public observations τ). Similarly,
from PKu(epifc′, idx) = PKu(epifc′, idx − 1) = C′, it follows that for all states s ∈ �(C′,
qidx−1(epifc)), the INSERT or DELETE command (and the triggers executed in response to it)
produces the same results and exceptions (and public observations τ). From this, C = C′,
[db(JrinitKW

P,u)] ⊆ C, [db(Jr′init′KW
P,u)] ⊆ C′, 〈s, ctx〉 ∈ [db(JrKW

P,u)], 〈s′, ctx ′〉 ∈ [db(Jr′KW
P,u)],

[db(JrKW
P,u)] ⊆ �(C, qidx−1(epifc)), and [db(Jr′KW

P,u)] ⊆ �(C′, qidx−1(epifc)) it follows that the
result (and the exceptions) produced by the query is the same in r and r′ (and the same
holds for τ).

• If the idx-th command in epifc is a command modifying the database configuration (i.e.,
GRANT, REVOKE, ADD_USER, or CREATE command), then the only observation is 〈public, q,
r, ε〉, where r is either the positive query result or an exception. From r ∼=W

P,U r′, it
follows that the database configuration is the same in 〈s, ctx〉 and 〈s′, ctx ′〉. From this,
the operational semantics of configuration commands from Chapter 6, and the definition
of J·K(·, ·), it follows that the result of 〈u, q〉 is the same in 〈s, ctx〉 and 〈s′, ctx ′〉 (i.e., either
〈u, q〉 is successfully executed in both cases or its execution throws an exception both in
〈s, ctx〉 and 〈s′, ctx ′〉).

In all cases, we have shown that the result of the query (as well as possible integrity exceptions
and additional observations) is the same for 〈s, ctx〉 and 〈s′, ctx ′〉. We claim that the last states
in e(r, 〈u, q〉) and e(r′, 〈u, q〉) are configuration indistinguishable. From this and r ∼=W

P,u r
′, it

follows that e(r, 〈u, q〉) ∼=W
P,u e(r′, 〈u, q〉). From this, it follows that for any r′ ∈ JrKW

P,u, e(r′,
〈u, q〉) ∈ Je(r, 〈u, q〉)KW

P,u. From this, it follows that 〈u, q〉 preserves the equivalence class for r,
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〈M, dbEnf 〉, and ∼=W
〈M,dbEnf 〉,u.

We now prove our claim that the last states in e(r, 〈u, q〉) and e(r′, 〈u, q〉) are configuration
indistinguishable. Note that from r ∼=W

P,u r′, the last states in r and r′ are configuration
indistinguishable. For SELECT, INSERT, and DELETE queries, the claim follows trivially since
these statements do not modify the database configuration and the last states in r and r′

are configuration indistinguishable. For configuration commands, the claim directly follows
from (1) the last states in r and r′ are configuration indistinguishable, and (2) the commands
would either both succeed or both fail in e(r, 〈u, q〉) and e(r′, 〈u, q〉) (as shown above). If the
commands fail, the configuration indistinguishability directly follows from the one of the last
states in r and r′. If both commands succeed, then the configurations are modified in the same
way and the last states in e(r, 〈u, q〉) and e(r′, 〈u, q〉) are configuration indistinguishable.

2. f(s, ctx, 〈u, q〉) = ⊥. From this, r ∼=W
P,u r

′, and f(s′′, ctx ′′, 〈u, q〉) = f(s, ctx, 〈u, q〉), it follows
that e(r, 〈u, q〉) ∼=W

P,u e(r′, 〈u, q〉) (because the action has been denied in both runs, the database
state has not been modified, and if the last action in r and r′ has not been a command issued by
the user u the corresponding database states are data-indistinguishable). From this, it follows
that for any r′ ∈ JrKW

P,u, e(r′, 〈u, q〉) ∈ Je(r, 〈u, q〉)KW
P,u. From this, it follows that 〈u, q〉 preserves

the equivalence class for r, 〈M, dbEnf 〉, and ∼=W
〈M,dbEnf 〉,u.

This completes the proof of our claim.
We now prove our claim that f(s′′, ctx ′′, 〈u, q〉) = f(s, ctx, 〈u, q〉), where 〈s′′, ctx ′′〉 = last(r′).

Assume, for contradiction’s sake, that this is not the case. From the stability of ifEnf , it follows that
ifEnf (code(ctx, q, u),S(ctx, q, u), u, 〈s, ε〉) = ifEnf (code(ctx ′, q, u),S(ctx ′, q, u), u, 〈s′, ε〉). From this,
f(s′′, ctx ′′, 〈u, q〉) 6= f(s, ctx, 〈u, q〉), and dbEnf ’s definition, it follows that (1) ifEnf (code(ctx, q, u),
S(ctx, q, u), u, 〈s, ε〉) = >, and (2) ifEnf (code(ctx ′, q, u),S(ctx ′, q, u), u, 〈s′, ε〉) = >. There are three
cases:

• The run [r, 〈u, q〉]ifc terminates and the run [r′, 〈u, q〉]ifc does not terminate. Since r ∼=W
P,u r

′,
the last states in r and r′ are configuration indistinguishable. From this and extend(r, 〈u, q〉) is
defined, it follows that extend(r′, 〈u, q〉) is defined. From this, [r′, 〈u, q〉]ifc terminates without
getting stuck, leading to a contradiction.

• The run [r′, 〈u, q〉]ifc terminates and the run [r, 〈u, q〉]ifc does not terminate. This contradicts
the fact that extend(r, 〈u, q〉) is defined.

• Both runs terminate without getting stuck and the last observation in [r, 〈u, q〉]ifc and [r′,
〈u, q〉]ifc are different (one results in a security exception and the other does not). Let epifc

(respectively epifc′) be the last epoch in the run [r, 〈u, q〉]ifc (respectively [r′, 〈u, q〉]ifc). Observe
that the last observations belong to the last epochs epifc and epifc′ respectively. From r ∼=W

P,u r
′,

it follows that the states at the beginning of the epochs epifc and epifc′ are data indistinguishable.
From this and ifEnf (code(ctx, q, u),S(ctx, q, u), u, 〈s, ε〉) = >, the observations produced in epifc

and epifc′ must be the same, leading to a contradiction.
This completes the proof of our claim.

Proposition D.7. Let M = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism
for WhileSql programs, u be a user, and dbEnf be the database access control mechanism constructed
using Reduction 7.1. Furthermore, let P = 〈M, dbEnf 〉 be the extended configuration and L be the
P -LTS. For any run r ∈ traces(L) and any trigger t, if the following conditions hold:

1. ifEnf is sound for the progress-sensitive variant of Definition 7.2 given Euser and Suser
u ,

2. ifEnf is u-stable, and
3. extend(r, t) is defined,

t preserves the equivalence class for r, 〈M, dbEnf 〉, and ∼=W
〈M,dbEnf 〉,u.

Proof. Let r ∈ traces(L) be a run and t be a trigger such that e(r, t) is defined. We claim that
Reduction 7.1 always authorizes any command 〈u, q〉 if inTrigger(ctx) = >. This combined with the
database semantics (which ensures that only a trigger’s condition and action can be executed while
executing the trigger t), implies that the execution of the trigger t never throws security exceptions.
Therefore, proving that t preserves the equivalence class for r, 〈M, dbEnf 〉, and ∼=W

〈M,dbEnf 〉,u amounts
to proving (1) if t throws an integrity exception in e(r, t) then it throws an integrity exception also
in e(r′, t) for any r′ ∼=W

P,u r, and (2) last(e(r, t)) and last(e(r′, t)) are configuration equivalent for any
r′ ∼=W

P,u r.
We prove that if t throws an integrity exception in e(r, t) then it throws an integrity exception also

in e(r′, t) for any r′ ∼=W
P,u r. Assume, for contradiction’s sake, that this is not the case. This implies

that the labels produced by executing the statement a in the program computed by Reduction 7.1
differ for r and r′. This implies that executing a (and the associated triggers) leaks information.
This, therefore, contradicts the fact that a is authorized (see the proof of Proposition D.6).

We now prove that last(e(r, t)) and last(e(r′, t)) are configuration equivalent for any r′ ∼=W
P,u r.

From r′ ∼=W
P,u r, it follows that last(r) and last(r′) are configuration equivalent. If t’s action is an
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INSERT or DELETE command, the configuration equivalence of last(e(r, t)) and last(e(r′, t)) directly
follows from the configuration equivalence of last(r) and last(r′). Instead, assume that t’s action is
a GRANT or REVOKE command influencing the user u. Furthermore, assume, for contradiction’s sake,
that last(e(r, t)) and last(e(r′, t)) are not configuration equivalent. There are four cases:

1. t is enabled in both e(r, t) and e(r, t′). From this and the configuration equivalence of last(r)
and last(r′), it follows that last(e(r, t)) and last(e(r′, t)) are configuration equivalent as well,
leading to a contradiction.

2. t is enabled in e(r, t) but it is not enabled in e(r′, t). There are two cases:
(a) auth(last(r), u) = auth(last(e(r, t)), u). From this, it follows that the database configura-

tion is the same in last(r) and last(e(r, t)). Furthermore, from the fact that t is not enabled
in e(r′, t) it follows that the database configuration is the same in last(r′) and last(e(r′, t)).
From this and the configuration equivalence of last(r) and last(r′), it directly follows that
last(e(r, t)) and last(e(r′, t)) are configuration equivalent, leading to a contradiction.

(b) auth(last(r), u) 6= auth(last(e(r, t)), u). From this and the fact that we are executing the
trigger, it follows that the query a that fired the trigger has been authorized. From this
and auth(last(r), u) 6= auth(last(e(r, t)), u), it follows that 〈public, t, q, ε〉, where q is the
GRANT or REVOKE command associated with t’s action, belonged to the labels produced
by executing the statement associated with a in the program defined by Reduction 7.1.
From this and the fact that a has been authorized, it follows that 〈public, t, q, ε〉 must be
associated to the execution of a for any indistinguishable run. Therefore, 〈public, t, q, ε〉
should be derived also from the run in e(r′, t) (since it was indistinguishable from r when
we executed a). Therefore, t must be enabled also in e(r′, t), leading to a contradiction.

3. t is not enabled in e(r, t) but it is enabled in e(r′, t). The proof is similar to the previous case.
4. t is not enabled in both e(r, t) and e(r, t′). From this and the configuration equivalence of

last(r) and last(r′), it follows that last(e(r, t)) and last(e(r′, t)) are configuration equivalent as
well since the database configuration in last(r) and last(e(r, t)) is the same (and the same hold
for r′ and e(r′, t)), leading to a contradiction.

Finally, we prove our claim that Reduction 7.1 authorizes any command 〈u, q〉 if inTrigger(ctx).
This directly follows from the fact that the program constructed by Reduction 7.1 contain only secure
commands (since the insecure ones are replaced with skip statements).

D.1.6 Proof of the main result
We are now ready to prove the main result in this section. Namely that given a sound and stable

enforcement mechanism for WhileSql programs, our construction can be used to construct a secure
database access control mechanism.
Theorem D.1. Let M be a system configuration, ifEnf be an enforcement mechanism for Whi-
leSql programs, u be a user, and dbEnf be the database access control mechanism constructed using
Reduction 7.1. If for all u ∈ UID,(1) ifEnf is sound for the progress-sensitive variant of Defini-
tion 7.2 given Euser and Suser

u , and (2) ifEnf is u-stable, then dbEnf provides data confidentiality
with respect to 〈M, dbEnf 〉, u, AT Ku, and ∼=u,〈M,dbEnf 〉 for any user u ∈ UID, where AT Ku is the
attacker model from Chapter 6.

Proof. LetM = 〈D,Γ〉 be a system configuration, ifEnf be an enforcement mechanism for WhileSql
programs, u ∈ UID be a user, and dbEnf be the database access control mechanism constructed using
Reduction 7.1. Furthermore, we denote by f be mechanism dbEnf , by P the extended configuration
〈M, dbEnf 〉, by A the attacker model AT Ku, and by L the P -LTS. Let r be a run in traces(L), i be
an integer such that 1 ≤ i ≤ |r|, and φ be a sentence such that r, i `u φ holds in A. We claim that
also secure∼=W

P,u
(r, i `u φ) holds. The theorem follows trivially from the claim and Proposition D.2.

We now show that for all r ∈ traces(L), all i such that 1 ≤ i ≤ |r|, and all sentences φ such that
r, i `u φ holds, then also secure∼=W

P,u
(r, i `u φ) holds. We prove our claim by induction on the length

of the derivation r, i `u φ. In the following, we denote by e the function extend.
Base Case: Assume that |r, i `u φ| = 1. There are a number of cases depending on the rule used
to obtain r, i `u φ.

1. SELECT Success - 1. Let i be such that ri = ri−1·〈u, SELECT, φ〉·〈s, c〉, where s = 〈db, U, sec, T,
V 〉 and last(ri−1) = 〈s′, c′〉, where s′ = 〈db, U, sec, T, V 〉. We claim that the result of φ is the
same for all runs r′ ∈ JriKW

P,u. From this, secure∼=W
P,u

(r, i `u φ) holds.
We now prove our claim that the result of φ is the same for all runs r′ ∈ JriKW

P,u. Let r′ be
a run in JriKW

P,u. From r′ ∼=W
P,u r

i, it follows that r′|u and ri|u are consistent. From this, it
follows that (1) the last action in r′|u is 〈u, SELECT, φ〉, and (2) res(last(r′|u)) = res(last(ri|u)).
Therefore, [φ]db′ = [φ]db, where db′ is the database state in last(r′) and db is the database state
in res(last(ri)). This completes the proof of our claim.
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2. SELECT Success - 2. The proof for this case is similar to that of SELECT Success - 1.
3. INSERT Success. Let i be such that ri = ri−1·〈u, INSERT, R, t〉·s , where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be R(t). Then, secure∼=W

P,u
(r, i `u R(t))

holds. Indeed, in all runs r′ ∼=W
P,u ri the last action is 〈u, INSERT, R, t〉. Furthermore, the

action has been executed successfully. Therefore, according to the LTS rules, t ∈ last(r′).db(R)
for all runs r′ ∈ JriKW

P,u. From this and the relational calculus semantics, it follows that
[R(t)]last(r′).db = > for all runs r′ ∈ JriKW

P,u. Hence, secure∼=W
P,u

(r, i `u R(t)) holds.
4. INSERT Success - FD. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db,
U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w.
From the rule’s definition, it follows that the INSERT command has not violated the integrity
constraint γ. From this, it follows that for all runs r′ ∈ JriKW

P,u the INSERT command has not vi-
olated γ. From this and φ is the weakest precondition for not violating γ (see Proposition C.10),
it follows that φ holds in all runs r′ ∈ JriKW

P,u. From this, secure∼=W
P,u

(r, i `u φ).
We now prove that secure∼=W

P,u
(r, i− 1 `u φ) holds as well. Let r′ be a run in Jri−1KW

P,u. From
r′ ∼=W

P,u ri−1, the fact that the INSERT command has been authorized in ri, the stability of
ifEnf , and Proposition D.5, it follows that executing the INSERT command is authorized also in
r′. From this and the soundness of ifEnf , it follows that the observations produced by executing
the INSERT command in r′ are the same as those produced by executing the command in ri−1.
From this, it follows that the INSERT command would not violate the integrity constraint γ in
r′. From this and φ is the weakest precondition for violating γ (see Proposition C.10), it follows
that [φ]last(r′).db = [φ]last(ri−1).db. From this, secure∼=W

P,u
(r, i− 1 `u φ) holds.

5. INSERT Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
6. DELETE Success. The proof for this case is similar to that of INSERT Success.
7. DELETE Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
8. INSERT Exception. Let i be such that ri = ri−1·〈u, INSER, R, t〉·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬R(t). From the rule’s definition, it
follows that the INSERT command has violated the integrity constraint γ. From this and the
LTS semantics, it follows that (1) R(t) does not hold before executing the command (otherwise
the command would not have thrown an exception), and (2) R(t) does not hold after executing
the command (since the system rolled-back to the state before the INSERT). Furthermore, for all
runs r′ ∈ JriKW

P,u the INSERT command has violated γ. For the same argument, it follows that
(1) R(t) does not hold before executing the command in r′ (otherwise the command would not
have thrown an exception), and (2) R(t) does not hold after executing the command in r′ (since
the system rolled-back to the state before the INSERT). Therefore, secure∼=W

P,u
(r, i `u φ) holds.

We now prove that secure∼=W
P,u

(r, i− 1 `u φ) holds as well. Let r′ be a run in Jri−1KW
P,u. From

ri−1 ∼=W
P,u r

′, the fact that the command has been authorized in ri, the stability of ifEnf , and
Proposition D.5, it follows that executing the INSERT command is authorized also in r′. From
this and the soundness of ifEnf , it follows that the observations produced by executing the
INSERT command in r′ are the same as those produced by executing the command in ri−1.
From this, it follows that executing the INSERT command would violate the integrity constraint
γ in also in r′. From this and the LTS semantics, it follows that [φ]last(r′).db = [φ]last(ri−1).db = ⊥
(otherwise the exception would not have been thrown). From this, secure∼=W

P,u
(r, i − 1 `u φ)

holds.
9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.

10. INSERT FD Exception. Let i be such that ri = ri−1·〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ∃y, z. R(v, y, z)∧y 6= w. From
the rule’s definition, it follows that the INSERT command is authorized and that it has violated
an integrity constraint, which we call γ. From this, it follows that for all runs r′ ∈ JriKW

P,u

the last INSERT command has violated γ. From this and φ is the weakest precondition for
violating γ (see Proposition C.10), it follows that φ holds in all runs r′ ∈ JriKW

P,u. From this,
secure∼=W

P,u
(r, i `u φ).

We now prove that secure∼=W
P,u

(r, i− 1 `u φ) holds as well. Let r′ be a run in Jri−1KW
P,u. From

r′ ∼=W
P,u ri−1, the fact that the INSERT command has been authorized in ri, the stability of

ifEnf , and Proposition D.5, it follows that executing the INSERT command is authorized also in
r′. From this and the soundness of ifEnf , it follows that the observations produced by executing
the INSERT command in r′ are the same as those produced by executing the command in ri−1.
From this and ri, it follows that the INSERT command would violate the integrity constraint γ
also in r′. From this and φ is the weakest precondition for violating γ (see Proposition C.10),
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it follows that [φ]r′.db = [φ]ri.db. From this, secure∼=W
P,u

(r, i− 1 `u φ) holds.
11. INSERT ID Exception. The proof for this case is similar to that of INSERT FD Exception.
12. DELETE FD Exception. The proof for this case is similar to that of INSERT FD Exception.
13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state

s = 〈db, U, sec, T, V, c〉 ∈ ΩM and any γ ∈ Γ, [γ]db = > by definition.
14. Learn GRANT/REVOKE Backward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈

ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and whose
action is either a GRANT or a REVOKE. From the rule’s definition, the trigger has been scheduled.
From this, it follows that there has been a previous INSERT or DELETE command that has been
authorized and executed such that this trigger has been executed in response to the command.
Let k be the index of this command and r′ ∈ JrkKW

P,u (note that rk is the run obtained from r by
dropping the all the operations associated with the k-th command and the subsequent triggers).
From r′ ∼=W

P,u r
k, the fact that the operation has been authorized in rk+1, ifEnf stability, and

Proposition D.5, it follows that the k-th command (and all his triggers) is authorized also in r′.
From this and the soundness of ifEnf , it follows that the observations produced by executing the
command (and the subsequent triggers) are the same for all r′ ∈ JrkKW

P,u. From this, the trigger
in ri effectively modifies the database policy, and the fact that policy changes are public events,
it follows that the trigger t modifies the policy in response to the command for any (suitable
extension of a) run r′ ∈ JrkKW

P,u. From this, it follows that the trigger is enabled for any
(suitable extension of a) run r′ ∈ JrkKW

P,u (otherwise the corresponding label would not be part
of the observations associated with the k-th command). From this, secure∼=W

P,u
(r, i− 1 `u φ).

15. Trigger GRANT Disabled Backward. The proof is similar to that of Learn GRANT/REVOKE Back-
ward.

16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT
Disabled Backward.

17. Trigger INSERT FD Exception. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V,
c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and
whose action act is a INSERT statement 〈u′, INSERT, R, (v, w, q)〉. Furthermore, let φ be ∃y,
z. R(v, y, z) ∧ y 6= w (and let γ be the constraint associated with φ). From the rule definition,
the trigger has been scheduled. From this, it follows that there has been a previous INSERT
or DELETE command that has been authorized and executed such that this trigger has been
executed in response to the command. Let k be the index of this command and r′ be a run
in JrkKW

P,u. From r′ ∼=W
P,u rk, the fact that the k-th command has been authorized in rk+1,

Proposition D.5, and the stability of ifEnf , it follows that the k-th command is authorized
also in r′. From this and the soundness of ifEnf , it follows that the observations produced
by executing the command (and the associated triggers) in r′ are the same as those produced
by executing the command in rk. From this and ri, it follows that the trigger would violate
the integrity constraint γ also in any suitable extension of r′. From this and φ is the weakest
precondition for violating γ (see Proposition C.10), it follows that φ holds immediately before
executing t in the extension of r′. From this, secure∼=W

P,u
(r, i− 1 `u φ) holds.

18. Trigger INSERT ID Exception. The proof for this case is similar to that of Trigger INSERT ID
Exception.

19. Trigger DELETE ID Exception. The proof for this case is similar to that of Trigger DELETE ID
Exception.

20. Trigger Exception. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN condition is φ and whose action
is act. From the rule definition, the trigger has been scheduled. From this, it follows that there
has been a previous INSERT or DELETE command that has been authorized and executed such
that this trigger has been executed in response to the command. Let k be the index of this
command and r′ be a run in JrkKW

P,u. From r′ ∼=W
P,u r

k, the fact that the k-th command has
been authorized in rk+1, Proposition D.5, and the stability of ifEnf , it follows that the k-th
command is authorized also in r′. From this and the soundness of ifEnf , it follows that the
observations produced by executing the command (and the associated triggers) in r′ are the
same as those produced by executing the command in rk. From this and the fact that the
trigger has thrown an exception, it follows that the trigger is enabled also in the extension of
r′. From this, secure∼=W

P,u
(r, i− 1 `u φ) holds.

21. Trigger Rollback INSERT. Let i be such that ri = ri−n−1·〈u, INSERT, R, t〉·s1·t1·s2· . . . ·tn·sn,
where s1, s2, . . . , sn ∈ ΩM and t1, . . . , tn ∈ T RIGGERD, and φ be ¬R(t). Furthermore, let
last(ri−n−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉 and sn be 〈db, U, sec, T, V, c〉. From the rule’s definition,
it follows that one of the triggers fired by the INSERT command has thrown an exception. From
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this and the LTS semantics, it follows that (1) R(t) does not hold before executing the com-
mand (otherwise the command would not have had effect), and (2) R(t) does not hold after
executing the command (since the system rolled-back to the state before the INSERT). From
this, it follows that for all runs r′ ∈ JriKW

P,u the INSERT command has violated γ. Therefore,
secure∼=W

P,u
(r, i `u φ) holds.

22. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.
23. Learn from deny – actions. We prove this case by contradiction. Assume that we can de-

rive r, i − 1 `u φ using the rule Learn from deny – actions. There are r, r′, r′′ ∈ traces(L),
1 < i ≤ |r|, a ∈ AD,u, s, s′ ∈ ΩM , and φ such that: ri = ri−1·a·s, r′ = r′′·a·s′, ri−1 ∼=P,u r

′′,
secEx(s′) 6= secEx(s), [φ]last(ri−1).db = >, and [φ]last(r′′).db = ⊥. From ri = ri−1·a·s and
r′ = r′′·a·s′, it follows that extend(ri−1, a) and extend(r′′, a) are well-defined. From this,
ifEnf ’s soundness and stability, Proposition D.6, and a ∈ AD,u, a preserves the equivalence
class for ri−1, 〈M, dbEnf 〉, and ∼=W

P,u. From ri−1 ∼=P,u r
′′ and Proposition D.1, it follows that

ri−1 ∼=W
P,u r

′′. From this, ri−1 ∼=W
P,u r

′′, extend(ri−1, a) = ri, and extend(r′′, a) = r′, it follows
that ri ∼=W

P,u r
′. This, however, contradicts secEx(s′) 6= secEx(s).

24. Learn from deny – triggers. The proof is similar to that of the case Learn from deny – actions.
However, we use Proposition D.7 instead of Proposition D.6.

This completes the proof of the base step.
Induction Step: Assume that the claim hold for any derivation of r, j `u ψ such that |r, j `u
ψ| < |r, i `u φ|. We now prove that the claim also holds for r, i `u φ. There are a number of cases
depending on the rule used to obtain r, i `u φ.

1. View. The proof of this case follows trivially from the semantics of the relational calculus
extended over views.

2. Propagate Forward SELECT. Let i be such that ri+1 = ri·〈u, SELECT, ψ〉·s, where s = 〈db, U, sec,
T, V, c〉 ∈ ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule, it follows that r, i `u φ
holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i `u φ) holds.

From Proposition D.6, the action 〈u, SELECT, ψ〉 preserves the equivalence class with respect
to ri, P , and ∼=W

P,u. From this, Lemma C.19, and secure∼=W
P,u

(r, i `u φ), it follows that also
secure∼=W

P,u
(r, i+ 1 `u φ) holds.

3. Propagate Forward GRANT/REVOKE. Let i be such that ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db, U,
sec, T, V, c〉 ∈ ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule, it follows that r, i `u φ
holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i `u φ) holds. From

Proposition D.6, the action 〈op, u′, p, u〉 preserves the equivalence class with respect to ri, P ,
and ∼=W

P,u. From this, Lemma C.20, and secureP,u(r, i `u φ), it follows that also secure∼=W
P,u

(r,
i+ 1 `u φ) holds.

4. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward
SELECT.

5. Propagate Backward SELECT. Let i be such that ri+1 = ri·〈u, SELECT, ψ〉·s, where s = 〈db′, U ′,
sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule, it follows that r, i+1 `u φ
holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i + 1 `u φ) holds.

From Proposition D.6, the action 〈u, SELECT, ψ〉 preserves the equivalence class with respect to
ri, P , and ∼=W

P,u. From this, Lemma C.19, and secure∼=W
P,u

(r, i + 1 `u φ), it follows that also
secure∼=W

P,u
(r, i `u φ) holds.

6. Propagate Backward GRANT/REVOKE. Let i be such that ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db′,
U ′, sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule, it follows that
r, i + 1 `u φ holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r,

i+ 1 `u φ) holds. From Proposition D.6, the action 〈op, u′, p, u〉 preserves the equivalence class
with respect to ri, P , and ∼=W

P,u. From this, Lemma C.20, and secure∼=W
P,u

(r, i + 1 `u φ), it
follows that also secure∼=W

P,u
(r, i `u φ) holds.

7. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate
Backward SELECT.

8. Propagate Backward CREATE VIEW. Note that the formulae ψ and replace(ψ, o) are semantically
equivalent. This is the only difference between the proof for this case and the one for the
Propagate Backward SELECT case.

9. Rollback Backward - 1. Let i be such that ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn, where s1,
s2, . . . , sn ∈ ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT, DELETE}. Furthermore, let
sn be 〈db′, U ′, sec′, T ′, V ′, c′〉 and last(ri−n−1) be 〈db, U, sec, T, V, c〉. From the rule’s definition,
r, i `u φ holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i `u φ)
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holds. From Proposition D.7, the trigger tj preserves the equivalence class with respect to
ri−n−1+j , P , and ∼=W

P,u for any 1 ≤ j ≤ n. Therefore, for any v ∈ Jri−1KW
P,u, the run e(v, tn)

contains the roll-back. Therefore, for any v ∈ Jri−1KW
P,u, the state last(e(v, tn)) is the state just

before the action 〈u, op, R, t〉. Let A be the set of system states associated with the roll-back
states. It is easy to see that A is the same as {sysState(last(t′))|t′ ∈ Jri−n−1KW

P,u}. From
secureP,u(r, i `u φ), it follows that φ has the same result over all states in A. From this and
A = {sysState(last(t′))|t′ ∈ Jri−n−1KW

P,u}, it follows that φ has the same result over all states
in {sysState(last(t′))|t′ ∈ Jri−n−1KW

P,u}. From this, it follows that secure∼=W
P,u

(r, i− n− 1 `u φ)
holds.

10. Rollback Backward - 2. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where s = 〈db′, U ′, sec′,
T ′, V ′, c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and op is one of {INSERT, DELETE}. From
the rule’s definition, r, i `u φ holds. From this and the induction hypothesis, it follows that
secure∼=W

P,u
(r, i `u φ) holds. From Proposition D.6, the action 〈u, op, R, t〉 preserves the equiv-

alence class with respect to ri−1, P , and ∼=W
P,u. From this, Lemma C.18, the fact that the

action does not modify the database state, and secure∼=W
P,u

(r, i `u φ), it follows secure∼=W
P,u

(r,
i− 1 `u φ).

11. Rollback Forward - 1. Let i be such that ri = ri−n−1·〈u, op, R, t〉·s1·t1·s2· . . . ·tn·sn, where s1,
s2, . . . , sn ∈ ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT, DELETE}. Furthermore, let
sn be 〈db, U, sec, T, V, c〉 and last(ri−n−1) be 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition,
r, i − n − 1 `u φ holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r,

i−n− 1 `u φ) holds. From Proposition D.7, the trigger tj preserves the equivalence class with
respect to ri−n−1+j , P , and ∼=W

P,u for any 1 ≤ j ≤ n. Independently on the cause of the roll-back
(either a security exception or an integrity constraint violation), we claim that the set A of roll-
back system states is {sysState(last(t′))|t′ ∈ Jri−n−1KW

P,u}. From secure∼=W
P,u

(r, i− n− 1 `u φ),
the result of φ is the same for all states in A. From this and A = {sysState(last(t′))|t′ ∈
Jri−n−1KW

P,u}, it follows that also secure∼=W
P,u

(r, i `u φ) holds.
We now prove our claim. It is trivial to see (from the LTS’s semantics) that the set of rollback’s
states is a subset of {sysState(last(v))|v ∈ Jri−n−1KW

P,u}. For the other direction, assume, for
contradiction’s sake, that there is a state in {sysState(last(v))|v ∈ Jri−n−1KW

P,u} that is not a
rollback state for the runs in JriKW

P,u. This is impossible since all triggers t1, . . . , tn preserve the
equivalence class.

12. Rollback Forward - 2. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op ∈ {INSERT, DELETE},
s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s defini-
tion, r, i− 1 `u φ holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r,

i− 1 `u φ) holds. From Proposition D.6, the action 〈u, op, R, t〉 preserves the equivalence class
with respect to ri−1, P , and ∼=W

P,u. From this, Lemma C.18, the fact that the action does not
modify the database state, and secure∼=W

P,u
(r, i−1 `u φ), it follows that also secure∼=W

P,u
(r, i `u φ)

holds.
13. Propagate Forward INSERT/DELETE Success. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where

op ∈ {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉.
From the rule’s definition, r, i − 1 `u φ holds. From this and the induction hypothesis, it
follows that secure∼=W

P,u
(r, i − 1 `u φ) holds. From Proposition D.6, the action 〈u, op, R, t〉

preserves the equivalence class with respect to ri−1, P , and ∼=W
P,u. From revise(ri−1, φ, ri), it

follows that the execution of 〈u, op, R, t〉 does not alter the content of the tables in tables(φ)
for any v ∈ Jri−1KW

P,u. From this, Lemma C.18, and secure∼=W
P,u

(r, i − 1 `u φ), it follows that
secure∼=W

P,u
(r, i `u φ) holds.

14. Propagate Forward INSERT Success - 1. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op is
one if {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉.
From the rule’s definition, r, i−1 `u φ holds. From this and the induction hypothesis, it follows
that secure∼=W

P,u
(r, i−1 `u φ) holds. From Proposition D.6, the action 〈u, op, R, t〉 preserves the

equivalence class with respect to ri−1, P , and ∼=W
P,u. We claim that the execution of 〈u, INSERT,

R, t〉 does not alter the content of the tables in tables(φ). From this, secure∼=W
P,u

(r, i− 1 `u φ),
and Lemma C.18, it follows that secure∼=W

P,u
(r, i `u φ) holds.

We now prove our claim that the execution of 〈u, INSERT, R, t〉 does not alter the content of
the tables in tables(φ). From the rule’s definition, it follows that r, i − 1 `u R(t) holds. From
this and the soundness of `u, it follows that [R(t)]last(ri−1).db = >. From r, i − 1 `u R(t) and
the induction hypothesis, it follows that secure∼=W

P,u
(r, i − 1 `u R(t)) holds. From this and
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[R(t)]last(ri−1).db = >, it follows that [R(t)]last(v).db = > for any v ∈ Jri−1KW
P,u. From this and

the relational calculus semantics, it follows that the execution of 〈u, op, R, t〉 does not alter the
content of the tables in tables(φ) for any v ∈ Jri−1KW

P,u.
15. Propagate Forward DELETE Success - 1. The proof for this case is similar to that of Propagate

Forward INSERT Success - 1.
16. Propagate Backward INSERT/DELETE Success. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where

op ∈ {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′,
c′〉. From the rule’s definition, r, i `u φ holds. From this and the induction hypothesis, it
follows that secure∼=W

P,u
(r, i `u φ) holds. From Proposition D.6, the action 〈u, op, R, t〉 preserves

the equivalence class with respect to ri−1, P , and ∼=W
P,u. From revise(ri−1, φ, ri), it follows

that the execution of 〈u, op, R, t〉 does not alter the content of the tables in tables(φ) for any
v ∈ Jri−1KW

P,u. From this, Lemma C.18, and secure∼=W
P,u

(r, i `u φ), it follows that secure∼=W
P,u

(r,
i− 1 `u φ) holds.

17. Propagate Backward INSERT Success - 1. Let i be such that ri = ri−1·〈u, op,R, t〉·s, where op
is one of {INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM , and last(ri−1) = 〈db′, U ′, sec′, T ′,
V ′, c′〉. From the rule’s definition, r, i `u φ holds. From this and the induction hypothesis, it
follows that secure∼=W

P,u
(r, i `u φ) holds. From Proposition D.6, the action 〈u, op, R, t〉 preserves

the equivalence class with respect to ri−1, P , and ∼=W
P,u. We claim that the execution of 〈u,

INSERT, R, t〉 does not alter the content of the tables in tables(φ) for any v ∈ Jri−1KW
P,u (the

proof of this claim is in the proof of the Propagate Forward INSERT Success - 1 case). From
this, Lemma C.18, and secure∼=W

P,u
(r, i `u φ), it follows that secure∼=W

P,u
(r, i− 1 `u φ) holds.

18. Propagate Backward DELETE Success - 1. The proof for this case is similar to that of Propagate
Forward DELETE Success - 1.

19. Reasoning. Let ∆ be a subset of {δ | r, i `u δ} and last(ri) = 〈db, U, sec, T, V, c〉. From the
induction hypothesis, it follows that secure∼=W

P,u
(r, i `u δ) holds for any δ ∈ ∆. Note that, given

any δ ∈ ∆, from r, i `u δ and the soundness of `u (see Proposition C.1), it follows that δ holds
in last(ri). From this, secure∼=W

P,u
(r, i `u δ) holds for any δ ∈ ∆, ∆ |=fin φ, and Lemma C.16, it

follows that secure∼=W
P,u

(r, i `u φ) holds.
20. Learn INSERT Backward - 3. Let i be such that ri = ri−1·〈u, INSERT, R, t〉·s, where s = 〈db′,

U ′, sec′, T ′, V ′, c′〉 ∈ ΩM and last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be ¬R(t). Furthermore,
we denote by a the INSERT action. From the rule, it follows that r, i − 1 `u ψ and r, i `u ¬ψ
hold. From r, i − 1 `u ψ, r, i `u ¬ψ, and `u’s soundness, it follows that [φ]last(ri−1) = >
and [φ]last(ri) = ⊥. From this, last(ri−1) 6= last(ri). From this, ¬R(t) holds in ri−1. From
this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i − 1 `u ψ) and secure∼=W

P,u
(r,

i `u ψ). From this, [φ]last(ri−1) = >, and [φ]last(ri) = ⊥, it follows that [φ]last(r′) = > for any
r′ ∈ Jri−1KW

u and [φ]last(e(r′,a) = ⊥ for any r′ ∈ Jri−1KW
u . From this, last(r′) 6= last(e(r′, a)) for

any r′ ∈ Jri−1KW
u . From this and a = 〈u, INSERT, R, t〉, it follows that [¬R(t)]last(r′) = > for

any r′ ∈ Jri−1KW
u . From this, secure∼=W

P,u
(r, i− 1 `u ¬R(t)).

21. Learn DELETE Backward - 3. The proof for this case is similar to that of Learn INSERT Backward
- 3.

22. Propagate Forward Disabled Trigger. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec,
T, V, c〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger. Furthermore, let ψ be t’s
condition where all free variables are replaced with tpl(last(ri−1)). From the rule, it follows that
r, i− 1 `u φ. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i− 1 `u φ)

holds. Furthermore, from Proposition D.7, it follows that t preserves the equivalence class
with respect to ri−1, P , and ∼=W

P,u. If the trigger’s action is an INSERT or a DELETE operation,
we claim that the operation does not change the content of any table in tables(φ) for any
run v ∈ Jri−1KW

P,u. We also claim that executing the trigger t in any run v ∈ Jri−1KW
P,u does

not generate security or integrity exceptions. From these claims, the fact that t preserves the
equivalence class with respect to ri−1, P , and ∼=W

P,u, Lemma C.21, and secure∼=W
P,u

(r, i−1 `u φ),
it follows that also secure∼=W

P,u
(r, i `u φ) holds.

We now prove our claim. Assume that t’s action in either an INSERT or a DELETE operation.
From the rule, it follows that r, i− 1 `u ¬ψ. From this and the soundness of `u (see Proposi-
tion C.1), [ψ]last(ri−1) = ⊥. From r, i − 1 `u ¬ψ and the induction hypothesis, it follows that
secure∼=W

P,u
(r, i − 1 `u ψ) holds. From this and [ψ]last(ri−1).db = ⊥, it follows that [ψ]v.db = ⊥

for any run v ∈ Jri−1KW
P,u. Therefore, the trigger t is disabled in any run v ∈ Jri−1KW

P,u. From
this and the LTS semantics, it follows that t’s execution does not change the content of any
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table in tables(φ) for any run v ∈ Jri−1KW
P,u.

We now prove our claim that executing the trigger t in any run v ∈ Jri−1KW
P,u does not generate

security or integrity exceptions. This directly follows from (1) executing t in ri−1 does not
throw an exception, and (2) t preserves the equivalence class with respect to ri−1, P , and ∼=W

P,u.
23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate

Forward Disabled Trigger.
24. Learn INSERT Forward. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,

last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger, and φ be R(t). Furthermore, let ψ be t’s
condition where all free variables are replaced with tpl(last(ri−1)). From the rule’s definition,
it follows that t’s action is 〈u′, INSERT, R, t〉 and that r, i − 1 `u ψ holds. From the soundness
of `u (see Proposition C.1) and r, i − 1 `u ψ, it follows that [ψ]last(ri−1).db = >. From r,
i − 1 `u ψ and the induction hypothesis, it follows that secure∼=W

P,u
(r, i − 1 `u ψ). From this

and [ψ]last(ri−1).db = >, it follows that [ψ]last(r′).db = > for any r′ ∈ Jri−1KW
P,u. From the rule

definition, the trigger has been scheduled. From this, it follows that there has been a previous
INSERT or DELETE command that has been authorized and executed such that this trigger has
been executed in response to the command. Let k be the index of this command and r′ be a
run in JrkKW

P,u. From r′ ∼=W
P,u r

k, the fact that the k-th command has been authorized in rk+1,
Proposition D.5, and the stability of ifEnf , it follows that the k-th command is authorized
also in r′. From this and the soundness of ifEnf , it follows that the observations produced by
executing the command (and the associated triggers) in r′ are the same as those produced by
executing the command in rk. From [ψ]last(r′).db = > for any r′ ∈ Jri−1KW

P,u, it follows that t
is enabled in any r′ ∈ Jri−1KW

P,u. From this and the fact that the observations are the same,
it follows that extending r′ with t does not throw exceptions. From this and the fact that t is
enabled, it follows that R(t) holds in last(r′).db. From this, secure∼=W

P,u
(r, i− 1 `u R(t)).

25. Learn INSERT - FD. Let i be such that ri = ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ be ¬∃y, z. R(v, y, z) ∧ y 6= w
(and let γ be the associate integrity constraint). Furthermore, let ψ be t’s condition where all
free variables are replaced with the values in tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be t’s
actual action. From the rule, it follows that r, i− 1 `u ψ. From this and the soundness of `u,
it follows that [ψ]last(ri−1).db = >. From r, i − 1 `u ψ and the induction hypothesis, it follows
secure∼=W

P,u
(r, i − 1 `u ψ). From this and [ψ]last(ri−1).db = >, it follows [ψ]last(r′).db = > for all

r′ ∈ Jri−1KW
P,u. From the rule, it follows that executing t in ri does not violate γ. From this and

the fact that φ is the weakest precondition for not violating γ (see Proposition C.10), it follows
that [φ]last(ri−1).db = >. From Proposition D.5, the stability, and the soundness of ifEnf , it
follows that t is executed and authorized also in r′ ∈ Jri−1KW

P,u without throwing exceptions.
From this and [ψ]last(r′).db = > for all r′ ∈ Jri−1KW

P,u, it follows that t is enabled in e(r′, t). From
this, Proposition C.10, and the fact that t does not violate γ, it follows that [φ]last(ri−1).db = >.
From this, [φ]last(r′).db = > for all r′ ∈ Jri−1KW

P,u. From this, secure∼=W
P,u

(r, i− 1 `u φ).
26. Learn INSERT - FD - 1. The proof of this case is similar to that of Learn INSERT - FD.
27. Learn INSERT - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the

proof of INSERT Success - ID.
28. Learn INSERT - ID - 1. The proof of this case is similar to that of Learn INSERT - ID.
29. Learn INSERT Backward - 1. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′, T ′, V ′,

c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD, and φ be t’s actual WHEN
condition, where all free variables are replaced with the values in tpl(last(ri−1)). From the
rule’s definition, it follows that t is authorized and it does not throw an exception. From this,
dbEnf ’s definition, Proposition D.5, and the stability and soundness of ifEnf , the same holds
for t in e(r′, t) such that r′ ∈ Jri−1KW

P,u. From the rule, `u’s soundness (see Proposition C.1),
and the induction hypothesis, it follows that [ψ]last(r′).db 6= [ψ]last(e(r′,t)).db for all r′ ∈ Jri−1KW

P,u.
From this and the fact that t does not throw exceptions in e(r′, t), it follows that t is enabled in
e(r′, t). From this, [φ]last(r′).db = > for all r′ ∈ Jri−1KW

P,u. From this, secure∼=W
P,u

(r, i− 1 `u ψ).
30. Learn INSERT Backward - 2. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′, T ′, V ′,

c′〉 ∈ ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD, and φ be ¬R(t). Furthermore,
let act = 〈u′, INSERT, R, t〉 be t’s actual action and γ be t’s actual WHEN condition obtained by
replacing all free variables with the values in tpl(last(ri−1)). From the rule’s definition, there
is a ψ such that r, i − 1 `u ψ and r, i `u ¬ψ. From the rule’s definition, it follows that t is
authorized and it does not throw an exception. From this, dbEnf ’s definition, Proposition D.5,
and the stability and soundness of ifEnf , the same holds for t in e(r′, t) such that r′ ∈ Jri−1KW

P,u.
From the rule, `u’s soundness, and the induction hypothesis, it follows that [ψ]last(r′).db 6=
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[ψ]last(e(r′,t)).db for all r′ ∈ Jri−1KW
P,u. From this and the fact that t does not throw exceptions

in e(r′, t), it follows that t is enabled in e(r′, t) (otherwise, the database state last(r′).db and
last(e(r′, t)).db would have been different). From this, [φ]last(r′).db = > for all r′ ∈ Jri−1KW

P,u.
Furthermore, [R(t)]last(r′).db = ⊥ for all r′ ∈ Jri−1KW

P,u (otherwise, for at least one r′ ∈ Jri−1KW
P,u

the database states last(r′).db and last(e(r′, t)).db would have been identical contradicting
[ψ]last(r′).db 6= [ψ]last(e(r′,t)).db). From this, secure∼=W

P,u
(r, i− 1 `u ¬R(t)).

31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
32. Learn DELETE - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the

proof of DELETE Success - ID.
33. Learn DELETE - ID - 1. The proof of this case is similar to that of Learn DELETE - ID.
34. Learn DELETE Backward - 1. The proof is similar to that of Learn INSERT Backward - 1.
35. Learn DELETE Backward - 2. The proof is similar to that of Learn INSERT Backward - 2.
36. Propagate Forward Trigger Action. Let i be such that ri = ri−1·t·s, where t is a trigger, s = 〈db,

U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r,
i−1 `u φ holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r, i−1 `u φ)

holds. From Proposition D.7, the trigger t preserves the equivalence class with respect to ri−1,
P , and ∼=W

P,u. We claim that (1) the execution of t does not alter the content of the tables in
tables(φ), and (2) executing the trigger t in any run v ∈ Jri−1KW

P,u does not generate security or
integrity exceptions. From these claims, Lemma C.21, and secure∼=W

P,u
(r, i− 1 `u φ), it follows

that also the judgment r, i `u φ is secure, i.e., secure∼=W
P,u

(r, i `u φ) holds.
We now prove our claim that the execution of t does not alter the content of the tables in
tables(φ). If the trigger is not enabled, proving the claim is trivial. In the following, we assume
the trigger is enabled. There are four cases:

• t’s action is an INSERT statement. This case amount to claiming that the INSERT statement
〈u′, INSERT, R, t〉 does not alter the content of the tables in tables(φ) in case revise(ri−1,
φ, ri) = >. We proved the claim above in the Propagate Forward INSERT/DELETE Success
case.

• t’s action is a DELETE statement. The proof is similar to that of the INSERT case.
• t’s action is a GRANT statement. In this case, the action does not alter the database state

and the claim follows trivially.
• t’s action is a REVOKE statement. The proof is similar to that of the GRANT case.

We now prove our claim that executing the trigger t in any run v ∈ Jri−1KW
P,u does not generate

security or integrity exceptions. This directly follows from (1) executing t in ri−1 does not
throw an exception, and (2) t preserves the equivalence class with respect to ri−1, P , and ∼=W

P,u.
37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward

Trigger Action.
38. Propagate Forward INSERT Trigger Action. Let i be such that ri = ri−1·t·s, where t is a trigger,

s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s defini-
tion, r, i− 1 `u φ holds. From this and the induction hypothesis, it follows that secure∼=W

P,u
(r,

i − 1 `u φ) holds. From Proposition D.7, the trigger t preserves the equivalence class with
respect to ri−1, P , and ∼=W

P,u. We claim that (1) the execution of t does not alter the content of
the tables in tables(φ), and (2) executing the trigger t in any run v ∈ Jri−1KW

P,u does not generate
security or integrity exceptions. From these claims, Lemma C.21, and secure∼=W

P,u
(r, i−1 `u φ),

it follows that also the judgment r, i `u φ is secure, i.e., secure∼=W
P,u

(r, i `u φ) holds.
We now prove our claim that the execution of t does not alter the content of the tables in
tables(φ). If the trigger is not enabled, the claim is trivial. In the following, we assume the
trigger is enabled. Then, t’s action is an INSERT statement. This case amount to claiming that
the INSERT statement 〈u′, INSERT, R, t〉 does not alter the content of the tables in tables(φ) in
case r, i−1 `u R(t) holds. We proved the claim above in the Propagate Forward INSERT Success
- 1 case.
We now prove our claim that executing the trigger t in any run v ∈ Jri−1KW

P,u does not generate
security or integrity exceptions. This directly follows from (1) executing t in ri−1 does not
throw an exception, and (2) t preserves the equivalence class with respect to ri−1, P , and ∼=W

P,u.
39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate

Forward INSERT Trigger Action.
40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Propagate

Forward INSERT Trigger Action.
41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate

Forward INSERT Trigger Action.
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42. Trigger FD INSERT Disabled Backward. Let i be such that ri = ri−1·t·s, where s = 〈db′, U ′, sec′,
T ′, V ′, c′〉 ∈ ΩM , t ∈ T RIGGERD, last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be t’s actual WHEN
condition obtained by replacing all free variables with the values in tpl(last(ri−1)). Furthermore,
let act = 〈u′, INSERT, R, (v, w, q)〉 be t’s actual action and ψ be ∃y, z.R(v, y, z) ∧ y 6= w. From
the rule’s definition, it follows that (1) the trigger has been authorized, (2) and r, i − 1 `u ψ
holds, where ψ is the weakest precondition associated with throwing an exception for one of
the constraints γ (see Proposition C.10). From r, i − 1 `u ψ and the induction hypothesis, it
follows that secure∼=W

P,u
(r, i − 1 `u ψ). From this and the soundness of `u, it follows that ψ

holds for all runs r′ ∈ Jri−1KW
P,u. From this and the fact that the trigger has been executed, it

also follows that the exception is not thrown if we extend r′ ∈ Jri−1KW
P,u with t. This happens

iff the trigger’s actual condition φ is not is satisfied. From this, secure∼=W
P,u

(r, i− 1 `u ¬φ).
43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD

INSERT Disabled Backward.
44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD

INSERT Disabled Backward.
This completes the proof of the induction step.

This completes the proof.

D.1.7 Security in the Truman model
We now prove that our construction for the Truman model is secure as well. Note that in the

following we restrict our setting to non-boolean SELECT queries (the only one for which the Truman
model semantics has been defined). For boolean queries, we can directly resort to the mechanism
produced using Reduction 7.1.

Theorem D.2. LetM be a system configuration, ifEnf be an enforcement mechanism for WhileSql
programs, u be a user, and dbEnf be the database access control mechanism for the Truman model
semantics constructed using Reduction 7.1 and Reduction 7.2. If for all user u ∈ UID, (1) ifEnf
is sound with respect to the progress-sensitive variant of Definition 7.2 given Euser and Suser

u , and
(2) ifEnf is u-stable, then dbEnf is secure and sound for the Truman model, i.e., it satisfies Defini-
tions 3.8 and 3.18.

Proof. We show security for a single non-boolean query. The security of the multi-query case follows
directly (cf. [165]). Let {x | ϕ} be a non-boolean query, s be a database state, and T be {x | ϕ}’s result
on s. For each of the tuples in t ∈ T , we check whether the boolean query ϕ[x 7→ t] is authorized
by the mechanism NTdbEnf constructed using Reduction 7.1. From Theorem 7.1, it follows that
NTdbEnf provides data confidentiality. From this, it follows that the result of ϕ[x 7→ t] is the same
for all indistinguishable database states. From this and t ∈ T , it follows that t ∈ [{x | ϕ}]s′ for all s′
u-indistinguishable from s. From this, it follows that dbEnf is secure in the sense of Definition 3.8.
The soundness of dbEnf (see Definition 3.18) directly follows from the fact that the result returned
by NTdbEnf is always a subset of the result of the query {x | ϕ} for all s′ that are indistinguishable
from s for the user u.

D.1.8 From internal attackers to external attackers
Here, we prove the results from Section 7.5.5.
Lemma D.1 states that the computation associated with simple query-only programs does not

depend on the memory’s content.

Lemma D.1. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-
only programs, and s be a system state. For any two sequences of memories M1,M2 ∈ Mem∗UID, if
|M1| = |M2|, |M1| = |C|, and for all 1 ≤ i ≤ |C|, ui = ui1 and ui = ui2 (where C(i) = 〈ui, ci〉,
M1(i) = 〈ui1,mi

1〉, and M2(i) = 〈ui2,mi
2〉), the following conditions hold:

• If there are n, τ, C′,M ′1, s′, ctx ′,S ′ such that 〈C,M1, 〈s, ctx〉,S〉 τ−→
n
〈C′,M ′1, 〈s′, ctx ′〉,S ′〉, then

there exists an M ′2 such that 〈C,M2, 〈s, ctx〉,S〉 τ−→
n
〈C′,M ′2, 〈s′, ctx ′〉,S ′〉.

• If there are n, τ, C′,M ′2, s′, ctx ′,S ′ such that 〈C,M2, 〈s, ctx〉,S〉 τ−→
n
〈C′,M ′2, 〈s′, ctx ′〉,S ′〉, then

there exists an M ′1 such that 〈C,M1, 〈s, ctx〉,S〉 τ−→
n
〈C′,M ′1, 〈s′, ctx ′〉,S ′〉.

Proof. The lemma directly follows from (1) the programs in C are simple query-only programs, (2)
the result of a query statement depends only on the content of the database, and (3) simple query-
only programs do not use program variables inside queries. Hence, the computation does not depend
on the memories in the initial configuration.
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For simple query-only programs, we can simplify the security condition by ignoring memories in
the global configurations, as stated in Lemma D.2. In the following, given a set of global configurations
S, we denote by DB(S) the set of databases in S, i.e., DB(S) = {s | ∃M. 〈M, s〉 ∈ S}.

Lemma D.2. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-only
programs, s be a system state, M ∈ Mem∗UID be a sequence of memories, u ∈ UID be a user. The
sequence of programs C is secure with respect to u for S, s, M , Euser , and Suser

u for the progress-
sensitive variant of Definition 7.2 iff for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉
in JEuser , Suser

u K(r), DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB([〈Mi, si〉]≈u).

Proof. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-only
programs, s be a system state, M ∈ Mem∗UID be a sequence of memories, u ∈ UID be a user.
(⇒). Assume that C is secure with respect to u for S, s,M , Euser , and Suser

u for the progress-sensitive
variant of Definition 7.2. Assume, furthermore, for contradiction’s sake, that there is an epoch 〈Ci,
Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r) such that DB(PKdb(u)(〈Mi, si〉, Ci,
Si, τ)) 6= DB([〈Mi, si〉]≈u). This happens iff PKdb(u)(〈Mi, si〉, Ci,Si, τ) 6= [〈Mi, si〉]≈u , contradicting
the security of C.
(⇐). Assume that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r),
DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB([〈Mi, si〉]≈u). Assume, furthermore, for contradiction’s sake,
that C is not secure with respect to u for S, s, M , Euser , and Suser

u for the progress-sensitive
variant of Definition 7.2. Hence, there is an epoch 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

∗
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉

in JEuser , Suser
u K(r) such that PKdb(u)(〈Mi, si〉, Ci,Si, τ) 6= [〈Mi, si〉]≈u . Since DB(PKdb(u)(〈Mi, si〉,

Ci,Si, τ)) = DB([〈Mi, si〉]≈u), the difference must have been caused by differences in the initial
memory. Since the programs in C are simple and query-only, this contradicts Lemma D.1.

Lemma D.3 states that, for the sequential scheduler, simple query-only programs, and user-based
epochs, if the program corresponding to each epoch is secure, then so is the original program.

Lemma D.3. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-only
programs, s be a system state, M ∈ Mem∗UID be a sequence of memories, and u ∈ UID be a user.
Furthermore, let r be the longest run obtained starting from 〈C,M, 〈s, ε〉,S〉. If for all epochs 〈Ci,
Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), (1) the sequence of programs Cmi is
secure with respect to u for S, si,Mm

i , Euser , Suser
u for the progress-sensitive variant of Definition 7.2,

and (2) R(〈Ci,Mi, 〈si, ε〉,Si〉, dn/2e) is a (Euser , Suser
u )-single-epoch configuration , then C is secure

with respect to u for S, s, M , Euser , and Suser
u for the progress-sensitive variant of Definition 7.2,

where R(〈C,M, s,S〉,m) denotes the global configuration 〈Cm,Mm, s,S〉.

Proof. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-only
programs, s be a system state, M ∈ Mem∗UID be a sequence of memories, and u ∈ UID be a
user. Furthermore, let r be the longest run obtained by starting from 〈C,M, 〈s, ε〉,S〉. Observe
that since r is the longest run obtained starting from 〈C,M, 〈s, ε〉,S〉, all epochs in 〈Ci,Mi, 〈si,
ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JE,SK(r) have an even length (hence n/2 = dn/2e). Assume

that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→
n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JE,SK(r), (1) the sequence

of programs Cmi is secure with respect to u for S, si, Mm
i , Euser , Suser

u , and (2) R(〈Ci,Mi, 〈si, ε〉,
Si〉,m) is a (Euser , Suser

u )-single-epoch configuration, where m = dn/2e. Observe that n is always
even since executing each program in Ck takes two steps of the global semantics (one application
of the M-Eval-Step rule and one application of the M-Eval-End rule) and r is the longest run
obtained by starting from 〈C,M, 〈s, ε〉,S〉. Furthermore, assume, for contradiction’s sake, that C is
not secure with respect to u for S, s, M , Euser , and Suser

u . From this and Lemma D.2, it follows
that there is an epoch 〈Ck,Mk, 〈sk, ctxk〉,Sk〉

τ−→
n
〈Cl,Ml, 〈sl, ctx l〉,Sl〉 such that DB(PKdb(u)(〈Mk,

sk〉, Ck,Sk, τ)) 6= DB([〈Mk, sk〉]≈u). Let m = dn/2e. From (1), we know that Cmk is secure with
respect to u for S, sk, Mm

k , Euser , and Suser
u . From (2), we know that R(〈Ck,Mk, 〈sk, ε〉,Sk〉,m) is

a (Euser , Suser
u )-single-epoch configuration. From the security of Cmk and Lemma D.2, it follows that

DB(PKdb(u)(〈Mm
k , sk〉, Cmk ,Sk, τ)) = DB([〈Mm

k , sk〉]≈u). We claim that DB(PKdb(u)(〈Mk, sk〉, Ck,
Sk, τ)) = DB(PKdb(u)(〈Mm

k , sk〉, Cmk ,Sk, τ)). From this and DB([〈Mk, sk〉]≈u) = DB([〈Mm
k , sk〉]≈u),

it follows that DB(PKdb(u)(〈Mk, sk〉, Ck,Sk, τ)) = DB([〈Mk, sk〉]≈u), leading to a contradiction.
We now prove our claim that DB(PKdb(u)(〈Mk, sk〉, Ck,Sk, τ)) = DB(PKdb(u)(〈Mm

k , sk〉, Cmk ,Sk,
τ)). We first show that DB(PKdb(u)(〈Mm

k , sk〉, Cmk ,Sk, τ)) ⊆ DB(PKdb(u)(〈Mk, sk〉, Ck,Sk, τ)). We
observe that Ck and Cmk are simple query-only programs. Furthermore, we know that (1) the first
m programs in Ck and Cmk are identical by construction, (2) they all consist of commands whose
observations are visible by the user u (since we consider user-based epochs), and (3) τ�db(u) = τ
since τ has been produced inside one of the epochs associated with u (which contains only com-
mands associated with u). Let s be a database in DB(PKdb(u)(〈Mm

k , sk〉, Cmk ,Sk, τ)). From this,
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there is a sequence of memories M such that s ≈u sk, M ≈u Mm
k , and there are ctx ′, τ ′, C′,M ′, s′,

S ′ such that 〈Cmk ,M, 〈s, ε〉,Sk〉
τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S ′〉 and τ�db(u) = τ ′�db(u). We now need to

show that s ∈ DB(PKdb(u)(〈Mk, sk〉, Ck,Sk, τ)). This happens iff there is a memory M1 such that
M1 ≈u Mk, and there are ctx ′, τ ′, C′,M ′, s′,S ′ such that 〈Ck,M1, 〈s, ε〉,Sk〉

τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,
S ′〉 and τ�db(u) = τ ′�db(u). Without loss of generality, we can assume thatMm

k = Mm
1 andM1 ≈u Mk

(this immediately follows from Lemma D.1 and the fact that the programs in Ck are simple and
query-only). Hence, we just need to show that there are ctx ′, τ ′, C′,M ′, s′,S ′, i such that 〈Ck,M1, 〈s,

ε〉,Sk〉
τ ′−→

i

〈C′,M ′, 〈s′, ctx ′〉,S ′〉 and τ�db(u) = τ ′�db(u). For i = 2m∨i = 2m−1, it follows from (1–3)
that τ ′ is exactly τ�db(u). Hence, DB(PKdb(u)(〈Mm

k , sk〉, Cmk ,Sk, τ)) ⊆ DB(PKdb(u)(〈Mk, sk〉, Ck,Sk,
τ)). For the other direction, DB(PKdb(u)(〈Mk, sk〉, Ck,Sk, τ)) ⊆ DB(PKdb(u)(〈Mm

k , sk〉, Cmk ,Sk, τ))
immediately follows from Lemma D.1 and the fact that any trace produced by a configuration with
code Cmk and database sk is produced also by a configuration starting from Ck and database sk.

Lemma D.4 and Lemma D.5 prove some useful intermediate results for the transformation in
Definition 7.4.

Lemma D.4. Let C be a sequence of simple single-query programs (without ADD USER commands),
S be the sequential scheduler 0∞, 〈M1, s1〉 be a reachable global state, 0 ≤ k ≤ |C|, C′ be the code
in T (〈C,M1, 〈s1, ε〉,S〉), and m = |C′(0)|. The following conditions hold (where T −1(τ ′1) is the trace
obtained by (1) dropping the first |C′(0)| observations from τ ′1, (2) dropping observations associated
with CREATE VIEW commands that involve predicate symbols of the form TMPR, and (3) replacing
each occurrence of TMPR with R):

1. If 〈C,M1, 〈s1, ε〉,S〉
τ1−→

2k
〈C′1,M ′1, 〈s′1, ctx ′1〉,S〉, then T (〈C,M1, 〈s1, ε〉,S〉)

τ ′1−→
2(k+m+l)

〈C′′1 ,
M ′′1 , 〈s′′1 , ctx ′′1 〉,S〉, s′1 = T −1(s′′1 ), and τ1 = T −1(τ ′1), where l is the number of CREATE VIEW
queries occurring in Ck.

2. If T (〈C,M1, 〈s1, ε〉,S〉)
τ ′1−→

2(k+m+l)

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉, then 〈C,M1, 〈s1, ε〉,S〉
τ1−→

2k
〈C′1,

M ′1, 〈s′1, ctx ′1〉,S〉, s′1 = T −1(s′′1 ), and τ1 = T −1(τ ′1), where l is the number of CREATE VIEW
queries occurring in Ck.

Proof. Let C be a sequence of simple single-query programs (without ADD USER commands), S be
the sequential scheduler 0∞, 〈M1, s1〉 be a reachable global state, 0 ≤ k ≤ |C|, C′ be the code in
T (〈C,M1, 〈s1, ε〉,S〉), and m = |C′(0)|.

We now prove the first claim by induction on k. The proof of the second claim is similar.
Base case. We assume k = 0. From this, it also follows that l = 0. Then, in the computation T (〈C,

M1, 〈s1, ε〉,S〉)
τ ′1−→

2m

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S〉 we execute only the program C′(0), which consists only
of REVOKE commands. The trace τ ′1 consists of exactly m observations (one per REVOKE command),
therefore T −1(τ ′1) = ε which is equivalent to τ1. We now show that T −1(s′′1 ) = s1. For the database
content, this trivially follows from the fact that C′(0) consists of just REVOKE commands. For the
users, it follows from (1) T does not change the set of users, and (2) C does not contain ADD USER
commands. For the triggers and the views, this follows from (1) T −1(s′′1 ) just inverts T , and (2) C′(0)
consists of just REVOKE commands. For the security policy, the only difference may arise from GRANTs
associated with SELECT privileges. Observe, however, that in C′(0) we revoke all privileges to relation
schemas of the form TMPR that do not correspond to privileges on R in sec. From this and 〈M1, s1〉
is a reachable global state, all REVOKE commands are authorized. Hence, after executing C′(0), there
is a privilege 〈op, u, 〈SELECT,TMPR〉, u′〉 in the final configuration iff 〈op, u, 〈SELECT, R〉, u′〉 is in the
initial configuration. Thus, by first removing all GRANTs associated with privileges associated with
relation schemas of the form R and later replacing all occurrences of TMPR with R, we obtain again
the initial security policy. This completes the proof of the base case.
Induction step. We assume that the claim holds for all k′ < k and we show that the claim holds
also for k. There are two cases:

• The last command executed in 〈C,M1, 〈s1, ε〉,S〉
τ1−→

2k
〈C′1,M ′1, 〈s′1, ctx ′1〉,S〉 is not a CREATE

VIEW command. Hence, it is easy to see that we can always execute 2 steps of the computation
and therefore execute the program C′(k + 1) in the run that starts form T (〈C,M1, 〈s1, ε〉,S〉).
There are several cases depending on the actual command.
If the command in C′(k + 1) is a SELECT command, then s′1 = T −1(s′′1 ) follows from (1)
the induction hypothesis and (2) the semantics of SELECT commands. Instead, τ1 = T −1(τ ′1)
directly follows from the induction hypothesis (since the database where the SELECT query is
executed is the same as in the original run).
If the command in C′(k + 1) is a CREATE TRIGGER command, then s′1 = T −1(s′′1 ) and τ1 =
T −1(τ ′1) follow from (1) the induction hypothesis, (2) the result of CREATE TRIGGER commands
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depend only on the database configuration (which is the same in both runs before executing the
command), and (3) if the action in the created trigger is a GRANT or REVOKE and the privilege
is SELECT, then the action refers to TMPR iff the original action refers to R.
If the command in C′(k+ 1) is a GRANT or REVOKE command, there are two cases depending on
whether the privilege is a SELECT or not. If the command does not involve a SELECT privilege,
then s′1 = T −1(s′′1 ) and τ1 = T −1(τ ′1) follow from (1) the induction hypothesis, and (2) the
result of GRANT and REVOKE commands depend only on the non-SELECT privileges in the policy
(which are the same in both runs before executing the command). If the command involves
a SELECT privilege, then in the run starting from 〈C,M1, 〈s1, ε〉,S〉 we attempt to modify the
privilege associated with R while in the run starting from T (〈C,M1, 〈s1, ε〉,S〉) we attempt
to modify the privilege associated with TMPR. From the induction hypothesis, the database
states in the k-th and (k + m)-th configurations in the two runs are equivalent after applying
T −1. This means that the privileges over predicate symbols of the form TMPR mirror exactly
those on symbols of the form R. Hence, the result of a GRANT or REVOKE operation would be
the same in both configurations since the only two things that may influence the result are
(1) the policy (which is mirrored correctly), and (2) the views of the form TMPV (which in
T (〈C,M1, 〈s1, ε〉,S〉) refer only to the mirrored version of the symbols). Thus, s′1 = T −1(s′′1 )
and τ1 = T −1(τ ′1).
If the command in C′(k + 1) is an INSERT or DELETE command, there are two cases. If the
corresponding triggers do not involve GRANT or REVOKE commands, then s′1 = T −1(s′′1 ) and
τ1 = T −1(τ ′1) directly follow from the induction hypothesis. If the triggers involve GRANT
and REVOKE commands, then s′1 = T −1(s′′1 ) and τ1 = T −1(τ ′1) follow from (1) the induction
hypothesis, (2) the fact that all triggers that modify SELECT privileges have been transformed
to refer to the mirrored predicate symbols (of the form TMPR), and (3) a similar argument to
that for GRANT and REVOKE commands.

• The last command executed in 〈C,M1, 〈s1, ε〉,S〉
τ1−→

2k
〈C′1,M ′1, 〈s′1, ctx ′1〉,S〉 is a CREATE VIEW

command. From this, it follows that we can always execute 4 steps of the computation and
therefore execute the program C′(k + 1) in the run that starts form T (〈C,M1, 〈s1, ε〉,S〉).
Observe that now the number of the executed CREATE VIEW commands is increased by 1. Hence,

the computation is as follows: T (〈C,M1, 〈s1, ε〉,S〉)
τ ′1−→

2((k−1)+m+(l−1))

〈C′′′1 ,M
′′′
1 , 〈s′′′1 , ctx ′′′1 〉,

S〉
τ ′′1−−→

4

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S〉. Thus, we can rewrite the computation as T (〈C,M1, 〈s1, ε〉,

S〉)
τ ′1·τ

′′
1−−−−→

2(k+m+l)

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S〉. Furthermore, s′1 = T −1(s′′1 ) and τ1 = T −1(τ ′1·τ ′′)
directly follow from (1) the induction hypothesis, and (2) the result of CREATE VIEW commands
depend only on the database configuration (which is the same in both runs before executing
the command). Observe that the observations executed by the two CREATE VIEW commands
are identical modulo the use of temporary predicate symbols.

This completes the proof of the induction step.

Lemma D.5. Let C be a sequence of simple single-query programs (without ADD USER commands)
and S be the sequential scheduler 0∞. For any two reachable global states 〈M1, s1〉 and 〈M2, s2〉 (with
the same database configuration) and 0 ≤ k ≤ |C|, there are C′1, C′2M ′1,M ′2, s′1, s′2, ctx ′1, ctx ′2, τ1, τ2
such that 〈C,M1, 〈s1, ε〉,S〉

τ1−→
2k
〈C′1,M ′1, 〈s′1, ctx ′1〉,S〉, 〈C,M2, 〈s2, ε〉,S〉

τ2−→
2k
〈C′2,M ′2, 〈s′2, ctx ′2〉,

S〉, and τ1 = τ2 iff there are C′′1 , C
′′
2 ,M

′′
1 ,M

′′
2 , s
′′
1 , s
′′
2 , ctx ′′1 , ctx ′′2 , τ ′1, τ ′2 such that T (〈C,M1, 〈s1, ε〉,

S〉)
τ ′1−→

2(k+m+l)

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉, T (〈C,M2, 〈s2, ε〉,S〉)
τ ′2−→

2(k+m+l)

〈C′′2 ,M ′′2 , 〈s′′2 , ctx ′′2 〉,S ′′2 〉,
and τ ′1 = τ ′2, where m is the number of statements in C′(0) and l is the number of CREATE VIEW
queries in Ck.

Proof. Let C be a sequence of simple single-query programs (without ADD USER commands), S be
the sequential scheduler 0∞, 〈M1, s1〉 and 〈M2, s2〉 be two reachable global states (with the same
database configuration), 0 ≤ k ≤ |C|, m is the number of statements in C′(0) and l is the number of
CREATE VIEW queries in Ck.

(⇒). Assume that there are C′1, C′2M ′1,M ′2, s′1, s′2, ctx ′1, ctx ′2, τ1, τ2 such that 〈C,M1, 〈s1, ε〉,S〉
τ1−→

2k

〈C′1,M ′1, 〈s′1, ctx ′1〉,S〉, 〈C,M2, 〈s2, ε〉,S〉
τ2−→

2k
〈C′2,M ′2, 〈s′2, ctx ′2〉,S〉, and τ1 = τ2. Then, by applying

Lemma D.4.(1) to both runs, it follows that there are C′′1 , C′′2 ,M ′′1 ,M ′′2 , s′′1 , s′′2 , ctx ′′1 , ctx ′′2 , τ ′1, τ ′2 such

that T (〈C,M1, 〈s1, ε〉,S〉)
τ ′1−→

2(k+m+l)

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉, T (〈C,M2, 〈s2, ε〉,S〉)
τ ′2−→

2(k+m+l)

〈C′′2 ,M ′′2 , 〈s′′2 , ctx ′′2 〉,S ′′2 〉, τ1 = T −1(τ ′1), and τ2 = T −1(τ ′2). From τ1 = T −1(τ ′1), τ2 = T −1(τ ′2),
and τ1 = τ2, it follows that the suffixes containing all but the first m observations of τ ′1 and τ ′2
are equivalent. Furthermore, the first m observations in τ1 and τ2 are the same since 〈M1, s1〉 and
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〈M2, s2〉 have the same database configuration. Hence, τ ′1 and τ ′2 are equivalent. This completes the
proof of the if direction.
(⇐). Assume that there are C′′1 , C′′2 ,M ′′1 ,M ′′2 , s′′1 , s′′2 , ctx ′′1 , ctx ′′2 , τ ′1, τ ′2 such that T (〈C,M1, 〈s1, ε〉,

S〉)
τ ′1−→

2(k+m+l)

〈C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉, T (〈C,M2, 〈s2, ε〉,S〉)
τ ′2−→

2(k+m+l)

〈C′′2 ,M ′′2 , 〈s′′2 , ctx ′′2 〉,S ′′2 〉,
and τ ′1 = τ ′2. By applying Lemma D.4.(2), it follows that there are C′1, C′2M ′1,M ′2, s′1, s′2, ctx ′1, ctx ′2,
τ1, τ2 such that 〈C,M1, 〈s1, ε〉,S〉

τ1−→
2k
〈C′1,M ′1, 〈s′1, ctx ′1〉,S〉, 〈C,M2, 〈s2, ε〉,S〉

τ2−→
2k
〈C′2,M ′2, 〈s′2,

ctx ′2〉,S〉, τ1 = T −1(τ ′1), and τ2 = T −1(τ ′2). From τ1 = T −1(τ ′1), τ2 = T −1(τ ′2), and τ ′1 = τ ′2, it follows
that τ1 = τ2. This completes the proof of the only if direction.

In Lemma D.6, we finally connect the security conditions for external and internal attackers.

Lemma D.6. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-
only programs (without ADD USER commands), s be a system state, M ∈ Mem∗UID be a sequence of
memories, u ∈ UID be a user, and 〈C′,M ′, 〈s′, ε〉,S ′〉 be the configuration T (〈C,M, 〈s, ε〉,S〉). If
〈C,M, 〈s, ε〉,S〉 is (Euser , Suser

u )-single-epoch and the sequence of programs C′ is secure with respect
to the user db(u) for S ′, s′, and M ′ according to the progress-sensitive variant of Definition 7.3
(extended to handle users in UID ∪ {db(u) | u ∈ UID}), then the sequence of programs C is secure
with respect to the attacker u for S, s, M , Euser , and Suser

u according to the progress-sensitive variant
of Definition 7.2.

Proof. Let S be the sequential scheduler 0∞, C ∈ Com∗UID be a sequence of simple query-only
programs (without ADD USER commands), s be a system state, M ∈ Mem∗UID be a sequence of
memories, u ∈ UID be a user, and 〈C′,M ′, 〈s′, ε〉,S ′〉 be the configuration T (〈C,M, 〈s, ε〉,S〉). We
assume that (a) 〈C,M, 〈s, ε〉,S〉 is (E,S)-single-epoch, and (b) the sequence of programs C′ is se-
cure with respect to the user db(u) for S ′, s′, and M ′ according to the progress-sensitive variant
of Definition 7.3. Let r be the longest run obtained from 〈C′,M ′, 〈s′, ε〉,S ′〉 (whose length we de-
note by max) and r1 be the longest run obtained from 〈C,M, 〈s, ε〉,S〉 (whose length we denote by
max1). From the security of C′ with respect to the progress-sensitive variant of Definition 7.3, it
follows that whenever r = 〈C′,M ′, 〈s′, ε〉,S ′〉 τ−→

n
〈C′′,M ′′, 〈s′′, ctx ′′〉,S ′′〉, then for all 1 ≤ i ≤ n,

PKdb(u)(〈M ′, s′〉, C′,S ′, trace(ri−1))∩Au,sec(〈M ′, s′〉) ⊆ PKdb(u)(〈M ′, s′〉, C′,S ′, trace(ri)), where sec
is the security policy in the i-th configuration in r. Observe that Au,sec(〈M ′, s′〉) never contributes
to the security of C′. This follows from the transformation in Definition 7.4 since (a) the programs
in C′ modify only the SELECT privileges associated with predicate symbols of the form TMPR, and
(b) the user u is initially allowed to read all the values in tables TMPR (for any table R and user
u, the security policy secinit in T (〈C,M, 〈s, ε〉,S〉) is such that TMPR ∈ auth(secinit , u)). There-
fore, for all 1 ≤ i ≤ n, PKdb(u)(〈M ′, s′〉, C′,S ′, ε) ⊆ Au,sec(〈M ′, s′〉), where sec is the security
policy in the i-th configuration in r. From this and the security of C′, it follows that whenever
r = 〈C′,M ′, 〈s′, ε〉,S ′〉 τ−→

n
〈C′′,M ′′, 〈s′′, ctx ′′〉,S ′′〉, then for all 1 ≤ i ≤ n, PKdb(u)(〈M ′, s′〉, C′,S ′,

trace(ri−1)) ⊆ PKdb(u)(〈M ′, s′〉, C′,S ′, trace(ri)). From this, it follows that PKdb(u)(〈M ′, s′〉, C′,S,
ε) ⊆ PKdb(u)(〈M ′, s′〉, C′,S, trace(ri)) for all 1 ≤ i ≤ max, where max is the length of the longest
run obtained by starting from 〈C′,M ′, 〈s′, ε〉,S ′〉. Observe also that (1) PKdb(u)(〈M ′, s′〉, C′,S ′,
ε) = [〈M ′, s′〉]≈u , and (2) PKdb(u)(〈M ′, s′〉, C′,S ′, τ) ⊆ [〈M ′, s′〉]≈u for all τ . Hence, we have that
[〈M ′, s′〉]≈u = PKdb(u)(〈M ′, s′〉, C′,S ′, trace(ri)) for all 1 ≤ i ≤ max. Let unwrap(K) be the set
{〈M, T −1(s)〉 | 〈m·M, s〉 ∈ K}. We claim that for all 0 ≤ j ≤ max1, there is a j ≤ i ≤ max such
that unwrap(PKdb(u)(〈M ′, s′〉, C′,S ′, trace(ri))) = PKdb(u)(〈M, s〉, C,S, trace(rj1)). By applying our
claim to max1, we obtain that there is a max1 ≤ i ≤ max such that unwrap(PKdb(u)(〈M ′, s′〉, C′,S,
trace(ri))) = PKdb(u)(〈M, s〉, C,S, trace(r1)). From this and [〈M ′, s′〉]≈u = PKdb(u)(〈M ′, s′〉, C′,S,
trace(ri)) for all 1 ≤ i ≤ max, it follows that unwrap([〈M ′, s′〉]≈u) = PKdb(u)(〈M, s〉, C,S, trace(r1)).
From this and unwrap([〈M ′, s′〉]≈u) = [〈M, s〉]≈u , it follows that [〈M, s〉]≈u = PKdb(u)(〈M, s〉, C,
S, trace(r1)). From [〈M, s〉]≈u = PKdb(u)(〈M, s〉, C,S, trace(r1)), [〈M, s〉]≈u ⊆ PKdb(u)(〈M, s〉, C,
S, trace(rj1)) for all 1 ≤ j ≤ max1, and PKdb(u)(〈M, s〉, C,S, trace(rj1)) ⊆ PKdb(u)(〈M, s〉, C,S,
trace(r1)) for all 1 ≤ j ≤ max1, it follows that [〈M, s〉]≈u = PKdb(u)(〈M, s〉, C,S, trace(rj1)) for
all 1 ≤ j ≤ max1. From this, r1 is the longest computation, and 〈C,M, 〈s, ε〉,S〉 is (Euser , Suser

u )-
single-epoch, it follows that whenever r = 〈C,M, 〈s, ε〉,S〉 τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,Sn〉, for all epochs
〈C,M, 〈s, ε〉,Si〉

τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser
u K(r), then PKdb(u)(〈M, s〉, C,Si, τ) = [〈M,

s〉]≈u . Hence, C is secure with respect to the progress-sensitive variant of Definition 7.2.
Auxiliary results. Let C be a sequence of simple query-only programs, M be a sequence of memo-
ries, and 〈C′,M ′, 〈s′, ε〉,S〉 = T (〈C,M, 〈s, ε〉,S〉). We now show that unwrap({〈M ′, s′〉}) = {〈M, s〉}.
By construction M ′ = 〈admin,m0〉·M , where m0 is the memory that initializes every variable to
0. Furthermore, T −1(s′) = s (as we have already shown in Lemma D.4). Hence, unwrap({〈M ′,
s′〉}) = {〈M, s〉}.
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We now prove that unwrap([〈M ′, s′〉]≈u) = [〈M, s〉]≈u . Let 〈M ′′, s′′〉 ∈ [〈M, s〉]≈u . The configu-
ration 〈M ′, s′〉 is obtained by extendingM with one additional pair 〈u,m〉 and by extending s. Given
that 〈M ′′, s′′〉 ≈u 〈M, s〉, extending 〈M ′′, s′′〉 in the same way (i.e., by applying the transformation T
given the code C) produces a configuration 〈M ′′′, s′′′〉 that is indistinguishable from 〈M ′, s′〉. Indeed,
M ′′′ ≈u M ′ directly follows from M ′′′ = 〈admin,m0〉·M ′′, M ′ = 〈admin,m0〉·M , and M ≈u M ′′.
Similarly, s′′′ ≈u s′ follows from (1) the database configuration is the same in s and s′′, (2) the
configuration is modified in the same way by T , (3) s and s′′ are data indistinguishable, and (4) the
transformation T extends the database only on the relation schemas of the form TMPR (by setting
them to ∅) and all these relation schemas can be read by any user according to the new database
configurations. Hence, 〈M ′′′, s′′′〉 ∈ [〈M ′, s′〉]≈u and 〈M ′′, s′′〉 ∈ unwrap([〈M ′, s′〉]≈u). For the other
direction, let 〈M ′′, s′′〉 ∈ unwrap([〈M ′, s′〉]≈u). From this, there is 〈M ′′′, s′′′〉 ∈ [〈M ′, s′〉]≈u . Since
M ′ = 〈admin,m0〉·M , it follows that M ′′ ≈u M . Furthermore, it also follows that (1) s′′′ and s′ are
data indistinguishable, and (2) the configurations in s′′′ and s′ are the same. From (1), the policy
in s′′′ and s′ is a superset of that in s, and unwrap drops all relation schemas of the form TMPR,
it follows that s′′ and s are data indistinguishable. From (2) and the fact that unwrap modifies the
policy in the same way in s′ and s′′′, it follows that s′′ and s have the same configuration. Hence,
s′′ ≈u s. From this and M ′′ ≈u M , it follows that 〈M ′′, s′′〉 ∈ [〈M, s〉]≈u .
Proof of our claim. We now prove our claim that for all 0 ≤ j ≤ max1, there is a j ≤ i ≤ max
such that unwrap(PKdb(u)(〈M ′, s′〉, C′,S ′, trace(ri))) = PKdb(u)(〈M, s〉, C,S, trace(rj1)). Let j be a
value such that 0 ≤ j ≤ max1. Since odd steps in the trace do not produce observations (they are
associated with the M-Eval-End rule), we can assume that j is an even number 2k. We now show
our claim for i = 2(m + k + l), where m is |C′(0)| and l is the number of CREATE VIEW queries in
C(0)· . . . ·C(k).

We now prove that PKdb(u)(〈M, s〉, C,S, trace(r2k
1 )) is a subset of unwrap(PKdb(u)(〈M ′, s′〉, C′,S ′,

trace(r2(m+k+l)))). Let 〈M ′′, s′′〉 ∈ PKdb(u)(〈M, s〉, C,S, trace(r2k
1 )). From this and C be a sequence

of simple single-query programs, it follows that executing the first 2k steps starting from 〈C,M ′′,
〈s′′, ε〉,S〉 produces the same trace as executing the first 2k steps starting from 〈C,M, 〈s, ε〉,S〉.
From this and Lemma D.5, it follows that executing the first 2(k + m + l) steps starting from
T (〈C,M ′′, 〈s′′, ε〉,S〉) produces the same trace as executing the first 2(k + m + l) steps starting
from T (〈C,M, 〈s, ε〉,S〉). We denote by 〈MT , sT 〉 the global configuration associated with T (〈C,M,
〈s, ε〉,S〉) and by 〈M ′′T , s′′T 〉 the global configuration associated with T (〈C,M ′′, 〈s′′, ε〉,S〉). Hence,
〈M ′′T , s′′T 〉 ∈ PKdb(u)(〈M ′, s′〉, C′,S ′, trace(r2(m+k))). From this and unwrap({〈M ′′T , s′′T 〉}) = {〈M ′′,
s′′〉}, it follows that 〈M ′′, s′′〉 ∈ unwrap(PKdb(u)(〈M ′, s′〉, C′,S ′, trace(r2(m+k+l)))), completing the
proof of this direction.

We now prove that unwrap(PKdb(u)(〈M ′, s′〉, C′,S ′, trace(r2(m+k+l)))) ⊆ PKdb(u)(〈M, s〉, C,S,
trace(r2k

1 )). Let 〈M ′′, s′′〉 ∈ unwrap(PKdb(u)(〈M ′, s′〉, C′,S ′, trace(r2(m+k+l)))). From this, it follows
that there is an 〈M ′′′, s′′′〉 ∈ PKdb(u)(〈M ′, s′〉, C′,S ′, trace(r2(m+k+l))) such that unwrap({〈M ′′′,
s′′′〉}) = 〈M ′′, s′′〉. From this and C be a sequence of simple single-query programs, it follows that
executing the first 2(m+ k+ l) steps starting from T (〈C,M ′′, 〈s′′, ε〉,S〉) produces the same trace as
executing the first 2(m+ k + l) steps starting from T (〈C,M, 〈s, ε〉,S〉). From this and Lemma D.5,
it follows that executing the first 2k steps starting from 〈C,M ′′, 〈s′′, ε〉,S〉 produces the same trace
as executing the first 2k steps starting from 〈C,M, 〈s, ε〉,S〉. Hence, 〈M ′′, s′′〉 ∈ PKdb(u)(〈M, s〉, C,
S, trace(r2k

1 )), completing the proof in this direction.

D.1.9 From progress-sensitive to progress-insensitive security
Here we prove the results from Section 7.5.6. Namely, we connect the progress-sensitive and

progress-insensitive versions of Definition 7.2.
In Lemma D.7, we connect the attacker’s knowledge in the progress-sensitive and progress-

insensitive cases.

Lemma D.7. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of simple
query-only programs, 〈M0, s0〉 be a reachable global state, and τ be a trace of observations such that
|τ | ≤ #qry(C) and τ�u = τ . If C is safe for S and [〈M0, s0〉]u, then PKu(〈M0, s0〉, C,S, τ) = Ku(〈M0,
s0〉, C,S, τ).

Proof. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of simple query-
only programs, 〈M0, s0〉 be a reachable global state, and τ be a trace such that |τ | ≤ #qry(C) and
τ�u = τ . Furthermore, we assume that C is safe for S and [〈M0, s0〉]u.

We first prove that PKu(〈M0, s0〉, C,S, τ) ⊇ Ku(〈M0, s0〉, C,S, τ). Let 〈M, s〉 ∈ Ku(〈M0, s0〉,
C,S, τ). From this, it follows that M ≈u M0, s ≈u s0, and for all ctx ′, τ ′, C′,M ′, s′ such that
〈C,M, 〈s, ctx〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉, then τ�u � τ ′�u or τ�u � τ ′�u. From this, C ∈ Com∗u,
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and τ�u = τ , it follows that for all ctx ′, τ ′, C′,M ′, s′ such that 〈C,M, 〈s, ctx〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′,
ctx ′〉,S〉, then τ � τ ′ or τ � τ ′. From this, C is a sequence of simple query-only programs, C’s safety,
and |τ | ≤ #qry(C), it follows that there are n, ctx ′, τ ′, C′,M ′, s′ such that 〈C,M, 〈s, ctx〉,S〉 τ ′−→

n

〈C′,
M ′, 〈s′, ctx ′〉,S〉, τ � τ ′ ∨ τ � τ ′, and |τ | = |τ ′|. From τ � τ ′ ∨ τ � τ ′ and |τ | = |τ ′|, it follows that
τ = τ ′. Hence, there are n, ctx ′, τ ′, C′,M ′, s′ such that 〈C,M, 〈s, ctx〉,S〉 τ ′−→

n

〈C′,M ′, 〈s′, ctx ′〉,S〉
and τ = τ ′. From this, τ�u = τ , and C ∈ Com∗u, it follows that there are n, ctx ′, τ ′, C′,M ′, s′ such
that 〈C,M, 〈s, ctx〉,S〉 τ ′−→

n

〈C′,M ′, 〈s′, ctx ′〉,S〉 and τ�u = τ ′�u. Hence, 〈M, s〉 ∈ PKu(〈M0, s0〉, C,
S, τ).

We now show that PKu(〈M0, s0〉, C,S, τ) ⊆ Ku(〈M0, s0〉, C,S, τ). Let 〈M, s〉 ∈ PKu(〈M0, s0〉,
C,S, τ). From this, it follows that M ≈u M0, s ≈u s0, and there are ctx ′, τ ′, C′,M ′, s′ such that
〈C,M, 〈s, ctx〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉, and τ�u = τ ′�u. From this, C ∈ Com∗u, and τ�u = τ , it
follows that there are n, ctx ′, τ ′, C′,M ′, s′ such that 〈C,M, 〈s, ctx〉,S〉 τ ′−→

n

〈C′,M ′, 〈s′, ctx ′〉,S〉 and
τ = τ ′. Let r be an arbitrary run such that 〈C,M, 〈s, ctx〉,S〉 τ ′′−−→

m

〈C′′,M ′′, 〈s′′, ctx ′′〉,S〉. If n < m,
then τ ′′ � τ ′. From this and τ = τ ′, τ ′′ � τ . If n = m, then τ ′′ = τ ′. From this and τ = τ ′, τ ′′ � τ . If
n > m, then τ ′′ � τ ′. From this and τ = τ ′, τ ′′ � τ . Hence, for all n, ctx ′, τ ′, C′,M ′, s′ such that 〈C,
M, 〈s, ctx〉,S〉 τ ′−→

n

〈C′,M ′, 〈s′, ctx ′〉,S〉, then τ ′ � τ ∨ τ ′ � τ . From this, C ∈ Com∗u, and τ�u = τ ,
it follows that for all n, ctx ′, τ ′, C′,M ′, s′ such that 〈C,M, 〈s, ctx〉,S〉 τ ′−→

n

〈C′,M ′, 〈s′, ctx ′〉,S〉, then
τ ′�u � τ�u ∨ τ ′�u � τ�u. Hence, 〈M, s〉 ∈ Ku(〈M0, s0〉, C,S, τ).

Theorem D.3 proves that the progress-sensitive and progress-insensitive security conditions for
external attackers are equivalent for simple query-only programs and sequential schedulers.

Theorem D.3. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of
simple query-only programs, and 〈M0, s0〉 be a reachable global state such that C is safe for S and
[〈M0, s0〉]u. Then, C is secure with respect to Definition 7.3 for S, M , s, and u iff C is secure with
respect to the progress-sensitive variant of Definition 7.3 for S, M , s, and u.

Proof. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of simple query-
only programs, and 〈M0, s0〉 be a reachable global state such that C is safe for S and [〈M0, s0〉]u.
(⇒). Assume that C is secure with respect to Definition 7.3 for S, M0, s0, and u. From this,
it follows that whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ−→
n
〈C′,M ′, 〈s′, ctx ′〉,S ′〉, then for all 1 ≤ i ≤ n,

Ku(〈M0, s0〉, C,S, trace(ri−1))∩Au,sec(M0, s0) ⊆ Ku(〈M0, s0〉, C,S, trace(ri)), where the database in
r’s (i− 1)-th configuration is 〈db, U, sec, T, V 〉. From this, C’s safety, and Lemma D.7, it follows that
whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ−→
n
〈C′,M ′, 〈s′, ctx ′〉,S ′〉, then for all 1 ≤ i ≤ n, PKu(〈M0, s0〉, C,

S, trace(ri−1)) ∩Au,sec(M0, s0) ⊆ PKu(〈M0, s0〉, C,S, trace(ri)), where the database in r’s (i− 1)-th
configuration is 〈db, U, sec, T, V 〉. Hence, C is secure with respect to the progress-sensitive variant of
Definition 7.3 for S, M0, s0, and u.
(⇐). Assume that C is secure with respect to the progress-sensitive variant of Definition 7.3 for
S, M0, s0, and u. From this, it follows that whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ−→
n
〈C′,M ′, 〈s′, ctx ′〉,

S ′〉, then for all 1 ≤ i ≤ n, PKu(〈M0, s0〉, C,S, trace(ri−1)) ∩ Au,sec(M0, s0) ⊆ PKu(〈M0, s0〉, C,S,
trace(ri)), where the database in r’s (i−1)-th configuration is 〈db, U, sec, T, V 〉. From this, C’s safety,
and Lemma D.7, it follows that whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ−→
n
〈C′,M ′, 〈s′, ctx ′〉,S ′〉, then for

all 1 ≤ i ≤ n, Ku(〈M0, s0〉, C,S, trace(ri−1)) ∩ Au,sec(M0, s0) ⊆ Ku(〈M0, s0〉, C,S, trace(ri)), where
the database in r’s (i − 1)-th configuration is 〈db, U, sec, T, V 〉. Hence, C is secure with respect to
Definition 7.3 for S, M0, s0, and u.

Theorem D.4 proves that the progress-sensitive and progress-insensitive security conditions for
internal attackers are equivalent for simple query-only programs and sequential schedulers.

Theorem D.4. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of
simple query-only programs, and 〈M0, s0〉 be a reachable global state such that |C| = |M | and for all
1 ≤ i ≤ |M |, M(i) = 〈ui,mi〉 and C(i) = 〈ui, ci〉. Furthermore, let r be the longest run obtained
starting from 〈C,M0, 〈s0, ε〉,S〉. If Cdn/2ei is safe for S and [〈Mdn/2ei , si〉]u for all 〈Ci,Mi, 〈si, ctxi〉,
Si〉

τ−→
n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then C is secure with respect to Definition 7.2
for S, M , s, u, Euser , and Suser

u iff C is secure with respect to the progress-sensitive variant of
Definition 7.2 for S, M , s, u, Euser , and Suser

u .

Proof. Let S be the sequential scheduler 0∞, u be a user, C ∈ Com∗u be a sequence of simple query-
only programs, and 〈M0, s0〉 be a reachable global state such that |C| = |M | and for all 1 ≤ i ≤ |M |,
M(i) = 〈ui,mi〉 and C(i) = 〈ui, ci〉. Furthermore, let rmax be the longest run obtained starting from
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〈C,M0, 〈s0, ε〉,S〉. Finally, we assume that Cdn/2ei is safe for S and [〈Mdn/2ei , si〉]u for all 〈Ci,Mi, 〈si,
ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(rmax) (if this is not the case, then the claim
trivially holds). Observe that from the assumptions on the memories M0 and Lemma D.1, we can
focus only on the database states and ignore the memories. We claim that for all runs r = 〈C,M0,

〈s0, ε〉,S〉
τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,Sn〉, for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,

Sj〉 in JEuser , Suser
u K(r), then (1) DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ)), and

(2) DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB(PKdb(u)(〈M ′i , si〉, C′i,Si, τ)), where C′i contains only the
programs executed inside the epoch, i.e., C′i = C

dn/2e
i and M ′i = M

dn/2e
i , and DB(K) = {s | ∃M. 〈M,

s〉 ∈ K}. We use this claim in our proofs below.
(⇒). Assume that C is secure with respect to Definition 7.2 for S, M0, s0, u, Euser , and Suser

u .
This means that whenever r = 〈C,M0, 〈s0, ε〉,S〉

τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,Sn〉, for all epochs 〈Ci,Mi,

〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser
u K(r), then Kdb(u)(〈Mi, si〉, Ci,Si, τ) = [〈Mi,

si〉]≈u . Let r be an arbitrary run r = 〈C,M0, 〈s0, ε〉,S〉
τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,Sn〉. Hence, for all

epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser
u K(r), then DB(Kdb(u)(〈Mi, si〉,

Ci,Si, τ)) = DB([〈Mi, si〉]≈u). From claim (1), it follows that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→
n

〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser
u K(r), then DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ)) = DB([〈Mi, si〉]≈u).

From the safety of C′i and Lemma D.1, by applying Lemma D.7 to each epoch, it follows that for all
epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then DB(PKdb(u)(〈M ′i ,
si〉, C′i,Si, τ)) = DB([〈Mi, si〉]≈u). From this and claim (2), it follows that for all epochs 〈Ci,
Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then DB(PKdb(u)(〈Mi, si〉, Ci,Si,
τ)) = DB([〈Mi, si〉]≈u)). From this and Lemma D.1, it follows that for all epochs 〈Ci,Mi, 〈si, ctxi〉,
Si〉

τ−→
n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then PKdb(u)(〈Mi, si〉, Ci,Si, τ) = [〈Mi, si〉]≈u .
Hence, C is secure with respect to the progress-sensitive variant of Definition 7.2 for S, M0, s0, u,
Euser , and Suser

u .
(⇐). Assume that C is secure with respect to the progress-sensitive variant of Definition 7.2 for
S, M0, s0, u, Euser , and Suser

u . This means that whenever r = 〈C,M0, 〈s0, ε〉,S〉
τ0−→∗ 〈Cn,Mn,

〈sn, ctxn〉,Sn〉, for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser
u K(r),

then PKdb(u)(〈Mi, si〉, Ci,Si, τ) = [〈Mi, si〉]≈u . Let r be an arbitrary run r = 〈C,M0, 〈s0, ε〉,
S〉 τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,Sn〉. Hence, for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,Mj , 〈sj , ctxj〉,
Sj〉 in JEuser , Suser

u K(r), then DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB([〈Mi, si〉]≈u). From claim (1),
it follows that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r),
then DB(PKdb(u)(〈M ′i , si〉, C′i,Si, τ)) = DB([〈Mi, si〉]≈u). From the safety of C′i and Lemma D.1,
by applying Lemma D.7 to each epoch, it follows that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→∗ 〈Cj ,
Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ)) = DB([〈Mi, si〉]≈u). From
this and claim (2), it follows that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in

JEuser , Suser
u K(r), then DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB([〈Mi, si〉]≈u). From this and Lemma D.1,

it follows that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→
n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser , Suser

u K(r), then
Kdb(u)(〈Mi, si〉, Ci,Si, τ) = [〈Mi, si〉]≈u . Hence, C is secure with respect to Definition 7.2 for S, M0,
s0, u, Euser , and Suser

u .
Proof of claim (1). Let r be an arbitrary run r = 〈C,M0, 〈s0, ε〉,S〉

τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,Sn〉.
We now prove our claim that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 in JEuser ,

Suser
u K(r), then DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ)), where M ′i = M

dn/2e
i

and C′i = C
dn/2e
i . Let 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 be an arbitrary epoch in

JEuser , Suser
u K(r), where M ′i = M

dn/2e
i and C′i = C

dn/2e
i .

We first show that DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)) ⊆ DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ)). Let s ∈
DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)). Then, there is a memory M such that M ≈u Mi, s ≈u si, and for all
ctx ′, C′,M ′, s′, τ ′ such that 〈Ci,M, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉, τ ′�u � τ�u∨τ ′�u � τ�u. From
this,M = M ′′·M ′′′, and Ci = C′i·C′′, it follows thatM ′′ ≈u M ′i and for all ctx ′, C′,M ′, s′, τ ′ such that
〈C′i,M ′′, 〈si, ε〉,S〉

τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉, τ ′�u � τ�u ∨ τ ′�u � τ�u. Hence, 〈M ′′, s〉 ∈ Kdb(u)(〈M ′i ,
si〉, C′i,Si, τ). Therefore, s ∈ DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ))

We now show that DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)) ⊇ DB(Kdb(u)(〈Mi, si〉, C′i,Si, τ)). Let s ∈
DB(Kdb(u)(〈M ′i , si〉, C′i,Si, τ)). From this, there is a memoryM such thatM ≈u M ′i , s ≈u si, and for
all ctx ′, C′,M ′, s′, τ ′ such that 〈C′i,M, 〈si, ε〉,S〉

τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉, τ ′�u � τ�u ∨ τ ′�u � τ�u.
From this, τ has been produced by executing only the programs in the epoch, C′i contains exactly
the programs in the epoch, and Ci is an extension of C′i, it directly follows that for the memory
M ′′ = M ·M ′′i (where Mi = M ′i ·M ′′i such that |M ′i | = |M |) then for all ctx ′, C′,M ′, s′, τ ′ such that
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〈Ci,M ′′, 〈s, ε〉,S〉
τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉, τ ′�u � τ�u ∨ τ ′�u � τ�u. Hence, 〈M ′′, s〉 ∈ Kdb(u)(〈Mi,

si〉, Ci,Si, τ) and s ∈ DB(Kdb(u)(〈Mi, si〉, Ci,Si, τ)).

Proof of claim (2). Let r be an arbitrary run r = 〈C,M0, 〈s0, ε〉,S〉
τ0−→∗ 〈Cn,Mn, 〈sn, ctxn〉,

Sn〉. We now prove our claim that for all epochs 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→
n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉

in JEuser , Suser
u K(r), then DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) = DB(PKdb(u)(〈M ′i , si〉, C′i,Si, τ)), where

M ′i = M
dn/2e
i and C′i = C

dn/2e
i . Let 〈Ci,Mi, 〈si, ctxi〉,Si〉 τ−→

n
〈Cj ,Mj , 〈sj , ctxj〉,Sj〉 be an arbitrary

epoch in JEuser , Suser
u K(r), where M ′i = M

dn/2e
i and C′i = C

dn/2e
i ..

We show that DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) ⊆ DB(PKdb(u)(〈M ′i , si〉, C′i,Si, τ)). Let s be a
database state in DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)). Then, there is a memory M such that M ≈u Mi,
s ≈u si, and there are ctx ′, C′,M ′, s′, τ ′ such that 〈Ci,M, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉 and
τ ′�u = τ�u. Since τ has been produced in the epoch associated with the user u, it follows that τ�u = τ .
Furthermore, the first |τ | observations in τ ′ are produced by the programs in the epoch associated
with the user u and therefore τ ′�u = τ ′. Then, there is a run that produces exactly the trace τ and
executes only the programs in the epoch (i.e., C′i). Namely, there are ctx ′, C′,M ′, s′, τ ′ such that
〈C′i,Md

n/2e, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉 and τ ′�u = τ�u. Hence, 〈Mdn/2e, s〉 ∈ PKdb(u)(〈Mi,
si〉, C′i,Si, τ) and s ∈ DB(PKdb(u)(〈Mi, si〉, C′i,Si, τ)).

We show that DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)) ⊇ DB(PKdb(u)(〈M ′i , si〉, C′i,Si, τ)). Let s be a
database state in DB(PKdb(u)(〈M ′i , si〉, C′i,Si, τ)). Then, there is a memory M such that M ≈u M ′i ,
s ≈u si, and there are ctx ′, C′,M ′, s′, τ ′ such that 〈C′i,M, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,M ′, 〈s′, ctx ′〉,S〉 and
τ ′�u = τ�u. From this, it follows that there are ctx ′, C′,M ′, s′, τ ′ such that 〈Ci,M ′′, 〈s, ε〉,S〉 τ ′−→∗ 〈C′,
M ′, 〈s′, ctx ′〉,S〉 and τ ′�u = τ�u where M ′′ = M ·M ′′i (where Mi = M ′i ·M ′′i such that |M ′i | = |M |).
Hence, 〈M ′′, s〉 ∈ PKdb(u)(〈Mi, si〉, Ci,Si, τ) and s ∈ DB(PKdb(u)(〈Mi, si〉, Ci,Si, τ)).

D.2 Monitor’s transparency

Here, we show that the monitor of Section 7.6 is transparent. In more detail, we prove that the
monitor’s local semantics is transparent. Furthermore, we also show that for sequential schedulers
the monitor’s global semantics is transparent as well.

D.2.1 Local semantics
Before proving the correctness of the local semantics, we introduce some terminology and notation.

Given an extended WhileSql program c, we denote by strip(c) the program obtained by (1) removing
statements of the form set pc to l, dbout(u, v, o, τ), ‖x ← q‖, and asuser(u, c′) and (2) replacing
[c] with c. Furthermore, we write safe(c) iff strip(c) is not of the form x← q, x← q ; c′, asuser(u, c′),
asuser(u, c′) ; c′′, dbout(u, v, o, τ), dbout(u, v, o, τ) ; c′′, ‖x← q‖, or ‖x← q‖ ; c′′.

In Lemma D.8 we prove the correctness of the weakest precondition operator for INSERT and
DELETE commands.

Lemma D.8. Let φ be a sentence that does not refer to views, m be a memory, and db a database
state. For all well-formed assignments ν for φ, the following facts hold:

1. [wp(φ, T ⊕ v(m))ν]db holds iff [φν]db′ holds, where db′(R) = db(R) for all R 6= T and db′(T ) =
db(T ) ∪ {v(m)}.

2. [wp(φ, T 	 v(m))ν]db holds iff [φν]db′ holds, where db′(R) = db(R) for all R 6= T and db′(T ) =
db(T ) \ {v(m)}.

3. [¬wp(φ, c)ν]db = [wp(¬φ, c)ν]db.

Proof. Let φ be a sentence that does not refer to views, m be a memory, and db a database state.
Proof of (1). Let db′ be the database state such that db′(R) = db(R) for all R 6= T and db′(T ) =
db(T ) ∪ {v(m)}.

For the if direction, we assume that for all well-formed assignments ν for φ, [wp(φ, T⊕v(m))ν]db =
>. We now prove, by structural induction on φ, that [φν]db′ = >. There are two base cases:

• φ is R(x). If R 6= T , then wp(φ, T ⊕ v(m)) = φ and the claim trivially holds since db(R) =
db′(R). If R = T , then wp(φ, T ⊕ v(m)) = R(x) ∨ x = v(m). From this and [wp(φ, T ⊕
v(m))ν]db = >, it follows that ν(x) ∈ db(T ) or ν(x) = v(m). If ν(x) ∈ db(T ), then ν(x) ∈ db′(T )
as well. If ν(x) = v(m), then ν(x) ∈ db′(T ) by construction. Hence, [φν]db′ = >.

• φ is x1 = x2. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.
• φ is x1 = c. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.

For the induction step, we assume that the claim holds for all sub-formulae of φ and we show that it
holds for φ as well. There are several cases:
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• φ is ψ ∧ γ. From [wp(φ, T ⊕ v(m))ν]db = > and wp(φ, T ⊕ v(m)) = wp(ψ, T ⊕ v(m)) ∧ wp(γ,
T ⊕ v(m)), it follows that [wp(ψ, T ⊕ v(m))ν]db = > and [wp(γ, T ⊕ v(m))ν]db = >. From
this, ν is a well-formed assignment for ψ and γ, and the induction hypothesis, it follows that
[ψν]db′ = > and [γν]db′ = >. From this, [(ψ ∧ γ)ν]db′ = > and therefore [φν]db′ = >.

• φ is ψ ∨ γ. From [wp(φ, T ⊕ v(m))ν]db = > and wp(φ, T ⊕ v(m)) = wp(ψ, T ⊕ v(m)) ∨ wp(γ,
T⊕v(m)), it follows that [wp(ψ, T⊕v(m))ν]db = > or [wp(γ, T⊕v(m))ν]db = >. From this, ν is
a well-formed assignment for ψ and γ, and the induction hypothesis, it follows that [ψν]db′ = >
or [γν]db′ = >. From this, [(ψ ∨ γ)ν]db′ = > and therefore [φν]db′ = >.

• φ is ¬ψ. From [wp(φ, T⊕v(m))ν]db = > and wp(φ, T⊕v(m)) = ¬wp(ψ, T⊕v(m)), it follows that
[wp(ψ, T ⊕ v(m))ν]db = ⊥. From this and the induction hypothesis, it follows that [ψν]db′ = ⊥.
From this, [(¬ψ)ν]db′ = > and therefore [φν]db′ = >.

• φ is ∃x. ψ. From [wp(φ, T ⊕ v(m))ν]db = > and wp(φ, T ⊕ v(m)) = ∃x. wp(ψ, T ⊕ v(m)), it
follows that there is a value v ∈ dom such that [wp(ψ, T ⊕ v(m))ν[x 7→ v]]db = >. From
this, ν[x 7→ v] is a well-formed assignment for ψ, and the induction hypothesis, it follows that
[ψν]db′ = >. From this, [(∃x. ψ)ν]db′ = > and therefore [φν]db′ = >.

• φ is ∀x. ψ. The proof of this case is similar to the ∃x. ψ case.
This concludes the proof of the if direction.

For the only if direction, we assume that for all well-formed assignments ν for φ, [φν]db′ = >. We
now prove, by structural induction on φ, that [wp(φ, T ⊕ v(m))ν]db = >. There are two base cases:

• φ is R(x). If R 6= T , then wp(φ, T ⊕ v(m)) = φ and the claim trivially holds since db(R) =
db′(R). If R = T , then [φν]db′ = >. From this and db′(T ) = db(T ) ∪ {v(m)}, it follows
that ν(x) ∈ db(T ) or ν(x) = v(m). From this, [(T (x) ∨ x = v(m))ν]db = >. Hence, [wp(φ,
T ⊕ v(m))ν]db = >.

• φ is x1 = x2. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.
• φ is x1 = c. Then, wp(φ, T ⊕ v(m)) = φ and the claim trivially holds.

For the induction step, we assume that the claim holds for all sub-formulae of φ and we show that it
holds for φ as well. There are several cases:

• φ is ψ ∧ γ. From [φν]db′ = >, it follows [ψν]db′ = > and [γν]db′ = >. From this and the
induction hypothesis, [wp(ψ, T ⊕ v(m))ν]db = > and [wp(γ, T ⊕ v(m))ν]db = >. Hence, [wp(ψ,
T ⊕ v(m))ν ∧ wp(γ, T ⊕ v(m))ν]db = > and therefore [wp(φ, T ⊕ v(m))ν]db = >.

• φ is ψ ∨ γ. The proof of this case is similar to that of ψ ∧ γ.
• φ is ¬ψ. From [φ]db′ = >, it follows that [ψ]db′ = ⊥. From this and the induction hypothesis,

it follows that [wp(ψ, T ⊕ v(m))ν]db = ⊥. From this and wp(φ, T ⊕ v(m)) = ¬wp(ψ, T ⊕ v(m)),
[wp(φ, T ⊕ v(m))ν]db = >.

• φ is ∃x. ψ. From [φν]db′ = >, it follows that there is a value v ∈ dom such that [ψν[x 7→
v]]db′ = >. From this, ν[x 7→ v] is a well-formed assignment for ψ, and the induction hypothesis,
it follows that [wp(ψ, T ⊕ v(m))ν[x 7→ v]]db = >. From this and wp(φ, T ⊕ v(m)) = ∃x. wp(ψ,
T ⊕ v(m)), it follows that [wp(φ, T ⊕ v(m))ν]db = >.

• φ is ∀x. ψ. The proof of this case is similar to the ∃x. ψ case.
This completes the proof of the only if direction.
Proof of (2). The proof for (2) is similar to that of (1). The only difference is the base case R(x)
in case R = T . We show how the proof works for this case. For the if direction, assume that [wp(φ,
T 	 v(m))ν]db = >. From this and wp(φ, T 	 v(m)) = T (x) ∧ x 6= v(m), it follows that [(T (x) ∧ x 6=
v(m))ν]db = >. From this, ν(x) ∈ db(T ) and ν(x) 6= v(m). From this, ν(x) ∈ db(T )\{v(m)}. Hence,
[T (x)ν]db′ = >.

For the only if direction, assume that [φν]db′ = >. From this and db′(T ) = db(T ) \ {v(m)},
it follows that ν(x) ∈ db(T ) and ν(x) 6= v(m). From this, [(T (x) ∧ x 6= v(m))ν]db = >. Hence,
[wp(φ, T 	 v(m))ν]db = >.
Proof of (3). The third claim immediately follows from (1) and (2).

Lemma D.9 states that the rules handling the expansion procedure are correct, i.e., that they
mimic the operational semantics of the WhileSql statements of the form x← q.

Lemma D.9. Let m ∈ Mem be a memory, 〈s, ctx〉 be a runtime state such that trigger(ctx) = ε,
u ∈ UID be a user, and ∆ be a monitor state. Whenever 〈∆, x ← q,m, 〈s, ctx〉〉 τ ′

∗

u 〈∆′, ε,m′,
〈s′, ctx ′〉〉, then 〈x ← q,m, 〈s, ctx〉〉 τ ′′−−→u 〈ε,m′′, 〈s′′, ctx ′′〉〉 and the following conditions hold: (1)
m′(x) = m′′(x), (2) s′ = s′′, (3) triggers(ctx ′) = triggers(ctx ′′) = ε, and (4) τ ′ = τ ′′.

Proof. Let m ∈ Mem be a memory, 〈s, ctx〉 be a runtime state such that trigger(ctx) = ε, u ∈ UID
be a user, and ∆ be a monitor state. Furthermore, we assume that 〈∆, x← q,m, 〈s, ctx〉〉 τ

′ ∗

u 〈∆′, ε,
m′, 〈s′, ctx ′〉〉. In the computation, we applied the rule F-Expand once, the rule F-ExpandedCode
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multiple times, and the rule F-RemoveExpandedCode once. Hence, 〈∆, x ← q,m, 〈s, ctx〉〉 τ ′
∗

u

〈∆′, ε,m′, 〈s′, ctx ′〉〉 iff 〈∆, [c],m, 〈s, ctx〉〉 τ ′
∗

u 〈∆′, [ε],m′, 〈s′, ctx ′〉〉, where c = expand(〈s, ctx〉, x,
q, u). This, in turn, happens iff 〈∆, c,m, 〈s, ctx〉〉 τ ′

∗

u 〈∆′, ε,m′, 〈s′, ctx ′〉〉, where c = expand(〈s,
ctx〉, x, q, u). From expand’s definition, it follows that c = decls(〈s, ctx〉,m, u, x ← q) ; body(s,
m, u, x ← q), where decls(〈s, ctx〉,m, u, x ← q) is a sequence of SELECT queries and body(s,m, u,
x ← q) is a sequence of if statements. We claim that (1) at least one of the conditions of the
if statements in body(s,m, u, x ← q) is satisfied, and (2) the conditions in the if statements in
body(s,m, u, x ← q) are mutually exclusive, i.e., in each execution we execute only one of the if
statements. Let c′ be the if statement associated with the satisfied condition. From expand’s
definition, c′ = if cond〈s,ctx〉,m,u,x,q(t) then body〈s,ctx〉,m,u,x,q(t) else skip, where t is a configuration-
consistent execution path. We additionally claim that (3) if cond〈s,ctx〉,m,u,x,q(t) is satisfied, then
the configuration-consistent execution path t represents an actual execution of the command and
the corresponding triggers, and (4) body〈s,ctx〉,m,u,x,q(t) correctly implements the semantics of the

execution path t. From (3) and (4), it follows that 〈x ← q,m, 〈s, ctx〉〉 τ ′′−−→u 〈ε,m′′, 〈s′′, ctx ′′〉〉,
m′(x) = m′′(x), s′ = s′′, τ ′ = τ ′′. Finally, triggers(ctx ′) = triggers(ctx ′′) = ε, directly follows from
the WhileSql and monitor’s semantics.
At least one condition is satisfied. Here we prove our claim that at least one condition in
the if statements in body(s,m, u, x ← q) is satisfied. First, observe that there is always at least
one configuration-consistent execution path. If 〈q, secEx〉 is configuration-consistent, then the claim
trivially holds as there is an if statement with condition >, which is trivially satisfied. Assume
now that 〈q, secEx〉 is not configuration-consistent. We observe that the encoding is such that all
possible combinations of variables are covered. Namely, for a query q, there are two if statements:
one checking whether the integrity constraints are satisfied and one checking whether the constraints
are not satisfied. Similarly, for a trigger t, there are four possible if statements: one checking if the
trigger is enabled and the constraints are satisfied, one checking if the trigger is enabled and the
constraints are not satisfied, one checking if the trigger is enabled, and one checking if the trigger is
not enabled. From these observations, it follows that there is always at least one satisfied condition.
Mutually exclusive conditions. Here we prove our claim that the conditions in the if statements
in body(s,m, u, x ← q) are mutually exclusive. Assume, for contradiction’s sake, that this is not
the case. This requires that there are two distinct configuration-consistent execution paths t and t′

such that both cond〈s,ctx〉,m,u,x,q(t) and cond〈s,ctx〉,m,u,x,q(t
′) are satisfied. Since cond〈s,ctx〉,m,u,x,q(t)

and cond〈s,ctx〉,m,u,x,q(t
′) are ∧(map(cs,m,u,x,q,t, 1· . . . ·|t|)) and ∧(map(cs,m,u,x,q,t′ , 1· . . . ·|t

′|)), this
requires that all cs,m,u,x,q,t(i) and cs,m,u,x,q,t′(j) are satisfied for 1 ≤ i ≤ |t| and 1 ≤ j ≤ |t′|. Let k
be the first position where t and t′ differ. There are two cases:

1. k = 1. Then, the two paths differ on the initial query q. There are 6 cases depending on the
values for t(1) and t′(1):
(a) t(1) = 〈q, ok〉 and t(1) = 〈q, secEx〉. Since t and t′ are configuration-consistent paths, it

follows that allowed(s, u, q) and ¬allowed(s, u, q), leading to a contradiction.
(b) t(1) = 〈q, ok〉 and t(1) = 〈q, ex〉. Therefore, cs,m,u,x,q,t(1) = xt1,γ1 ∧ . . . ∧ x

t
1,γn and

cs,m,u,x,q,t′(1) = ¬(xt
′

1,γ1∧. . .∧x
t
′

1,γn). From decls’s definition, it follows that xt1,γi and x
t
′

1,γi

are respectively initialized by the statements xt1,γi ← SELECT wp(γi, t1) and xt
′

1,γi ← SELECT

wp(γi, t′
1). From this, t(1) = 〈q, ok〉, t(1) = 〈q, ex〉, and wp’s definition, it follows that

wp(γi, t1) = wp(γi, t′
1) for all γi ∈ Γ. This combined with cs,m,u,x,q,t(1) = xt1,γ1∧. . .∧x

t
1,γn

and cs,m,u,x,q,t′(1) = ¬(xt
′

1,γ1 ∧ . . .∧x
t
′

1,γn), leads to a contradiction (since the result of the
queries are the same given that in decls we just executed SELECT queries).

(c) t(1) = 〈q, secEx〉 and t(1) = 〈q, ok〉. Since t and t′ are configuration-consistent paths, it
follows that ¬allowed(s, u, q) and allowed(s, u, q), leading to a contradiction.

(d) t(1) = 〈q, secEx〉 and t(1) = 〈q, ex〉. Since t and t′ are configuration-consistent paths, it
follows that ¬allowed(s, u, q) and allowed(s, u, q), leading to a contradiction.

(e) t(1) = 〈q, ex〉 and t(1) = 〈q, ok〉. Then, cs,m,u,x,q,t(1) = ¬(xt1,γ1 ∧ . . . ∧ x
t
1,γn) and

cs,m,u,x,q,t′(1) = xt
′

1,γ1∧. . .∧x
t
′

1,γn . From decls’s definition, it follows that xt1,γi and x
t
′

1,γi are
respectively initialized by the statements xt1,γi ← SELECT wp(γi, t1) and xt

′

1,γi ← SELECT

wp(γi, t′
1). From this, t(1) = 〈q, ok〉, t(1) = 〈q, ex〉, and wp’s definition, it follows that

wp(γi, t1) = wp(γi, t′
1) for all γi ∈ Γ. This combined with cs,m,u,x,q,t(1) = ¬(xt1,γ1 ∧ . . . ∧

xt1,γn) and cs,m,u,x,q,t′(1) = xt
′

1,γ1 ∧ . . .∧ x
t
′

1,γn , leads to a contradiction (since the result of
the queries are the same given that in decls we just executed SELECT queries).
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(f) t(1) = 〈q, ex〉 and t(1) = 〈q, secEx〉. Since t and t′ are configuration-consistent paths, it
follows that ¬allowed(s, u, q) and allowed(s, u, q), leading to a contradiction.

2. k > 1. Then the two paths differ on the (k − 1)-th scheduled trigger t. There are 9 cases
depending on the values t(k) and t′(k):
(a) t(k) = 〈t, ok〉 and t(k) = 〈t, secEx〉. Since t and t′ are configuration-consistent paths, it

follows that allowed(s, u, t(m)) and ¬allowed(s, u, t(m)), leading to a contradiction.
(b) t(k) = 〈t, ok〉 and t(k) = 〈t, ex〉. Then, cs,m,u,x,q,t(k) = xtk,cond ∧ xtk,γ1 ∧ . . . ∧ x

t
k,γn and

cs,m,u,x,q,t′(k) = xt
′

k,cond ∧ ¬(xt
′

k,γ1 ∧ . . . ∧ x
t
′

k,γn). From decls’s definition, the variables
are initialized as follows: xtk,cond ← SELECT wp(ϕ, tk−1), xt

′

k,cond ← SELECT wp(ϕ, t′k−1),
xtk,γi ← SELECT wp(γi, tk), and xt

′

k,γi
← SELECT wp(γi, t′

k) for all γi ∈ Γ. From this
and t and t

′ differ only on the k-th element, it follows that wp(ϕ, tk−1) = wp(ϕ, t′k−1).
From t(k) = 〈t, ok〉 and t(k) = 〈t, ex〉, it follows that wp(γi, tk) = wp(γi, t′

k) for all γi ∈ Γ.
Hence, all the variables are initialized using the same queries. Since during decls we execute
only SELECT queries, the variables are initialized to the same values. This combined with
cs,m,u,x,q,t(k) = xtk,cond∧xtk,γ1∧. . .∧x

t
k,γn and cs,m,u,x,q,t′(k) = xt

′

k,cond∧¬(xt
′

k,γ1∧. . .∧x
t
′

k,γn)
leads to a contradiction (since just one of the conditions could have been satisfied).

(c) t(k) = 〈t, ok〉 and t(k) = 〈t, dis〉. Then, cs,m,u,x,q,t(k) = xtk,cond ∧ xtk,γ1 ∧ . . . ∧ x
t
k,γn and

cs,m,u,x,q,t′(k) = ¬xt
′

k,cond . From decls’s definition, the variables are initialized as follows:
xtk,cond ← SELECT wp(ϕ, tk−1), and xt

′

k,cond ← SELECT wp(ϕ, t′k−1). From this and t and
t
′ differ only on the k-th element, it follows that wp(ϕ, tk−1) = wp(ϕ, t′k−1). Hence, all
the variables xtk,cond and xt

′

k,cond are initialized using the same queries. Since during decls
we execute only SELECT queries, the variables are initialized to the same values. This
combined with cs,m,u,x,q,t(k) = xtk,cond ∧ xtk,γ1 ∧ . . . ∧ x

t
k,γn and cs,m,u,x,q,t′(k) = ¬xt

′

k,cond
leads to a contradiction (since just one of the conditions could have been satisfied).

(d) t(k) = 〈t, secEx〉 and t(k) = 〈t, ok〉. The proof of this case is similar to that of t(k) = 〈t, ok〉
and t(k) = 〈t, secEx〉.

(e) t(k) = 〈t, secEx〉 and t(k) = 〈t, ex〉. Since t and t′ are configuration-consistent paths, it
follows that ¬allowed(s, u, t(m)) and allowed(s, u, t(m)), leading to a contradiction.

(f) t(k) = 〈t, secEx〉 and t(k) = 〈t, dis〉. Then, cs,m,u,x,q,t(k) = xtk,cond and cs,m,u,x,q,t′(k) =
¬xt

′

k,cond . From decls’s definition, the variables are initialized as follows: xtk,cond ← SELECT

wp(ϕ, tk−1), and xt
′

k,cond ← SELECT wp(ϕ, t′k−1). From this and t and t
′ differ only on

the k-th element, it follows that wp(ϕ, tk−1) = wp(ϕ, t′k−1). Hence, all the variables
xtk,cond and xt

′

k,cond are initialized using the same queries. Since during decls we execute
only SELECT queries, the variables are initialized to the same values. This combined with
cs,m,u,x,q,t(k) = xtk,cond and cs,m,u,x,q,t′(k) = ¬xt

′

k,cond leads to a contradiction (since just
one of the conditions could have been satisfied).

(g) t(k) = 〈t, ex〉 and t(k) = 〈t, ok〉. The proof of this case is similar to that of t(k) = 〈t, ex〉
and t(k) = 〈t, ok〉.

(h) t(k) = 〈t, ex〉 and t(k) = 〈t, secEx〉. Since t and t′ are configuration-consistent paths, it
follows that allowed(s, u, t(m)) and ¬allowed(s, u, t(m)), leading to a contradiction.

(i) t(k) = 〈t, ex〉 and t(k) = 〈t, dis〉. Then, cs,m,u,x,q,t(k) = xtk,cond ∧ ¬(xtk,γ1 ∧ . . . ∧ x
t
k,γn)

and cs,m,u,x,q,t′(k) = ¬xt
′

k,cond . From decls’s definition, the variables are initialized as
follows: xtk,cond ← SELECT wp(ϕ, tk−1), and xt

′

k,cond ← SELECT wp(ϕ, t′k−1). From this and
t and t′ differ only on the k-th element, it follows that wp(ϕ, tk−1) = wp(ϕ, t′k−1). Hence,
all the variables xtk,cond and xt

′

k,cond are initialized using the same queries. Since during
decls we execute only SELECT queries, the variables are initialized to the same values. This
combined with cs,m,u,x,q,t(k) = xtk,cond∧¬(xtk,γ1∧. . .∧x

t
k,γn) and cs,m,u,x,q,t′(k) = ¬xt

′

k,cond
leads to a contradiction (since just one of the conditions could have been satisfied).

(j) t(k) = 〈t, dis〉 and t(k) = 〈t, ok〉. The proof of this case is similar to that of t(k) = 〈t, ok〉
and t(k) = 〈t, dis〉.

(k) t(k) = 〈t, dis〉 and t(k) = 〈t, secEx〉. The proof of this case is similar to that of t(k) = 〈t,
secEx〉 and t(k) = 〈t, dis〉.

(l) t(k) = 〈t, dis〉 and t(k) = 〈t, ex〉. The proof of this case is similar to that of t(k) = 〈t, ex〉
and t(k) = 〈t, dis〉.

Since all cases lead to a contradiction, we proved our claim.
Conditions and execution paths. Here we prove our claim that if cond〈s,ctx〉,m,u,x,q(t) is satisfied,
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then the configuration-consistent execution path t represents an actual execution of the command
and the corresponding triggers. Let t be an execution path such that cond〈s,ctx〉,m,u,x,q(t) is satisfied
in the local state 〈m, s〉. We now show that each prefix of t corresponds to a computation on the
database (i.e., correspond to a run in the database). We show this by induction on the prefix’s length.

For the base case, let t′ be the prefix of length 1. Then, t′ is 〈q, r〉, where r ∈ {secEx, ok, ex}.
If r = secEx, it follows that allowed(s, u, q) = ⊥. From this and allowed’s definition, it follows

that executing the command on the database throws a security exception.
If r = ex, it follows that allowed(s, u, q) = >. From this and allowed’s definition, it follows that

executing the command on the database does not throw a security exception. Furthermore, from
r = ex, it follows that (1) t = t

′, and (2) cond〈s,ctx〉,m,u,x,q(t) = ¬(xt1,γ1 ∧ . . .∧ x
t
1,γn). From (1), (2),

and cond〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉, it follows that one of {xt1,γ1 , . . . , x
t
1,γn}

evaluates to ⊥. From this and decls’s definition, there is a γi such that the result of SELECT wp(γi,
t
k) on the database s is ⊥. From this and Lemma D.8, executing the query q throws an integrity
exception.

Finally, if r = ok, it follows that allowed(s, u, q) = >. From this and allowed’s definition, it follows
that executing the command on the database does not throw a security exception. Furthermore, it
follows that one of the conjuncts in cond〈s,ctx〉,m,u,x,q(t) is xt1,γ1 ∧ . . . ∧ x

t
1,γn . From (1), (2), and

cond〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉, it follows that all variables in {xt1,γ1 , . . . ,

xt1,γn} evaluates to ⊥. From this and decls’s definition, it follows that for all γi ∈ Γ, the result of
SELECT wp(γi, tk) on the database s is >. From this and Lemma D.8, executing the query q does not
throw an integrity exception.

For the induction step, we assume that all prefixes of length less than k correspond to actual
computations. We now show that the same holds for prefixes of length k. Then, t′ = t

′′·〈t, r〉, where
r ∈ {secEx, ok, ex, dis}.

If r = secEx, it follows that allowed(s, u, q) = ⊥. From this and allowed’s definition, it follows that
executing the trigger on the database throws a security exception. Furthermore, cond〈s,ctx〉,m,u,x,q(t)
contains the conjunct xtk,cond . From this and cond〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉,
it follows that xtk,cond ’s value is >. From this and decls’s definition, the result of SELECT wp(φ, tk−1)
on the database s is >, where φ is the trigger’s condition. From the induction hypothesis, it follows
that tk−1 represents a computation. From this, the result of SELECT wp(ψ, tk−1) on the database s
is >, and Lemma D.8, it follows that the trigger is enabled in the computation.

If r = ex, it follows that allowed(s, u, q) = >. From this and allowed’s definition, it follows that
executing the trigger on the database does not throw a security exception. Furthermore, from r = ex,
it follows that cond〈s,ctx〉,m,u,x,q(t) contains the conjunct xtk,cond∧¬(xtk,γ1∧. . .∧x

t
k,γn). From this and

cond〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉, it follows that xtk,cond ’s value is >. From this
and decls’s definition, the result of SELECT wp(φ, tk−1) on the database s is >, where φ is the trigger’s
condition. From the induction hypothesis, it follows that tk−1 represents a computation. From this,
the result of SELECT wp(ψ, tk−1) on the database s is >, and Lemma D.8, it follows that the trigger
is enabled in the computation. Furthermore, there is one of {xt1,γ1 , . . . , x

t
1,γn} that evaluates to ⊥.

From this and decls’s definition, there is a γi such that the result of SELECT wp(γi, tk) on the database
s is ⊥. From this and Lemma D.8, executing the trigger t throws an integrity exception.

If r = dis, cond〈s,ctx〉,m,u,x,q(t) contains the conjunct ¬xtk,cond . From this and cond〈s,ctx〉,m,u,x,q(t)
is satisfied in the local state 〈m, s〉, it follows that xtk,cond ’s value is ⊥. From this and decls’s definition,
the result of SELECT wp(φ, tk−1) on the database s is ⊥, where φ is the trigger’s condition. From the
induction hypothesis, it follows that tk−1 represents a computation. From this, the result of SELECT
wp(ψ, tk−1) on the database s is ⊥, and Lemma D.8, it follows that the trigger is disabled in the
computation.

Finally, if r = ok, it follows that allowed(s, u, q) = >. From this and allowed’s definition, it follows
that executing the trigger on the database does not throw a security exception. Furthermore, from
r = ex, it follows that cond〈s,ctx〉,m,u,x,q(t) contains the conjunct xtk,cond ∧ xtk,γ1 ∧ . . . ∧ x

t
k,γn . From

this and cond〈s,ctx〉,m,u,x,q(t) is satisfied in the local state 〈m, s〉, it follows that the values of xtk,cond ,

xtk,γ1 , . . . , x
t
k,γn are >. From this and decls’s definition, the results of SELECT wp(φ, tk−1), SELECT

wp(γ1, t
k), . . . , SELECT wp(γn, tk) on the database s are >, where φ is the trigger’s condition. From the

induction hypothesis, it follows that tk−1 represents a computation. From this, the results of SELECT
wp(φ, tk−1), SELECT wp(γ1, t

k), . . . , SELECT wp(γn, tk) on the database s are >, and Lemma D.8, it
follows that (1) the trigger t is enabled and (2) executing the trigger t does not throw integrity
exceptions.
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Encoding and execution paths. Here, we show that body〈s,ctx〉,m,u,x,q(t) correctly implements
the semantics of the execution path t. Let t be a configuration-consistent execution path. If t = 〈q,
secEx〉, then the produced code only assigns 〈SecEx, ∅〉 to x and does not modify the database.
If t = 〈q, ex〉, then the produced code only assigns 〈IntEx, θ〉 to x, where θ is the set of violated
constraints, and does not modify the database. Furthermore, in both cases the produced code creates
the corresponding database-level event for the user db(u). Since we use the weakest precondition, θ
contains exactly the violated constraints. If t does not ends in ex or secEx and |t = 1|, the generated
code produces the database-level event (for the user db(u) or public depending on the command),
modifies the database state as described in t, and sets the correct value for x. If t does not ends in
ex or secEx and |t = 1|, the generated code produces the database-level event (for the user db(u) or
public depending on the command) that contains also the observations produced by triggers, modifies
the database state as described in t, and sets the correct value for x. If |t| > 1 and t ends in ex, then
the generated code stores in x the error message 〈t, IntEx, θ〉 (which contains the trigger t that has
thrown the exception and the set θ of all violated integrity constraints) and produces the associated
database-level event. Finally, if |t| > 1 and t ends in secEx, then the generated code stores in x
the error message 〈t,SecEx, ∅〉 (which contains the trigger t that has thrown the exception) and
produces the associated database-level event.

Lemma D.10 states that the local semantics of the security monitor correctly mimics the opera-
tional semantics of WhileSql for all statements that are not queries x← q.

Lemma D.10. Let c ∈ Com be an extended WhileSql program such that safe(c), m ∈ Mem be
a memory, 〈s, ctx〉 be a runtime state such that trigger(ctx) = ε, and u ∈ UID be a user. Fur-
thermore, let ∆ be a monitor state. If 〈∆, c,m, 〈s, ctx〉〉 τ ′

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, then 〈strip(c),

m, 〈s, ctx〉〉 τ ′′−−→
R

u 〈strip(c′),m′′, 〈s′′, ctx ′′〉〉 and the following conditions hold: (1) for all variables x
occurring in strip(c), then m′(x) = m′′(x), (2) s′ = s′′, (3) triggers(ctx ′) = triggers(ctx ′′) = ε, and
(4) τ ′ = τ ′′, where −→R

u is the reflexive closure of −→u.

Proof. Let c ∈ Com be an extended WhileSql program such that safe(c), m ∈ Mem be a memory,
〈s, ctx〉 be a runtime state such that trigger(ctx) = ε, u ∈ UID be a user, and ∆ be a monitor state.
Assume that 〈∆, c,m, 〈s, ctx〉〉 τ

′
u 〈∆′, c′,m′, 〈s′, ctx ′〉〉. We prove our claim by structural induction

on the rules defining τ ′
u.

Base case. There are several cases depending on the rule used in the computation:
• Rule F-Skip. From the rule, it follows that c = skip, ∆ = ∆′, c′ = ε, m = m′, 〈s, ctx〉 = 〈s′,

ctx ′〉, and τ ′ = ε. By applying the E-Skip rule to 〈c,m, 〈s, ctx〉〉, where c = skip, we obtain
that 〈c,m, 〈s, ctx〉〉 τ ′′−−→u 〈c′′,m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = ε, c′′ = ε, m′′ = m, and 〈s, ctx〉 = 〈s′′,
ctx ′′〉. Therefore, c′ = c′′, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε,
and τ ′ = τ ′′.

• Rule F-Assign. From the rule, it follows that c = x := e, c′ = ε, m′ = m[x 7→ JeK(m)], 〈s′,
ctx ′〉 = 〈s, ctx〉, and τ ′ = ε. By applying the E-Assign rule to 〈c,m, 〈s, ctx〉〉, where c = x := e,
we obtain 〈c,m, 〈s, ctx〉〉 τ ′′−−→u 〈c′′,m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = ε, c′′ = ε, m′′ = m[x 7→ JeK(m)],
and 〈s, ctx〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) =
triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-Out. From the rule, it follows that c = out(u′, e), c′ = ε, m′ = m, 〈s′, ctx ′〉 = 〈s, ctx〉,
and τ ′ = (u′, JeK(m)). By applying the E-Out rule to 〈c,m, 〈s, ctx〉〉, where c = out(u′, e),
we obtain 〈c,m, 〈s, ctx〉〉 τ ′′−−→u 〈c′′,m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = 〈u′, JeK(m)〉, c′′ = ε, m′′ = m,
and 〈s, ctx〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) =
triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-IfTrue. From the rule, it follows that c = if e then c1 else c2, JeK(m) = >, c′ =
[c1 ; set pc to ∆(pcu)], m′ = m, 〈s′, ctx ′〉 = 〈s, ctx〉, and τ ′ = ε. By applying the E-
IfTrue rule to 〈c,m, 〈s, ctx〉〉, where c = if e then c1 else c2, we obtain 〈strip(c),m, 〈s,
ctx〉〉 τ ′′−−→u 〈strip(c′),m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = ε, m′′ = m, and 〈s, ctx〉 = 〈s′′, ctx ′′〉 (because
JeK(m) = >, strip(c) = if e then strip(c1) else strip(c2), and strip(c′) = strip(c1)). Therefore,
m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) = triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-IfFalse. The proof of this case is similar to that of the F-IfTrue case.
• Rule F-WhileTrue. The proof of this case is similar to that of the F-IfTrue case.
• Rule F-WhileFalse. The proof of this case is similar to that of the F-IfTrue case.
• Rule F-SeqEmpty. From the rule, it follows that c = ε ; c1, c′ = c1, m = m′, 〈s, ctx〉 = 〈s′,

ctx ′〉, and τ ′ = ε. By applying the E-SeqEmpty rule to 〈c,m, 〈s, ctx〉〉, where c = ε ; c1,
we obtain 〈c,m, 〈s, ctx〉〉 τ ′′−−→u 〈c′′,m′′, 〈s′′, ctx ′′〉〉, where τ ′′ = ε, c′′ = c1, m′′ = m, and
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〈s, ctx〉 = 〈s′′, ctx ′′〉. Therefore, c′ = c′′, m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, triggers(ctx ′) =
triggers(ctx ′′) = ε, and τ ′ = τ ′′.

• Rule F-RemoveExpandedCode. The proof of this case is similar to that of the F-SeqEmpty
case.

• Rule F-UpdateLabels. From the rule, it follows that c = set pc to l, c′ = ε, m′ = m,
〈s′, ctx ′〉 = 〈s, ctx〉, and τ ′ = ε. Since the rule modifies only the monitor configuration and
strip(c) = strip(c′) = ε, it follows that 〈strip(c),m, 〈s, ctx〉〉 −→R

u 〈strip(c′),m′′, 〈s′′, ctx ′′〉〉,
where m′ = m′′, 〈s′, ctx ′〉 = 〈s′′, ctx ′′〉, and triggers(ctx ′) = triggers(ctx ′′) = ε.

This completes the proof of the base step.
Induction Step. For the induction step, we consider only the F-Seq and F-ExpandedCode rules.

• Rule F-Seq. From the rule, it follows that c = c1 ; c2 and 〈∆, c1,m, 〈s, ctx〉〉 τ ′
u 〈∆, c′1,m′′,

〈s′′, ctx ′′〉〉. Furthermore, from safe(c), it follows that we can apply the induction hypothesis.
From 〈∆, c1,m, 〈s, ctx〉〉 τ ′

u 〈∆, c′1,m′′, 〈s′′, ctx ′′〉〉 and the induction’s hypothesis, it follows

that 〈strip(c1),m, 〈s, ctx〉〉 τ ′′−−→
R

u 〈strip(c′1),m′′′, 〈s′′′, ctx ′′′〉〉 such that m′′′ and m′′ agree on all
variables occurring in strip(c), τ ′′ = τ ′, s′′ = s′′′, and triggers(ctx ′′) = triggers(ctx ′′′) = ε.
Observe also that strip(c1; c2) = strip(c1); strip(c2). There are two cases:
– the first statement executed in c1 is of the form set pc to l. Therefore, m′′′ = m′′ = m,
〈s, ctx〉 = 〈s′′, ctx ′′〉 = 〈s′′′, ctx ′′′〉, and τ ′ = τ ′′ = ε. From this, it directly follows that

〈(strip(c1) ; strip(c2)),m, 〈s, ctx〉〉 τ ′−→
R

u 〈strip(c′1) ; strip(c2),m′′′, 〈s′′′, ctx ′′′〉〉.
– the first statement executed in c1 is not of the form set pc to l. By applying the E-Seq

rule to 〈∆, strip(c1 ; c2),m, 〈s, ctx〉〉 (given that (1) 〈strip(c1),m, 〈s, ctx〉〉 τ ′
u 〈strip(c′1),

m′′′, 〈s′′′, ctx ′′′〉〉, and (2) strip(c1 ; c2) = strip(c1) ; strip(c2)) we obtain 〈(strip(c1) ;
strip(c2)),m, 〈s, ctx〉〉 τ ′−→u 〈strip(c′1) ; strip(c2),m′′′, 〈s′′′, ctx ′′′〉〉. Our claim directly fol-
lows from (1) m′′′ and m′′ agree on all variables modified in the computation, (2) τ ′′ = τ ′,
(3) s′′ = s′′′, and (4) triggers(ctx ′′) = triggers(ctx ′′′) = ε.

• Rule F-ExpandedCode. From the rule, it follows that c = [c1] and 〈∆, c1,m, 〈s, ctx〉〉 τ
′
u 〈∆,

c′1,m
′′, 〈s′′, ctx ′′〉〉. Furthermore, from safe(c), it follows that we can apply the induction hy-

pothesis. From 〈∆, c1,m, 〈s, ctx〉〉 τ
′
u 〈∆, c′1,m′′, 〈s′′, ctx ′′〉〉 and the induction’s hypothesis, it

follows that 〈strip(c1),m, 〈s, ctx〉〉 τ ′′−−→
R

u 〈strip(c′1),m′′′, 〈s′′′, ctx ′′′〉〉 such thatm′′′ andm′′ agree
on all variables occurring in strip(c), τ ′′ = τ ′, s′′ = s′′′, and triggers(ctx ′′) = triggers(ctx ′′′) = ε
(since strip([c]) = strip(c)).

This completes the proof of the induction step.

Finally, Theorem D.5 states that the local semantics of the security monitor correctly implements
the local semantics of WhileSql.

Theorem D.5. Let c ∈ Com be a WhileSql program (without extended commands from Sec-
tion 7.6), m ∈ Mem be a memory, 〈s, ctx〉 be a runtime state such that trigger(ctx) = ε, and
u ∈ UID be a user. Furthermore, let ∆ be a monitor state. If 〈∆, c,m, 〈s, ctx〉〉 τ ′

∗

u 〈∆′, ε,m′,
〈s′, ctx ′〉〉, then 〈c,m, 〈s, ctx〉〉 τ ′′−−→∗u 〈ε,m′′, 〈s′′, ctx ′′〉〉 and the following conditions hold: (1) for all
variables x occurring in c, then m′(x) = m′′(x), (2) s′ = s′′, (3) triggers(ctx ′) = triggers(ctx ′′) = ε,
and (4) τ ′ = τ ′′.

Proof. This claim directly follows from Lemma D.9, Lemma D.10. In particular, Lemma D.9 is
used to handle statements of the form x ← q, whereas Lemma D.10 is used to handle all other
statements.

D.2.2 Global semantics
Theorem D.6 shows that the monitor’s global semantics is transparent for sequential schedulers.

We remark, however, that the monitor’s global semantics is, in general, not transparent as the monitor
modifies the scheduling of commands to avoid timing leaks that may be introduced by the parallel
execution of multiple WhileSql programs.

Theorem D.6. Let C ∈ Com∗UID be a sequence of WhileSql programs (without the extended
commands from Section 7.6), M ∈ Mem∗UID be a sequence of memories, s be a system state, and
S be the sequential scheduler 0∞. Whenever 〈∆, C,M, 〈s, ε〉,S〉 τ ∗ 〈∆′, ε,M ′, 〈s′, ctx ′〉,S ′〉 then 〈C,
M, 〈s, ε〉,S〉 τ−→∗ 〈ε,M ′′, 〈s′′, ctx ′′〉,S ′′〉 and the following conditions hold: (1) for all 1 ≤ i ≤ |M |,
for all variables that occur in C(i), then M ′(i)(x) = M ′′(i)(x), (2) s′ = s′′, (3) triggers(ctx) =
triggers(ctx ′) = ε, and (4) S ′ = S ′′.
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deps(〈u′, JeK(m)〉, 〈∆,out(u′, e),m, s〉 〈u
′,JeK(m)〉

u 〈∆, ε,m, s〉) = vars(e)

deps(〈u, v′, o′, τ ′〉, conf 〈u,v
′,o′,τ ′〉

u conf ′) = vars(v) ∪ vars(o) ∪
⋃

1≤i≤|τ |

vars(τ(i))

where conf = 〈∆,dbout(u, v, o, τ),m, s〉 and conf ′ = 〈∆, ε,m, s〉

deps(obs, 〈∆, c1 ; c2,m, s〉 obs
u 〈∆′, c′1 ; c2,m′, s′〉) = deps(obs, 〈∆, c1,m, s〉 obs

u 〈∆′, c′1,m′, s′〉)

deps(obs, 〈∆,asuser(u′, c),m, s〉 obs
u 〈∆′, c′,m′, s′〉) = deps(obs, 〈∆, c,m, s〉 obs

u′ 〈∆′, c′,m′, s′〉)
where query(c) = >

deps(obs, 〈∆, [c],m, s〉 obs
u 〈∆′, [c′],m′, s′〉) = deps(obs, 〈∆, c,m, s〉 obs

u 〈∆′, c′,m′, s′〉)

deps(obs, 〈∆, C,M, s, n′ · S〉 obs 〈∆′, C′,M ′, s′,S ′〉) = deps(obs, 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉)

where n = 1 + (n′ mod |C|), C(n) = 〈u, c〉, and M(n) = 〈u,m〉

deps(obs, conf τ conf ′) = ∅ for any obs and conf τ conf ′ not matching the above cases

Figure D.1: Direct dependencies.

Proof. The claim directly follows from (1) the use of the sequential scheduler, (2) the application
of Theorem D.5 to the execution of each program in C, and (3) the fact that the monitor’s global
semantics does not add new observations to the trace.

D.3 Monitor’s soundness

Here, we prove the main result of Section 7.6, namely that our enforcement mechanism is sound
with respect to our security condition for external attackers. In the following, let 〈D,Γ〉 be a system
configuration such that the constraints in Γ are well-formed.

D.3.1 Auxiliary notation
In the following, we lift the trace projection operator τ�u to sets of users. The projection of

a trace τ for a set of users U , written τ�U , is as follows: ε�U = ε, (〈u′, e〉·τ ′)�U = 〈u′, e〉·τ ′�U
if there exists u ∈ U such that u′ �U u, (〈u′, q, o, τ ′′〉·τ ′)�U = 〈u′, q, o, τ ′′�U 〉·τ ′�U if there exists
a user u ∈ U such that (1) u′ �U u or (2) there is a u′′ ∈ users(τ ′′) such that u′′ �U u, and
(〈u′, e〉·τ ′)�U = (〈u′, q, o, τ ′′〉·τ ′)�U = τ ′�U otherwise, where users(τ) is the set of all users appearing
in the observations in τ .

Let obs be either a program-level or a database-level observation. We denote by user(obs) the
user associated with the observation. Namely, user(〈u, o〉) = u, user(〈public, q, o, τ〉) = ATK , and
user(〈u′, q, o, τ〉) = u′ if u′ 6= ATK ∧ τ�ATK = ε and user(〈u′, q, o, τ〉) = ATK otherwise.

Let obs be either a program-level or a database-level observation and conf obs conf ′ be a step
of the local or global semantics. The direct dependencies of obs given conf obs conf ′ are defined in
Figure D.1.

Let c be a WhileSql extended program. The function first(c) returns the first statement to be
executed in c. Formally:

first(c) =


first(c1) if ∃c1. c = [c1]
first(c1) if ∃c1, c2. c = c1 ; c2
first(c1) if ∃u, c1. c = asuser(u, c1)
c otherwise

D.3.2 Equivalence definitions
We now introduce a number of equivalence relations that we use throughout the proofs. We first

introduce equivalence relations between monitor state, database states, and memories.

Definition D.2. Let ∆,∆′ be two monitor states, 〈m, s〉, 〈m′, s′〉 be two local states, and u be a user.
We say that ∆ and ∆′ are L-equivalent, where L is a subset of Vars ∪RC pred ∪ {pcu | u ∈ UID},

written ∆ ≈L ∆′, iff for all x ∈ L, ∆(x) = ∆′(x).



266 Appendix D. Proofs for Chapter 7

We say that s = 〈db, U, S, T, V 〉 and s′ = 〈db′, U ′, S′, T ′, V ′〉 are configuration equivalent, written
s ≡cfg s′, iff U = U ′, S = S′, T = T ′, and V = V ′.

We say that 〈m, s〉 and 〈m′, s′〉 are (V,Q)-equivalent, where V ⊆ Vars and Q ⊆ RC , written
〈m, s〉 ≈V,Q 〈m′, s′〉, iff (1) for all x ∈ V , m(x) = m′(x), and (2) for all q ∈ Q , [q]db = [q]db′ , where
s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, S′, T ′, V ′〉. �

We now formalize equivalence of local configurations.

Definition D.3. Let 〈∆, c,m, 〈s, ctx〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local configurations and ` ∈ L
be a label. We say that 〈∆, c,m, 〈s, ctx〉〉 and 〈∆′, c′,m′, 〈s′, ctx ′〉〉 are `-equivalent, written 〈∆, c,m,
〈s, ctx〉〉 ≈` 〈∆′, c′,m′, 〈s′, ctx ′〉〉 iff

• for all x ∈ Vars ∪ {pcu | u ∈ UID}, ∆(x) v ` iff ∆′(x) v `,
• for all q ∈ RC pred , ∆(q) v ` iff ∆′(q) v `,
• 〈m, s〉 ≈V,Q 〈m′, s′〉, where V = {x ∈ Vars | ∆(x) v `} and Q = {q ∈ RC | LQ(∆, q) v `}, and
• ∆ ≈L ∆′, where L = {x ∈ Vars | ∆(x) v `} ∪ {q ∈ RC pred | ∆(q) v `} ∪ {pcu | u ∈ UID}.

Similarly, we say that two global configurations 〈∆, C,M, 〈s, ctx〉,S〉 and 〈∆′, C′,M ′, 〈s′, ctx ′〉,S ′〉 are
`-equivalent, written 〈∆, C,M, 〈s, ctx〉,S〉 ≈` 〈∆′, C′,M ′, 〈s′, ctx ′〉,S ′〉, iff |C| = |C′|, |M | = |M ′|,
and for all 1 ≤ i ≤ |C|, 〈∆, C(i),M(i), 〈s, ctx〉〉 ≈` 〈∆′, C′(i),M ′(i), 〈s′, ctx ′〉〉 �

D.3.3 Results about t
Here we show a simple property of joins in our disclosure lattice, namely that l1 t l2 v l3 holds

iff both l1 v l3 and l2 v l3 hold. While one of the directions (namely l1 t l2 v l3 ⇒ l1 v l3 ∧ l2 v l3)
holds for disclosure lattices in general, the other one (i.e., l1 v l3 ∧ l2 v l3 ⇒ l1 t l2 v l3) holds
specifically for the determinacy-based lattice. We do not explicitly refer to Proposition D.8 in the
rest of the proofs. Observe that from Proposition D.8 it follows that

∧
i
(li v l) iff (

⊔
i
li) v l.

Proposition D.8. Let D be a database schema, Γ be a set of integrity constraints, ��D,Γ be the
relation such that Q ��D,Γ Q′ iff D,Γ ` Q′ � Q. Furthermore, the ��D,Γ-disclosure lattice is 〈L,v,
t,u,⊥,>〉, where v is ��D,Γ. For any l1, l2, l3 ∈ L, the following properties hold:

• If l1 t l2 v l3, then l1 v l3 and l2 v l3.
• If l1 v l3 and l2 v l3, then l1 t l2 v l3.

Proof. Let D be a database schema, Γ be a set of integrity constraints, ��D,Γ be the relation such
that Q ��D,Γ Q′ iff D,Γ ` Q′ � Q. Furthermore, the ��D,Γ-disclosure lattice is 〈L,v,t,u,⊥,>〉,
where v is ��D,Γ.
First statement. Let l1, l2, l3 be three elements in L such that l1 t l2 v l3. From this and L’s
definition, it follows that there are three sets of queries Q1, Q2, Q3 ∈ 2RC such that li = cl(Qi) for
1 ≤ i ≤ 3. From this and l1 t l2 v l3, it follows that cl(Q1) t cl(Q2) v cl(Q3). From this and t’s
definition, it follows that cl(Q1 ∪Q2) v cl(Q3). From the definition of closure, cl(Q1) ⊆ cl(Q1 ∪Q2)
and cl(Q2) ⊆ cl(Q1 ∪ Q2). From this and the notion of disclosure order, cl(Q1) v cl(Q1 ∪ Q2) and
cl(Q2) v cl(Q1 ∪ Q2). From this and cl(Q1 ∪ Q2) v cl(Q3), cl(Q1) v cl(Q3) and cl(Q2) v cl(Q3).
Hence, l1 v l3 and l2 v l3.
Second statement. Let l1, l2, l3 be three elements in L such that l1 v l3 and l2 v l3. From this and
L’s definition, it follows that there are three sets of queries Q1, Q2, Q3 ∈ 2RC such that li = cl(Qi)
for 1 ≤ i ≤ 3. From cl(Q1) v cl(Q3), cl(Q2) v cl(Q3), and property (2) of disclosure lattices, it
follows that Q1 ��D,Γ Q3 and Q2 ��D,Γ Q3. From this and ��D,Γ’s definition, D,Γ ` Q3 � Q1 and
D,Γ ` Q3 � Q2. We claim that D,Γ ` Q3 � Q1 ∪Q2. From this, Q1 ∪Q2 ��D,Γ Q3. From this and
property (2) of disclosure lattices, cl(Q1∪Q2) v cl(Q3). From this and cl(Q1)tcl(Q2) = cl(Q1∪Q2),
cl(Q1) t cl(Q2) v cl(Q3).

We now prove our claim that D,Γ ` Q3 � Q1 and D,Γ ` Q3 � Q2 imply D,Γ ` Q3 � Q1 ∪Q2.
Let Q1, Q2 and Q3 be three sets of queries in 2RC such that D,Γ ` Q3 � Q1 and D,Γ ` Q3 � Q2.
Assume, for contradiction’s sake, that D,Γ ` Q3 � Q1 ∪ Q2 does not hold. From this, it follows
that there are two database states db and db′ and a query q′ ∈ Q1 ∪ Q2 such that [q]db = [q]db′ for
all q ∈ Q3 and [q′]db 6= [q′]db′ . If q′ ∈ Q1, then there are two database states db and db′ and a query
q′ ∈ Q1 such that [q]db = [q]db′ for all q ∈ Q3 and [q′]db 6= [q′]db′ . Therefore, D,Γ ` Q3 � Q1 does
not hold, leading to a contradiction. Similarly, if q′ ∈ Q2, then there are two database states db
and db′ and a query q′ ∈ Q2 such that [q]db = [q]db′ for all q ∈ Q3 and [q′]db 6= [q′]db′ . Therefore,
D,Γ ` Q3 � Q2 does not hold, leading to a contradiction. Since both cases lead to a contradiction,
this completes the proof of our claim.
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D.3.4 Results about LQ
Here we state some simple facts about LQ.

Proposition D.9. Let ∆ and ∆′ be two monitor states. If ∆(q) v ` iff ∆′(q) v ` for all q ∈ RC pred,
then LQ(∆, q) v ` iff LQ(∆′, q) v ` for all q ∈ RC .

Proof. Let ∆ and ∆′ be two monitor states such that ∆(q) v ` iff ∆′(q) v ` for all q ∈ RC pred .
(⇒). Assume that LQ(∆, q) v ` holds. From this, it follows that

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆(q′) v `.

From this, it follows that
∧
Q∈suppD,Γ(q)

∧
q′∈Q ∆(q′) v `. From this and ∆(q) v ` iff ∆′(q) v

` for all q ∈ RC pred , it follows that
∧
Q∈suppD,Γ(q)

∧
q′∈Q ∆′(q′) v `. From this, it follows that⊔

Q∈suppD,Γ(q)

⊔
q′∈Q ∆′(q′) v `. From this, LQ(∆′, q) v `.

(⇐). Assume that LQ(∆′, q) v ` holds. From this, it follows that
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′(q′) v `.

From this, it follows that
∧
Q∈suppD,Γ(q)

∧
q′∈Q ∆′(q′) v `. From this and ∆(q) v ` iff ∆′(q) v

` for all q ∈ RC pred , it follows that
∧
Q∈suppD,Γ(q)

∧
q′∈Q ∆(q′) v `. From this, it follows that⊔

Q∈suppD,Γ(q)

⊔
q′∈Q ∆(q′) v `. From this, LQ(∆, q) v `.

Proposition D.10. Given a monitor state ∆ and a predicate query q ∈ RC pred, ∆(q) = LQ(∆, q).

Proof. Let ∆ be a monitor state and q ∈ RC pred be a predicate query. From the definition of LQ(∆,
q), it follows that LQ(∆, q) =

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆(q′). Since Γ is a set of well-formed integrity

constraints and q ∈ RC pred , suppD,Γ(q) = {{q}}. From this, LQ(∆, q) = ∆(q).

D.3.5 Results about relaxed NSU checks
We now prove some simple results about relaxed NSU checks.

Proposition D.11. Let sec0 be the initial policy, ` be a label such that cl(auth(sec0,ATK)) v `,
and ∆ be a monitor state. If nsu(x, pcu) is satisfied for ∆ and ∆(x) v `, then ∆(pcu) v `.

Proof. Let sec0 be the initial policy, ` be a label such that cl(auth(sec0,ATK)) v `, and ∆ be a
monitor state. Furthermore, assume that nsu(x, pcu) is satisfied for ∆ and ∆(x) v `. From this, it
follows that ∆(pcu) v cl(auth(sec0,ATK)) ∨∆(pcu) v ∆(x). There are two cases:

1. ∆(pcu) v cl(auth(sec0,ATK)) holds. From this and cl(auth(sec0,ATK)) v `, it follows that
∆(pcu) v `.

2. ∆(pcu) v ∆(x) holds. From this and ∆(x) v `, it follows that ∆(pcu) v `.
This completes the proof.

D.3.6 Lemmas about the local semantics
Here we present some auxiliary results about the local semantics of our enforcement mechanism.
Lemma D.11 states that whenever the security monitor produces an output, the labels associated

with pc and with the event’s dependencies are less than (or equal to) the label associated with the
user that can observe the event. We remark that this lemma directly implies two facts: (1) observable
events for ATK occur only in low contexts, i.e., in contexts such that ∆(pcu) v LU (s,ATK), and (2)
all direct flows are authorized, namely ATK observes only events that directly depend on information
at a lower (or equal) level in the security lattice.

Lemma D.11. Whenever r = 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉 and obs 6= ε, we have ∆(deps(obs,

r)) t∆(pcu) v LU (s, user(obs)).

Proof. Let 〈∆, c,m, s〉 and 〈∆′, c′,m′, s′〉 be local configurations such that 〈∆, c,m, s〉 obs
u 〈∆′, c′,

m′, s′〉 and obs 6= ε. In the following, we denote 〈∆, c,m, s〉 obs
u 〈∆′, c′,m′, s′〉 as r. We now prove,

by structural induction on τ
u, that ∆(deps(obs, r)) t ∆(pcu) v LU (s, user(obs)). In the following

we consider only on those rules that produce observations. Proving the claim for rules not producing
outputs is trivial.
Base Case. There are two cases depending on the rule used to produce the event.

• Rule F-Out. From the rule, it directly follows that (1) obs = 〈u′, JeK(m)〉, and (2) ∆(e) t
∆(pcu) v LU (s, u′). From user ’s definition, it follows that user(〈u′, JeK(m)〉) = u′. From this
and ∆(e)t∆(pcu) v LU (s, u′), it follows that ∆(e)t∆(pcu) v LU (s, user(〈u′, JeK(m)〉)). From
this, deps(〈u′, JeK(m)〉, r) = free(e), and ∆(free(e)) = ∆(e), it follows that ∆(deps(〈u′, JeK(m)),
r〉) t∆(pcu) v LU (s, user(〈u′, JeK(m)〉)). Hence, ∆(deps(obs, r)) t∆(pcu) v LU (s, user(obs)).
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• Rule F-DbOut. From the rule, it follows that (1) obs = 〈u′, v′, o′, τ ′〉, where v′ = v[v1 7→
Jv1K(m), . . . , vn 7→ JvxK(m)], o′ = o[o1 7→ Jo1K(m), . . . , on 7→ JoyK(m)], and τ ′(i) = τ(i)[k1 7→
Jk1K(m), . . . , kn 7→ JkniK(m)], and (2) ∆(pcu)t`obs v LU (s, u′′), where `obs =

⊔
x∈vars(v) ∆(x)t⊔

x∈vars(o) ∆(x) t
⊔

1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆(x) and u′′ = u′ if u′ 6= ATK and τ�ATK = ε and

u′′ = ATK otherwise. From user ’s definition, there are two cases:
1. user(〈u′, v′, o′, τ ′〉) = u′ and u′ 6= ATK . This happens iff u′ 6= ATK and τ ′�ATK = ε.

From this, LU (s, user(〈u′, v′, o′, τ ′〉)) = > and the claim trivially holds.
2. user(〈u′, v′, o′, τ ′〉) = ATK . From this, it follows that u′ = ATK , u′ = public, or τ ′�ATK 6=
ε. From this, u′′ = user(〈u′, v′, o′, τ ′〉) = ATK . From this and ∆(pcu) t `obs v LU (s,
u′′), it follows that ∆(pcu) t `obs v LU (s, user(〈u′, v′, o′, τ ′〉)). From this and deps(〈u′,
v′, o′, τ ′〉, r) = vars(v) ∪ vars(o) ∪

⋃
1≤i≤|τ | vars(τ(i)), it follows that ∆(deps(〈u′, v′, o′,

τ ′〉, r)) t ∆(pcu) v LU (s, user(〈u′, v′, o′, τ ′〉)). Hence, ∆(deps(obs, r)) t ∆(pcu) v LU (s,
user(obs)).

This completes the proof of the base case.
Induction Step. The proof for the induction step directly follows from the induction hypothesis
(since the rules do not further introduce events).

Lemma D.12 states that, given a label `, whenever pcu becomes high with respect to `, this is
caused by a branching statement, a loop statement, or a set-label statement.
Lemma D.12. Let ` ∈ L be a label. Whenever 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if
∆(pcu) v ` and ∆′(pcu) 6v `, then one of the following conditions hold:

• first(c) = if e then c1 else c2 and ∆(e) 6v `,
• first(c) = while e do c1 and ∆(e) 6v `, or
• first(c) = set pc to `1 and `1 6v `.

Proof. Let c be a WhileSql program, ` ∈ L be a label, and 〈∆, c,m, 〈s, ctx〉〉 and 〈∆′, c′,m′, 〈s′,
ctx ′〉〉 be two local configurations such that (1) 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, and (2)
∆(pcu) v ` and ∆′(pcu) 6v `. We now prove, by structural induction on  u, that our claim holds.
In the following, we focus only on the rules that directly modify ∆(pcu). The proof for the other
cases is trivial.
Base Case. There are several cases depending on the rule used to derive 〈∆, c,m, 〈s, ctx〉〉 τ u 〈∆′,
c′,m′, 〈s′, ctx ′〉〉.

• Rule F-UpdateLabels. Then, first(c) = set pc to `1. From the rule, it follows that ∆′(pcu) =
`1. From this and ∆′(pcu) 6v `, it follows that `1 6v `.

• Rule F-IfTrue. Then, first(c) = if e then c1 else c2. Furthermore, from ∆(pcu) v `,
∆′(pcu) 6v `, and ∆′(pcu) = ∆(e) t∆(pcu), it follows that ∆(e) 6v `.

• Rule F-IfFalse. The proof of this case is similar to that of F-IfTrue.
• Rule F-WhileTrue. The proof of this case is similar to that of F-IfTrue.
• Rule F-WhileFalse. The proof of this case is similar to that of F-IfTrue.

Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemmas D.13 states that, given a label `, whenever we are in a high context (i.e., ∆(pcu) 6v `),
there are no changes to the values associated with all variables and queries whose labels are lower
than (or equal to) `.
Lemma D.13. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label such
that cl(auth(sec0,ATK)) v `. Whenever 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) 6v `,
then 〈m, s〉 ≈V,Q 〈m′, s′〉, where V = {x ∈ Vars | ∆(x) v `} and Q = {q ∈ RC | LQ(∆, q) v `}.

Proof. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label such that
cl(auth(sec0,ATK)) v `. Furthermore, let u ∈ UID be a user and 〈∆, c,m, 〈s, ctx〉〉, 〈∆′, c′,m′, 〈s′,
ctx ′〉〉 be two local configurations such that (1) 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, and (2)
∆(pcu) 6v `. Finally, let V = {x ∈ Vars | ∆(x) v `} and Q = {q ∈ RC | LQ(∆, q) v `}. We now
show, by structural induction on the rules defining  u, that 〈m, s〉 ≈V,Q 〈m′, s′〉. In the following,
we consider only those rules that modify the memory m or the database state s. For the other rules,
the claim holds trivially (since 〈m, s〉 = 〈m′, s′〉).
Base Case. There are several cases depending on the applied rule:

1. Rule F-Assign. Assume, for contradiction’s sake, that 〈m, s〉 6≈V,Q 〈m′, s′〉. From the rule,
it follows that s = s′ and m′ = m[x 7→ JeK(m)]. From this, 〈m, s〉 6≈V,Q 〈m′, s′〉, and ≈V,Q’s
definition, it follows that (1) x ∈ V and, therefore, ∆(x) v `, and (2) m(x) 6= m′(x). From
the rule, it follows that nsu(x, pcu) holds. From this, cl(auth(sec0,ATK)) v `, ∆(x) v `, and
Proposition D.11, it follows that ∆(pcu) v `. This, however, contradicts our assumption that
∆(pcu) 6v `.
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2. Rule F-Select. Assume, for contradiction’s sake, that 〈m, s〉 6≈V,Q 〈m′, s′〉. From the rule,
it follows that s = s′ and m′ = m[x 7→ r], where (〈s, ctx ′〉, r, ε, ε) = JqK(s, u). From this,
〈m, s〉 6≈V,Q 〈m′, s′〉, and ≈V,Q’s definition, it follows that (1) x ∈ V and, therefore, ∆(x) v `,
and (2) m(x) 6= m′(x). From the rule, it follows that nsu(x, pcu). From this, cl(auth(sec0,
ATK)) v `, ∆(x) v `, and Proposition D.11, it follows that ∆(pcu) v `. This, however,
contradicts our assumption that ∆(pcu) 6v `.

3. Rule F-UpdateDatabaseOk. Without loss of generality, we assume that q = T ′ ⊕ e and
that v is the tuple inserted in the database (after evaluating all the expressions). Assume, for
contradiction’s sake, that 〈m, s〉 6≈V,Q 〈m′, s′〉. From the rule, it follows that JqK(s, u) = (〈s′,
ctx ′〉, r, ε, ε) and m′ = m[x 7→ r]. From this, 〈m, s〉 6≈V,Q 〈m′, s′〉, and ≈V,Q’s definition, it
follows that there are two cases:
(a) x ∈ V and m(x) 6= m′(x). From x ∈ V and V ’s definition, it follows that ∆(x) v `. From

the rule, it follows that nsu(x, pcu). From this, cl(auth(sec0,ATK)) v `, ∆(x) v `, and
Proposition D.11, it follows that ∆(pcu) v `. This, however, contradicts our assumption
that ∆(pcu) 6v `.

(b) There is a query q′ ∈ Q such that [q′]s 6= [q′]s′ . From q′ ∈ Q, it follows that LQ(∆,
q′) v `. From this, it follows that

⊔
Q∈suppD,Γ(q′)

⊔
q′′∈Q ∆(q′′) v `. We claim that that

for all Q ∈ suppD,Γ(q′), T ′(v) ∈ Q. From this and
⊔
Q∈suppD,Γ(q′)

⊔
q′′∈Q ∆(q′′) v `, it

follows that ∆(T ′(v)) v `. From the rule, it follows that nsu(T ′(v), pcu). From this,
cl(auth(sec0,ATK)) v `, ∆(T ′(v)) v `, and Proposition D.11, it follows that ∆(pcu) v `.
This, however, contradicts our assumption that ∆(pcu) 6v `.
We now prove our claim that for all Q ∈ suppD,Γ(q′), T ′(v) ∈ Q. Assume that there exists
a Q ∈ suppD,Γ(q′) such that T ′(v) 6∈ Q. From suppD,Γ’s definition, it follows that the
predicate queries in Q determine q′. From the database semantics, the result of all queries
in Q is the same in s and s′ (since we modify only T ′(v)). From this and Q determines
q′, it follows that the result of q′ is the same in s and s′. This, however, contradicts
[q′]s 6= [q′]s′ .

4. Rule F-UpdateConfigurationOk. The proof of this case is similar to the F-Select case.
Induction Step. The proof for the induction step directly follows from the induction hypothesis
(since the rules do not further modify the memory and the database).

Lemma D.14 states that, given a label `, whenever we are in a high context (i.e., ∆(pcu) 6v `),
then (1) there are no changes to the labels associated with variables and queries whose labels are
initially below `, and (2) the label of a variable (or query) is initially below ` iff it is below ` also at
the end of the computation.

Lemma D.14. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label such
that cl(auth(sec0,ATK)) v `. Whenever 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) 6v `,
then the following conditions hold:

• for all x ∈ Vars, ∆(x) v ` iff ∆′(x) v `,
• for all q ∈ RC pred, ∆(q) v ` iff ∆′(q) v `,
• ∆ ≈L ∆′, where L = {x ∈ Vars | ∆(x) v `} ∪ {q ∈ RC pred | ∆(q) v `}.

Proof. Let sec0 be the policy used to initialize the monitor, ` ∈ L be a security label such that
cl(auth(sec0,ATK)) v `, u ∈ UID be a user, and 〈∆, c,m, 〈s, ctx〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local
configurations such that (1) 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, and (2) ∆(pcu) 6v `. We
prove our claim by structural induction on the rules defining  u. In the following, we consider only
those rules that modify the monitor state ∆ for the identifiers in Vars ∪RC pred . For the other rules,
the claim holds trivially.
Base Case. There are several cases depending on the applied rule:

1. Rule F-Assign. From the rule, it follows that (1) ∆′ = ∆[x 7→ ∆(pcu)t∆(e)], and (2) nsu(x,
pcu). Assume, for contradiction’s sake, that our claim does not hold. From ∆′ = ∆[x 7→
∆(pcu) t∆(e)], there are three cases:

• ∆(x) v ` and ∆′(x) 6v `. From ∆(x) v `, nsu(x, pcu), cl(auth(sec0,ATK)) v `, and
Proposition D.11, it follows that ∆(pcu) v `. This contradicts our assumption that
∆(pcu) 6v `.

• ∆(x) 6v ` and ∆′(x) v `. From ∆′(x) = ∆(pcu) t ∆(e) and ∆′(x) v `, it follows that
∆(pcu)t∆(e) v `. From this, it follows that ∆(pcu) v `. This contradicts our assumption
that ∆(pcu) 6v `.

• ∆(x) v `, ∆′(x) v `, and ∆(x) 6= ∆′(x). From ∆(x) v `, nsu(x, pcu), cl(auth(sec0,
ATK)) v `, and Proposition D.11, it follows that ∆(pcu) v `. This contradicts our
assumption that ∆(pcu) 6v `.
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2. Rule F-Select. From the rule, it follows that ∆′ = ∆[x 7→ ∆(pcu) t `ϕ], where `ϕ = LQ(∆,
SELECT ϕ)t

⊔
v∈vars(ϕ) ∆(v), and nsu(x, pcu). Assume, for contradiction’s sake, that our claim

does not hold. From ∆′ = ∆[x 7→ ∆(pcu) t `ϕ], there are three cases:
• ∆(x) v ` and ∆′(x) 6v `. From ∆(x) v `, nsu(x, pcu), cl(auth(sec0,ATK)) v `, and

Proposition D.11, it follows that ∆(pcu) v `. This contradicts our assumption that
∆(pcu) 6v `.

• ∆(x) 6v ` and ∆′(x) v `. From ∆′(x) = ∆(pcu) t `ϕ and ∆′(x) v `, it follows that
∆(pcu) t `ϕ v `. From this, it follows that ∆(pcu) v `. This contradicts our assumption
that ∆(pcu) 6v `.

• ∆(x) v `, ∆′(x) v `, and ∆(x) 6= ∆′(x). From ∆(x) v `, nsu(x, pcu), cl(auth(sec0,
ATK)) v `, and Proposition D.11, it follows that ∆(pcu) v `. This contradicts our
assumption that ∆(pcu) 6v `.

3. Rule F-UpdateDatabaseOk. From the rule, it follows that (1) ∆′ = ∆[T (v) 7→ ∆(pcu) t `e,
x 7→ ∆(pcu)t`e], where `e =

⊔
1≤i≤|T |∆(ei), (2) nsu(T (v), pcu), and (3) nsu(x, pcu). Assume,

for contradiction’s sake, that our claim does not hold. From ∆′ = ∆[T (v) 7→ ∆(pcu) t `e,
x 7→ ∆(pcu) t `e], there are six cases:

• ∆(x) v ` and ∆′(x) 6v `. From ∆(x) v `, nsu(x, pcu), cl(auth(sec0,ATK)) v `, and
Proposition D.11, it follows that ∆(pcu) v `. This contradicts our assumption that
∆(pcu) 6v `.

• ∆(x) 6v ` and ∆′(x) v `. From ∆′(x) = ∆(pcu) t `e and ∆′(x) v `, it follows that
∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.

• ∆(x) v `, ∆′(x) v `, and ∆(x) 6= ∆′(x). From ∆(x) v `, nsu(x, pcu), cl(auth(sec0,
ATK)) v `, and Proposition D.11, it follows that ∆(pcu) v `. This contradicts our
assumption that ∆(pcu) 6v `.

• ∆(T (v)) v ` and ∆′(T (v)) 6v `. From the rule, nsu(T (v), pcu). From this, ∆(T (v)) v
`, cl(auth(sec0,ATK)) v `, and Proposition D.11, it follows that ∆(pcu) v `. This
contradicts our assumption that ∆(pcu) 6v `.

• ∆(T (v)) 6v ` and ∆′(T (v)) v `. From ∆′(T (v)) = ∆(pcu)t`e and ∆′(T (v)) v `, it follows
that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.

• ∆(T (v)) v `, ∆′(T (v)) v `, and ∆(T (v)) 6= ∆′(T (v)). From ∆′(T (v)) v ` and ∆′(T (v)) =
∆(pcu)t`e, it follows that ∆(pcu) v `. This contradicts our assumption that ∆(pcu) 6v `.

4. Rule F-UpdateConfiguration-Ok. The proof of this case is similar to that of F-Select.
Induction Step. The proof for the induction step directly follows from the induction hypothesis
(since the rules do not further modify the memory and the database).

Lemma D.15 states that whenever ∆(pcu) 6v ` and cl(auth(sec0,ATK)) v ` then there are no
changes to the database configuration.

Lemma D.15. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label.
Whenever 〈∆, c,m, 〈s, ctx〉〉 τ

u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, if ∆(pcu) 6v ` and cl(auth(sec0,ATK)) v `,
then s ≡cfg s′.

Proof. Let sec0 be the policy used to initialize the monitor and ` ∈ L be a security label. Furthermore,
let u ∈ UID be a user and 〈∆, c,m, 〈s, ctx〉〉, 〈∆′, c′,m′, 〈s′, ctx ′〉〉 be two local configurations such
that (1) 〈∆, c,m, 〈s, ctx〉〉 τ u 〈∆′, c′,m′, 〈s′, ctx ′〉〉, (2) ∆(pcu) 6v `, and (3) cl(auth(sec0,ATK)) v `.
We now show, by structural induction on the rules defining  u, that s ≡cfg s′. In the following,
we consider only those rules that modify the database configuration. For the other rules, the claim
holds trivially (since the configuration is the same in s and s′).
Base Case. There only interesting case is the rule F-UpdateConfiguration-Ok. From the rule,
it follows that ∆(pcu) v cl(auth(sec0,ATK)). From this and cl(auth(sec0,ATK)) v `, it follows that
∆(pcu) v `, leading to a contradiction.
Induction Step. The proof of the induction step follows from the induction hypothesis.

Lemma D.16 states that, under appropriate conditions, executing the same command on two
`-equivalent states produces outputs that are indistinguishable for the attacker ATK .

Lemma D.16. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1,
c′1,m

′
1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and

` ∈ L be a label. If the following conditions hold:
1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. LU (s1,ATK) v ` and LU (s2,ATK) v `,
4. c1 = c2,
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5. 〈∆1, c1,m1, 〈s1, ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then τ1�ATK = τ2�ATK .

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1, c′1,m′1, 〈s′1,
ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be
a label such that the following conditions hold: (1) s1 ≡cfg s2, (2) 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2,
c2,m2, 〈s2, ctx2〉〉, (3) LU (s1,ATK) v ` and LU (s2,ATK) v `, (4) c1 = c2, (5) 〈∆1, c1,m1, 〈s1,

ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, (6) 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉, We prove

our claim by induction on the rules defining  u. Without loss of generality, we focus only on the
rules producing observations. The claim trivially holds for all rules that do not produce observations.
Base Case. There are a number of cases depending on the rule applied to derive 〈∆1, c1,m1, 〈s1,

ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉.

• Rule F-Out. From the rule, it follows that c1 = out(u′, e). From this and (4), it follows
that c2 = out(u′, e). In the following, we assume that u′ = ATK . If this is not the case the
proof is trivial. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = out(ATK , e),

it follows that ∆1 = ∆′1, m1 = m′1, τ1 = 〈u′, JeK(m1)〉, c′1 = ε, and 〈s1, ctx1〉 = 〈s′1, ctx ′1〉.
From 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉, c2 = out(u′, e), and the F-Out rule,

it follows that ∆2 = ∆′2, m2 = m′2, τ2 = 〈u′, JeK(m2)〉, c′2 = ε, and 〈s2, ctx2〉 = 〈s′2, ctx ′2〉. From
the rule, it also follows that ∆1(e) t∆1(pcu) v LU (s1,ATK) and ∆2(e) t∆2(pcu) v LU (s2,
ATK). From this, it follows that

∧
y∈free(e) ∆1(y) v LU (s1,ATK) and

∧
y∈free(e) ∆2(y) v

LU (s2,ATK). From this, (2), and (3), it follows that
∧
y∈free(e) m1(y) = m2(y). From this, it

follows that JeK(m1) = JeK(m2). From this, τ1 = 〈u′, JeK(m1)〉, and τ2 = 〈u′, JeK(m2)〉, it follows
that τ1 = τ2. Therefore, τ1�ATK = τ2�ATK .

• Rule F-DbOut. From the rule, it follows that c1 = dbout(u′, v, o, τ). From this and (4), it
follows that c2 = dbout(u′, v, o, τ). In the following, we assume that u = ATK , u = public, or
τ�ATK 6= ε. If this is not the case the proof is trivial (since the event cannot be observed by the
attacker). From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = dbout(u′, v, o, τ),

it follows that ∆1 = ∆′1, m1 = m′1, c′1 = ε, 〈s1, ctx1〉 = 〈s′1, ctx ′1〉, and τ1 = 〈u′, v′1, o′1, τ ′1〉, where
vars(v) = {v1, . . . , vx}, vars(o) = {o1, . . . , oy}, v′1 = v[v1 7→ Jv1K(m1), . . . , vn 7→ JvxK(m1)],
o′1 = o[o1 7→ Jo1K(m1), . . . , on 7→ JoyK(m1)], and for all 1 ≤ i ≤ |τ |, vars(τ(i)) = {k1, . . . , kni}
and τ ′1(i) = τ(i)[k1 7→ Jk1K(m1), . . . , kn 7→ JkniK(m1)]. From 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2,

c′2,m
′
2, 〈s′2, ctx ′2〉〉, c2 = dbout(u′, v, o, τ), and the F-DbOut rule, it follows that ∆2 = ∆′2,

m2 = m′2, c′2 = ε, 〈s2, ctx2〉 = 〈s′2, ctx ′2〉, and τ2 = 〈u′, v′2, o′2, τ ′2〉, where vars(v) = {v1, . . . , vx},
vars(o) = {o1, . . . , oy}, v′2 = v[v1 7→ Jv1K(m2), . . . , vn 7→ JvxK(m2)], o′2 = o[o1 7→ Jo1K(m2),
. . . , on 7→ JoyK(m2)], and for all 1 ≤ i ≤ |τ |, vars(τ(i)) = {k1, . . . , kni} and τ ′2(i) = τ(i)[k1 7→
Jk1K(m2), . . . , kn 7→ JkniK(m2)]. From the rule, it also follows that ∆1(pcu)t

⊔
x∈vars(v) ∆1(x)t⊔

x∈vars(o) ∆1(x)t
⊔

1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆1(x) v LU (s1, u

′′) and ∆2(pcu)t
⊔
x∈vars(v) ∆2(x)t⊔

x∈vars(o) ∆2(x)t
⊔

1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆2(x) v LU (s2, u

′′), where u′′ = u if u′ 6= ATK ∧u′ 6=
public∧τ�ATK = ε and u′ = ATK otherwise. From this and u = ATK , u = public, or τ�ATK 6= ε,
it follows that ∆1(pcu) t

⊔
x∈vars(v) ∆1(x) t

⊔
x∈vars(o) ∆1(x) t

⊔
1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆1(x) v

LU (s1,ATK) and ∆2(pcu)t
⊔
x∈vars(v) ∆2(x)t

⊔
x∈vars(o) ∆2(x)t

⊔
1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆2(x) v

LU (s2,ATK). From this and (3), it follows that ∆1(pcu)t
⊔
x∈vars(v) ∆1(x)t

⊔
x∈vars(o) ∆1(x)t⊔

1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆1(x) v ` and that ∆2(pcu) t

⊔
x∈vars(v) ∆2(x) t

⊔
x∈vars(o) ∆2(x) t⊔

1≤i≤|τ |

⊔
x∈vars(τ(i)) ∆2(x) v `. From this, it follows

∧
x∈vars(v) ∆1(x) v `,

∧
x∈vars(o) ∆1(x) v

`, and
∧

1≤i≤|τ |

∧
x∈vars(τ(i)) ∆1(x) v `. From this and (2), it follows that

∧
x∈vars(v) m1(x) =

m2(x),
∧
x∈vars(o) m1(x) = m2(x), and

∧
1≤i≤|τ |

∧
x∈vars(τ(i)) m1(x) = m2(x). From this, it

follows that v′1 = v′2, o′1 = o′2, and τ ′1 = τ ′2. From this, τ1 = τ2. Therefore, τ1�ATK = τ2�ATK .
Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemma D.17 states that, under appropriate conditions, executing the same command on two
`-equivalent states modifies the database configuration in the same way.

Lemma D.17. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1,
c′1,m

′
1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and

` ∈ L be a label. If the following conditions hold:
1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. c1 = c2,
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4. 〈∆1, c1,m1, 〈s1, ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

5. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

6. cl(auth(sec0,ATK)) v `,
then s′1 ≡cfg s′2.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1, c′1,m′1, 〈s′1,
ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be
a label such that the following conditions hold: 1. s1 ≡cfg s2, 2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,

m2, 〈s2, ctx2〉〉, 3. c1 = c2, 4. 〈∆1, c1,m1, 〈s1, ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉, 5. 〈∆2, c2,m2, 〈s2,

ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉, 6. cl(auth(sec0,ATK)) v `. We prove our claim by induction on

the rules defining u. In the following, we focus only on rules that modify the database configuration.
For rules that do not modify the database configuration, the claim directly follows from s1 ≡cfg s2.
Base Case. The only interesting case is the rule F-UpdateConfigurationOk. From the rule,
it follows that c1 = ‖x ← q‖, where q is a configuration command. From this and (3), it follows
that c2 = ‖x ← q‖. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x ← q‖,

it follows that ∆′1 = ∆1[x 7→ ∆1(pcu) t
⊔
v∈vars(q) ∆1(v)], m′1 = m1[x 7→ r1], vars(q) = {v1, . . . ,

vn}, q′1 = q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m)], τ1 = ε, c′1 = ε, and Jq′1K(〈s1, ctx1〉) = (〈s′1, ctx ′1〉,
r1, ε, ε). Similarly, from 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = ‖x ← q‖, it

follows that ∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], m′2 = m2[x 7→ r2], vars(q) = {v1, . . . , vn},

q′2 = q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m)], τ2 = ε, c′2 = ε, and Jq′2K(〈s2, ctx2〉) = (〈s′2, ctx ′2〉, r2, ε, ε).
From the rule, it follows that

⊔
v∈vars(q) ∆1(v) v cl(auth(sec0,ATK)). From this, it follows that∧

v∈vars(q) ∆1(v) v cl(auth(sec0,ATK)). From this and (6), it follows that
∧
v∈vars(q) ∆1(v) v `.

From this and (2), it follows that
∧
v∈vars(q) m1(v) = m2(v). From this, q′1 = q′2. From this, (1),

Jq′1K(〈s1, ctx1〉) = (〈s′1, ctx ′1〉, r1, ε, ε), and Jq′2K(〈s2, ctx2〉) = (〈s′2, ctx ′2〉, r2, ε, ε), it directly follows that
s′1 ≡cfg s′2 (since the initial configuration is the same and the database semantics is deterministic).
Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemma D.18 states that, given a label `, whenever we are in a low context (i.e., ∆(pcu) v `),
then executing the same command on two `-equivalent states produces to `-equivalent states.

Lemma D.18. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1,
c′1,m

′
1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and

` ∈ L be a label. If the following conditions hold:
1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. c1 = c2,
5. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 ≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1, c′1,m′1, 〈s′1,
ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be
a label such that the following conditions hold:

1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. c1 = c2,
5. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.

We prove our claim by induction on the rules defining  u. In the following, we focus only on those
rules that modify the monitor state, the database, or the memory. For the other rules, the claim
directly follows from (2).
Base Case. There are a number of cases depending on the rule applied to derive 〈∆1, c1,m1, 〈s1,

ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉.

• Rule F-UpdateLabels. From the rule, it follows that c1 = set pc to l. From this and
(4), it follows that c2 = set pc to l. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉

and c1 = set pc to l, it follows that ∆′1 = ∆1[pcu 7→ l], m1 = m′1, τ1 = ε, c′1 = ε, and
〈s1, ctx1〉 = 〈s′1, ctx ′1〉. Similarly, from 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and
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c2 = set pc to l, it follows that ∆′2 = ∆2[pcu 7→ l], m2 = m′2, τ2 = ε, c′2 = ε, and 〈s2,
ctx2〉 = 〈s′2, ctx ′2〉. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2,
〈s′2, ctx ′2〉〉. From this, m1 = m′1, m2 = m′2, 〈s1, ctx1〉 = 〈s′1, ctx ′1〉, 〈s2, ctx2〉 = 〈s′2, ctx ′2〉, and
(2), there are two cases:
– ∆′1(pcu) v ` and ∆′2(pcu) 6v ` (or vice versa). From ∆′1 = ∆1[pcu 7→ l] and ∆′2 =

∆2[pcu 7→ l], it follows that ∆′1(pcu) = ∆′2(pcu). From this and ∆′1(pcu) v `, it follows
that ∆′2(pcu) v `, leading to a contradiction.

– ∆′1(pcu) v `, ∆′2(pcu) v `, and ∆′1(pcu) 6= ∆′2(pcu). From ∆′1 = ∆1[pcu 7→ l] and
∆′2 = ∆2[pcu 7→ l], it follows that ∆′1(pcu) = ∆′2(pcu), leading to a contradiction.

• Rule F-Assign. From the rule, it follows that c1 = x := e. From this and (4), it follows
that c2 = x := e. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = x := e,

it follows that ∆′1 = ∆1[x 7→ ∆1(pcu) t ∆1(e)], m′1 = m1[x 7→ JeK(m1)], τ1 = ε, c′1 = ε,
and 〈s1, ctx1〉 = 〈s′1, ctx ′1〉. Similarly, from 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉

and c2 = x := e, it follows that ∆′2 = ∆2[x 7→ ∆2(pcu) t ∆2(e)], m′2 = m2[x 7→ JeK(m2)],
τ2 = ε, c′2 = ε, and 〈s2, ctx2〉 = 〈s′2, ctx ′2〉. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1,
〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. From this, 〈s1, ctx1〉 = 〈s′1, ctx ′1〉, 〈s2, ctx2〉 = 〈s′2, ctx ′2〉,
and (2), there are three cases:
– ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From the rule, it follows that ∆′1 = ∆1[x 7→

∆1(pcu) t ∆1(e)] and ∆′2 = ∆2[x 7→ ∆2(pcu) t ∆2(e)]. From this and ∆′1(x) v `, it
follows that ∆1(pcu) t ∆1(e) v `. From this, ∆1(pcu) v ` and

∧
y∈free(e) ∆1(y) v `.

From ∆1(pcu) v ` and (2), it follows that ∆1(pcu) = ∆2(pcu). From
∧
y∈free(e) ∆1(y) v

` and (2), it follows that
∧
y∈free(e) ∆1(y) = ∆2(y). From ∆1(pcu) = ∆2(pcu) and∧

y∈free(e) ∆1(y) = ∆2(y), it follows that ∆1(pcu) t ∆1(e) = ∆2(pcu) t ∆2(e). From
this, ∆′1 = ∆1[x 7→ ∆1(pcu) t ∆1(e)], and ∆′2 = ∆2[x 7→ ∆2(pcu) t ∆2(e)], it follows
that ∆′2(x) = ∆′1(x). From this and ∆′1(x) v `, it follows that ∆′2(x) v `, leading to a
contradiction.

– ∆′1(x) v `, ∆′2(x) v `, and ∆′1(x) 6= ∆′2(x). We have already shown above that from
∆′1(x) v ` and (2), it follows ∆′2(x) = ∆′1(x), which contradicts ∆′1(x) 6= ∆′2(x).

– ∆′1(x) v `, ∆′2(x) v `, and m′1(x) 6= m′2(x). From the rule, it follows that ∆′1 = ∆1[x 7→
∆1(pcu) t ∆1(e)] and ∆′2 = ∆2[x 7→ ∆2(pcu) t ∆2(e)]. From this and ∆′1(x) v `, it
follows that

∧
y∈free(e) ∆1(y) v `. From this and (2), it follows that

∧
y∈free(e) ∆2(y) v `.

From
∧
y∈free(e) ∆1(y) v `,

∧
y∈free(e) ∆2(y) v `, and (2), it follows that

∧
y∈free(e) m1(y) =

m2(y). From this, it follows that JeK(m1) = JeK(m2). From this, m′1 = m1[x 7→ JeK(m1)],
and m′2 = m2[x 7→ JeK(m2)], it follows that m′1(x) = m′2(x), leading to a contradiction.

• Rule F-IfTrue. From the rule, it follows that c1 = if e then c′ else c′′. From this and (4), it
follows that c2 = if e then c′ else c′′. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉

and c1 = if e then c′ else c′′, it follows that ∆′1 = ∆1[pcu 7→ ∆1(pcu) t ∆1(e)], m1 = m′1,
τ1 = ε, c′1 = c′ ; set pc to ∆1(pcu), and 〈s1, ctx1〉 = 〈s′1, ctx ′1〉. From the rule, it also follows
that JeK(m1) = tt. There are two cases:
– JeK(m2) = tt. From this, 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 =

if e then c′ else c′′, it follows that ∆′2 = ∆2[pcu 7→ ∆2(pcu) t∆2(e)], m2 = m′2, τ2 = ε,
c′2 = c′ ; set pc to ∆2(pcu), and 〈s2, ctx2〉 = 〈s′2, ctx ′2〉. Assume, for contradiction’s sake,
that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. From this, m1 = m′1, m2 = m′2,
〈s1, ctx1〉 = 〈s′1, ctx ′1〉, 〈s2, ctx2〉 = 〈s′2, ctx ′2〉, and (2), there are two cases:

∗ ∆′1(pcu) v ` and ∆′2(pcu) 6v ` (or vice versa). From the rule, it follows that ∆′1 =
∆1[pcu 7→ ∆1(pcu) t ∆1(e)] and ∆′2 = ∆2[pcu 7→ ∆2(pcu) t ∆2(e)]. From this and
∆′1(pcu) v `, it follows that ∆1(pcu) t ∆1(e) v `. From this, ∆1(pcu) v ` and∧
y∈free(e) ∆1(y) v `. From ∆1(pcu) v ` and (2), it follows that ∆1(pcu) = ∆2(pcu).

From
∧
y∈free(e) ∆1(y) v ` and (2), it follows that

∧
y∈free(e) ∆1(y) = ∆2(y). From

∆1(pcu) = ∆2(pcu) and
∧
y∈free(e) ∆1(y) = ∆2(y), it follows that ∆1(pcu) t∆1(e) =

∆2(pcu) t∆2(e). From this, ∆′1 = ∆1[pcu 7→ ∆1(pcu) t∆1(e)], and ∆′2 = ∆2[pcu 7→
∆2(pcu) t ∆2(e)], it follows that ∆′2(x) = ∆′1(x). From this and ∆′1(pcu) v `, it
follows that ∆′2(pcu) v `, leading to a contradiction.

∗ ∆′1(pcu) v `, ∆′2(pcu) v `, and ∆′1(pcu) 6= ∆′2(pcu). We have already shown above
that from ∆′1(pcu) v ` and (2), it follows ∆′2(pcu) = ∆′1(pcu), which contradicts
∆′1(pcu) 6= ∆′2(pcu).

– JeK(m2) = ff. From this, 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 =

if e then c′ else c′′, it follows that ∆′2 = ∆2[pcu 7→ ∆2(pcu) t∆2(e)], m2 = m′2, τ2 = ε,
c′2 = c′′ ; set pc to ∆2(pcu), and 〈s2, ctx2〉 = 〈s′2, ctx ′2〉. The rest of the proof is similar
to the case above.
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• Rule F-IfFalse. The proof of this case is similar to that of F-IfTrue.
• Rule F-WhileTrue. The proof of this case is similar to that of F-IfTrue.
• Rule F-WhileFalse. The proof of this case is similar to that of F-IfTrue.
• Rule F-Select. From the rule, it follows that c1 = ‖x ← SELECT ϕ‖. From this and (4), it

follows that c2 = ‖x← SELECT ϕ‖. From 〈∆1, c1,m1, 〈s1, ctx1〉〉
τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and

c1 = ‖x ← q‖, it follows that ∆′1 = ∆1[x 7→ ∆1(pcu) t LQ(∆1, q1) t
⊔
v∈free(ϕ) ∆1(v)], m′1 =

m1[x 7→ r1], τ1 = ε, c′1 = ε, where free(ϕ) = {v1, . . . , vn}, q1 = SELECT ϕ[v1 7→ Jv1K(m1), . . . ,
vn 7→ JvnK(m1), ], and Jq1K(〈s1, ctx1〉) = (〈s′1, ctx ′1〉, r1, ε, ε). From 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u

〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = ‖x ← q‖, it follows that ∆′2 = ∆2[x 7→ ∆2(pcu) t LQ(∆2,
q2) t

⊔
v∈free(ϕ) ∆2(v)], m′2 = m2[x 7→ r2], τ2 = ε, c′2 = ε, where free(ϕ) = {v1, . . . , vn},

q2 = SELECT ϕ[v1 7→ Jv1K(m2), . . . , vn 7→ JvnK(m2), ], and Jq2K(〈s2, ctx2〉) = (〈s′2, ctx ′2〉, r2, ε, ε).
Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. From
this and (2), there are three cases:
– ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu) t
LQ(∆1, q1)t

⊔
v∈free(ϕ) ∆1(v)], it follows that ∆1(pcu)tLQ(∆1, q1)t

⊔
v∈free(ϕ) ∆1(v) v `.

From this, it follows that ∆1(pcu) v `, LQ(∆1, q1) v `, and
∧
v∈free(ϕ) ∆1(v) v `.

From ∆1(pcu) v ` and (2), it follows that ∆2(pcu) v `. From
∧
v∈free(ϕ) ∆1(v) v

` and (2), it follows that
∧
v∈free(ϕ) ∆2(v) v ` and

∧
v∈free(ϕ) m1(v) = m2(v). From∧

v∈free(ϕ) m1(v) = m2(v), it follows that q1 = q2. From q1 = q2, LQ(∆1, q1) v `,
(2), and Proposition D.9, it follows that LQ(∆2, q2) v `. From ∆2(pcu) v `, LQ(∆2,
q2) v `,

∧
v∈free(ϕ) ∆2(v) v `, and point (3) in the notion of disclosure order, it fol-

lows that ∆2(pcu) t LQ(∆2, q2) t
⊔
v∈free(ϕ) ∆2(v) v `. From this and ∆′2 = ∆2[x 7→

∆2(pcu) t LQ(∆2, q2) t
⊔
v∈free(ϕ) ∆2(v)], it follows that ∆′2(x) v `, leading to a contra-

diction.
– ∆′1(x) v `, ∆′1(x) v `, and ∆′1(x) 6= ∆′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu)t
LQ(∆1, q1)t

⊔
v∈free(ϕ) ∆1(v)], it follows that ∆1(pcu)tLQ(∆1, q1)t

⊔
v∈free(ϕ) ∆1(v) v `.

From this, it follows that ∆1(pcu) v `, LQ(∆1, q1) v `, and
∧
v∈free(ϕ) ∆1(v) v `. From

∆1(pcu) v ` and (2), it follows that ∆2(pcu) = ∆1(pcu). From
∧
v∈free(ϕ) ∆1(v) v `

and (2), it follows that
∧
v∈free(ϕ) ∆2(v) = ∆1(v) and

∧
v∈free(ϕ) m1(v) = m2(v). From∧

v∈free(ϕ) m1(v) = m2(v), it follows that q1 = q2. From LQ(∆1, q1) v `, it follows that⊔
Q∈suppD,Γ(q1)

⊔
q′∈Q ∆1(q′) v `. From this,

∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) v `. From this

and (2), it follows that
∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) = ∆2(q′). From this, it follows that∧

Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) =

∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆2(q′). From this and q1 = q2, it

follows that
∧
Q∈suppD,Γ(q1)

∧
q′∈Q ∆1(q′) =

∧
Q∈suppD,Γ(q2)

∧
q′∈Q ∆2(q′). From this, it

follows that LQ(∆1, q1) = LQ(∆2, q2). From ∆2(pcu) = ∆1(pcu),
∧
v∈free(ϕ) ∆2(v) =

∆1(v), LQ(∆1, q1) = LQ(∆2, q2), ∆′1 = ∆1[x 7→ ∆1(pcu)tLQ(∆1, q1)t
⊔
v∈free(ϕ) ∆1(v)],

and ∆′2 = ∆2[x 7→ ∆2(pcu)tLQ(∆2, q2)t
⊔
v∈free(ϕ) ∆2(v)], it follows that ∆′1(x) = ∆′2(x),

leading to a contradiction.
– ∆′1(x) v `, ∆′1(x) v `, and m′1(x) 6= m′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu)t
LQ(∆1, q1)t

⊔
v∈free(ϕ) ∆1(v)], it follows that ∆1(pcu)tLQ(∆1, q1)t

⊔
v∈free(ϕ) ∆1(v) v `.

From this and (2), it follows that
∧
v∈free(ϕ) m1(v) = m2(v). From this, it follows that

q1 = q2. From ∆1(pcu) t LQ(∆1, q1) t
⊔
v∈free(ϕ) ∆1(v) v `, it also follows that LQ(∆1,

q1) v `. From this, q1 = q2, (2), and Proposition D.9, it follows that LQ(∆2, q2) v `.
From this, LQ(∆2, q2) v `, and (2), it follows that [q1]db1 = [q2]db2 , where db1 and db2 are
the database states in s1 and s2 respectively. From the database semantics, it follows that
m′1(x) = r1 = [q1]db1 and m′2(x) = r2 = [q2]db2 . From this and [db1]s1 = [db2]s2 , it follows
that m′1(x) = m′2(x), leading to a contradiction.

• Rule F-UpdateDatabaseOk. Without loss of generality, we assume that the query is an
INSERT query. From the rule, it follows that c1 = ‖x← T⊕e‖. From this and (4), it follows that
c2 = ‖x← T ⊕ e‖. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = ‖x← T ⊕

e‖, it follows that ∆′1 = ∆1[T (v1) 7→ ∆1(pcu)t
⊔

1≤i≤n ∆1(ei), x 7→ ∆1(pcu)t
⊔

1≤i≤n ∆1(ei)],
m′1 = m1[x 7→ r1], τ1 = ε, c′1 = ε, where e = (e1, . . . , en), v1 = (Je1K(m1), . . . , JenK(m1)), q1 =
T ⊕ v1, and Jq1K(〈s1, ctx1〉) = (〈s′1, ctx ′1〉, r1, ε, ε). From 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2,

〈s′2, ctx ′2〉〉 and c2 = ‖x← T ⊕ e‖, it follows that ∆′2 = ∆2[T (v2) 7→ ∆2(pcu) t
⊔

1≤i≤n ∆2(ei),
x 7→ ∆2(pcu) t

⊔
1≤i≤n ∆2(ei)], m′2 = m2[x 7→ r2], τ2 = ε, c′2 = ε, where e = (e1, . . . , en),

v2 = (Je1K(m2), . . . , JenK(m2)), q2 = T ⊕ v2, and Jq2K(〈s2, ctx2〉) = (〈s′2, ctx ′2〉, r2, ε, ε). Assume,
for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉. From this and
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(2), there are several cases:
1. ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From ∆′1(x) v ` and ∆′1(x) = ∆1(pcu) t⊔

1≤i≤n ∆1(ei), it follows that ∆1(pcu) t
⊔

1≤i≤n ∆1(ei) v `. From this, it follows that
∆1(pcu) v ` and

∧
1≤i≤n ∆1(ei) v `. From ∆1(pcu) v ` and (2), it follows that ∆2(pcu) v

`. From
∧

1≤i≤n ∆1(ei) v ` and (2), it follows that
∧

1≤i≤n ∆2(ei) v `. From this,
∆2(pcu) t

⊔
1≤i≤n ∆2(ei) v `. From this and ∆′2(x) = ∆2(pcu) t

⊔
1≤i≤n ∆2(ei), it

follows that ∆′2(x) v `, leading to a contradiction.
2. ∆′1(x) v `, ∆′2(x) v `, and ∆1(x) 6= ∆2(x). From ∆′1(x) v ` and ∆′1(x) = ∆1(pcu) t⊔

1≤i≤n ∆1(ei), it follows that ∆1(pcu) t
⊔

1≤i≤n ∆1(ei) v `. From this, it follows that
∆1(pcu) v ` and

∧
1≤i≤n ∆1(ei) v `. From ∆1(pcu) v ` and (2), it follows that ∆2(pcu) =

∆1(pcu). From
∧

1≤i≤n ∆1(ei) v ` and (2), it follows that
∧

1≤i≤n ∆2(ei) = ∆1(ei).
From this, ∆2(pcu)t

⊔
1≤i≤n ∆2(ei) = ∆1(pcu)t

⊔
1≤i≤n ∆1(ei). From this and ∆′2(x) =

∆2(pcu) t
⊔

1≤i≤n ∆2(ei), it follows that ∆′2(x) = ∆′1(x), leading to a contradiction.
3. ∆′1(x) v `, ∆′2(x) v `, and m′1(x) 6= m′2(x). From the database semantics, both r1 and r2

are >. From this, m′1(x) = r1, and m′2(x) = r2, it follows that m′1(x) = m′2(x), leading to
a contradiction.

4. ∆′1(T (v1)) v ` and ∆′2(T (v1)) 6v `. From ∆′1(T (v1)) v ` and ∆′1(T (v1)) = ∆1(pcu) t⊔
1≤i≤n ∆1(ei), it follows that ∆1(pcu)t

⊔
1≤i≤n ∆1(ei) v `. From this, ∆1(pcu) v ` and∧

1≤i≤n ∆1(ei) v `. From this and (2), it follows that ∆2(pcu) v `,
∧

1≤i≤n ∆2(ei) v ` and∧
1≤i≤nJeiK(m1) = JeiK(m2). From

∧
1≤i≤nJeiK(m1) = JeiK(m2), it follows that v1 = v2.

From ∆2(pcu) v ` and
∧

1≤i≤n ∆2(ei) v `, it follows that ∆2(pcu) t
⊔

1≤i≤n ∆2(ei) v
`. From this, ∆′2(T (v2)) = ∆2(pcu) t

⊔
1≤i≤n ∆2(ei), and v1 = v2, it follows that

∆′2(T (v2)) v `, leading to a contradiction.
5. ∆′1(T (v2)) v ` and ∆′2(T (v2)) 6v `. There are two cases:

– v1 = v2. We already proved above (case 4) that this leads to a contradiction.
– v1 6= v2. From ∆′2(T (v2)) 6v ` and ∆′2(T (v2)) = ∆2(pcu) t

⊔
1≤i≤n ∆2(ei), it follows

that ∆2(pcu) t
⊔

1≤i≤n ∆2(ei) 6v `. From (3), it follows that ∆2(pcu) v `. From
this and ∆2(pcu) t

⊔
1≤i≤n ∆2(ei) 6v `, it follows that

⊔
1≤i≤n ∆2(ei) 6v `. From the

rule, it follows that
⊔

1≤i≤n ∆2(ei) v ∆2(T (v2)). From this and
⊔

1≤i≤n ∆2(ei) 6v `,
it follows that ∆2(T (v2)) 6v `. From this and (2), it follows that ∆1(T (v2)) 6v `.
From ∆′1 = ∆1[T (v1) 7→ ∆1(pcu) t

⊔
1≤i≤n ∆1(ei), x 7→ ∆1(pcu) t

⊔
1≤i≤n ∆1(ei)]

and v1 6= v2, it follows that ∆′1(T (v2)) = ∆1(T (v2)). From this and ∆′1(T (v2)) v `,
it follows that ∆1(T (v2)) v `. This contradicts ∆1(T (v2)) 6v `.

6. ∆′2(T (v2)) v ` and ∆′1(T (v2)) 6v `. The proof of this case is similar to that of case 4.
7. ∆′2(T (v1)) v ` and ∆′1(T (v1)) 6v `. The proof of this case is similar to that of case 5.
8. ∆′1(T (v1)) v `, ∆′2(T (v1)) v `, and ∆′1(T (v1)) 6= ∆′2(T (v1)). From ∆′1(T (v1)) v `

and ∆′1(T (v1)) = ∆1(pcu) t
⊔

1≤i≤n ∆1(ei), it follows that ∆1(pcu) t
⊔

1≤i≤n ∆1(ei) v
`. From this, ∆1(pcu) v ` and

∧
1≤i≤n ∆1(ei) v `. From this and (2), it follows

that ∆2(pcu) = ∆1(pcu),
∧

1≤i≤n ∆2(ei) = ∆1(ei) and
∧

1≤i≤nJeiK(m1) = JeiK(m2).
From

∧
1≤i≤nJeiK(m1) = JeiK(m2), it follows that v1 = v2. From ∆2(pcu) = ∆1(pcu)

and
∧

1≤i≤n ∆2(ei) = ∆1(ei), it follows that ∆1(pcu) t
⊔

1≤i≤n ∆1(ei) = ∆2(pcu) t⊔
1≤i≤n ∆2(ei). From this, v1 = v2, ∆′1(T (v1)) = ∆1(pcu)t

⊔
1≤i≤n ∆1(ei), ∆′2(T (v2)) =

∆2(pcu) t
⊔

1≤i≤n ∆2(ei), it follows that ∆′2(T (v1)) = ∆1(T (v1)).
9. ∆′1(T (v2)) v `, ∆′2(T (v2)) v `, and ∆′1(T (v2)) 6= ∆′2(T (v2)). The proof is similar to that

of case 8.
10. There is a query q such that LQ(∆′1, q) v `, LQ(∆′2, q) v `, and [q]db′1 6= [q]db′2 , where

db′1 and db′2 are the databases in s′1 and s′2 respectively. From LQ’s definition, it follows⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′1(q′) v ` and

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′2(q′) v `. There are two cases:

– There is a Q ∈ suppD,Γ(q) such that T (v1) 6∈ Q and T (v2) 6∈ Q. From LQ(∆′1, q) v `,
it follows that

∧
q′∈Q ∆′1(q′) v `. From T (v1) 6∈ Q and ∆′1 = ∆1[T (v1) 7→ ∆1(pcu) t⊔

1≤i≤n ∆1(ei), x 7→ ∆1(pcu)t
⊔

1≤i≤n ∆1(ei)], it follows that
∧
q′∈Q ∆′1(q′) = ∆1(q′).

From this and
∧
q′∈Q ∆′1(q′) v `, it follows that

∧
q′∈Q ∆1(q′) v `. From this, Q ⊂

RC pred , and LQ(∆, q′′) = ∆(q′′) for any q′′ ∈ RC pred (Proposition D.10), it follows
that

∧
q′∈Q LQ(∆1, q

′) v `. From this and (2), it follows that
∧
q′∈Q[q′]db′1 = [q′]db′2 ,

where db′1 and db′2 are the database in s′1 and s′2 respectively. From this, T (v1) 6∈ Q,
T (v2) 6∈ Q, and the fact that we modify only the values of T (v1) and T (v2), it follows
that

∧
q′∈Q[q′]s′1 = [q′]s′2 . From this and Q determines q, it follows that [q]s1 = [q]s2 ,
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leading to a contradiction.
– For all Q ∈ suppD,Γ(q), T (v1) ∈ Q or T (v2) ∈ Q. Assume that T (v1) ∈ Q (the proof

in case T (v2) ∈ Q is analogous). From
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′1(q′) v `, it follows

that
∧
q′∈Q ∆′1(q′) v `. From this and T (v1) ∈ Q, it follows that ∆′1(T (v1)) v `.

From this and ∆′1(T (v1)) = ∆1(pcu) t
⊔

1≤i≤n ∆1(ei), it follows that ∆1(pcu) t⊔
1≤i≤n ∆1(ei) v `. From this, it follows that

∧
1≤i≤n ∆1(ei) v `. From this and (2),

it follows that
∧

1≤i≤nJeiK(m1) = JeiK(m2). From this, it follows that v1 = v2. From⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆′1(q′) v ` and Q ∈ suppD,Γ(q), it follows that

∧
q′∈Q ∆′1(q′) v `.

Let q′′ be a query in Q \ {T (v1)}. From this and
∧
q′∈Q ∆′1(q′) v `, it follows that

∆′1(q′′) v `. From this, v1 = v2, q′′ ∈ Q \ {T (v1)}, and ∆′1 = ∆1[T (v1) 7→ ∆1(pcu) t⊔
1≤i≤n ∆1(ei), x 7→ ∆1(pcu)t

⊔
1≤i≤n ∆1(ei)], it follows that ∆′1(q′′) = ∆1(q′′). From

this and ∆′1(q′′) v `, it follows that ∆1(q′′) v `. From this, q′′ ∈ RC pred , and LQ(∆,
q) = ∆(q) for all q ∈ RC pred (Proposition D.10), it follows that LQ(∆1, q

′′) v `. From
this and (2), it follows that [q′′]db1 = [q′′]db2 , where db1 and db2 are the databases in
s1 and s2 respectively. From this, v1 = v2, and the fact that the update operation
only modifies the value of T (v1) and T (v2), it follows that [q′′]db′1 = [q′′]db′2 , where db′1
and db′2 are the databases in s′1 and s′2 respectively. Since q′′ is an arbitrary query in
Q \ {T (v1)}, it follows that [q′′]db′1 = [q′′]db′2 for all q′′ ∈ Q \ {T (v1)}. From v1 = v2

and the database semantics, it also follows that [T (v1)]db′1 = [T (v1)]db′2 = >. From
this, [q′′]db′1 = [q′′]db′2 for all q′′ ∈ Q \ {T (v1)}, and Q = {T (v1)} ∪ (Q \ {T (v1)}),
it follows that [q′′]db′1 = [q′′]db′2 for all q′′ ∈ Q. From this and Q ∈ suppD,Γ(q) (and
therefore Q determines q), it follows that [q]db′1 = [q]db′2 , leading to a contradiction.

• Rule F-UpdateConfigurationOk. From the rule, it follows that c1 = ‖x ← q‖. From this
and (4), it follows that c2 = ‖x ← q‖. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉

and c1 = ‖x← q‖, it follows that ∆′1 = ∆1[x 7→ ∆1(pcu)t
⊔
v∈vars(q) ∆1(v)], m′1 = m1[x 7→ r1],

q′1 = q[v1 7→ Jv1K(m1), . . . , vn 7→ JvnK(m1)] τ1 = ε, c′1 = ε, where Jq′1K(〈s1, ctx1〉) = (〈s′1, ctx ′1〉,
r1, ε, ε). From 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = ‖x ← q‖, it follows

that ∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], m′2 = m2[x 7→ r2], q′2 = q[v1 7→ Jv1K(m2),

. . . , vn 7→ JvnK(m2)] τ2 = ε, c′2 = ε, where Jq′2K(〈s2, ctx2〉) = (〈s′2, ctx ′2〉, r2, ε, ε). Note that the
execution of the query q alters only the database configuration; it does not modify the content
of the database. Assume, for contradiction’s sake, that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 6≈` 〈∆′2, c′2,m′2,
〈s′2, ctx ′2〉〉. There are three cases:
– ∆′1(x) v ` and ∆′2(x) 6v ` (or vice versa). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu) t⊔

v∈vars(q) ∆1(v)], it follows that ∆1(pcu) t
⊔
v∈vars(q) ∆1(v) v `. From this and (2), it

follows that ∆2(pcu) v ` and
∧
v∈vars(q) ∆2(v) v `. From this, it follows that ∆2(pcu) t⊔

v∈vars(q) ∆2(v) v `. From this and ∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], it follows

that ∆′2(pcu) v `, leading to a contradiction.
– ∆′1(x) v `, ∆′2(x) v `, and ∆′1(x) 6= ∆′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→

∆1(pcu) t
⊔
v∈vars(q) ∆1(v)], it follows that ∆1(pcu) t

⊔
v∈vars(q) ∆1(v) v `. From this

and (2), it follows that ∆1(pcu) = ∆2(pcu) and
∧
v∈vars(q) ∆1(v) = ∆2(v). From this, it

follows that ∆1(pcu) t
⊔
v∈vars(q) ∆1(v) = ∆2(pcu) t

⊔
v∈vars(q) ∆2(v) v `. From this and

∆′2 = ∆2[x 7→ ∆2(pcu) t
⊔
v∈vars(q) ∆2(v)], it follows that ∆′1(pcu) = ∆′2(pcu), leading to

a contradiction.
– ∆′1(x) v `, ∆′2(x) v `, and m′1(x) 6= m′2(x). From ∆′1(x) v ` and ∆′1 = ∆1[x 7→ ∆1(pcu)t⊔

v∈vars(q) ∆1(v)], it follows that ∆1(pcu) t
⊔
v∈vars(q) ∆1(v) v `. From this, it follows

that
∧
v∈vars(q) ∆1(v) v `. From this and (2), it follows that

∧
v∈vars(q) m1(v) = m2(v).

From this, it follows that q′1 = q′2. From this and (1), it follows that r1 = r2. From this,
m′1 = m1[x 7→ r1], and m′2 = m2[x 7→ r2], it follows that m′1(x) = m′2(x), leading to a
contradiction.

Induction Step. The proof of the induction step directly follows from the induction hypothesis
for all rules except F-AsUser. For the F-AsUser rule, the proof can be done by case distinction
on the executed query. The proofs for the various cases are similar to that of the rules F-Select,
F-UpdateDatabaseOk, and F-UpdateConfigurationOk.

Lemma D.19 states that, under appropriate conditions, performing a step of execution in two
`-equivalent states with the same initial code results in the same code.
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Lemma D.19. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1,
c′1,m

′
1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and

` ∈ L be a label. If the following conditions hold:
1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆′1(pcu) v ` and ∆′2(pcu) v `,
4. c1 = c2,
5. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then c′1 = c′2.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1, c′1,m′1, 〈s′1,
ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be
a label such that the following conditions hold:

1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆′1(pcu) v ` and ∆′2(pcu) v `,
4. c1 = c2,
5. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

6. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉.

We prove our claim by induction on the rules defining  u.
Base Case. The proof of most of the rules, e.g., F-Assign or F-Out, is trivial. The only interesting
cases are the branching statements and the expansion procedure.

• Rule F-IfTrue. From the rule, it follows that c1 = if e then c′ else c′′. From this and
(4), it follows that c2 = if e then c′ else c′′. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1,

〈s′1, ctx ′1〉〉 and c1 = if e then c′ else c′′, it follows that ∆′1 = ∆1[pcu 7→ ∆1(pcu) t ∆1(e)],
m1 = m′1, τ1 = ε, c′1 = c′ ; set pc to ∆1(pcu), and 〈s1, ctx1〉 = 〈s′1, ctx ′1〉. From the rule, it
also follows that JeK(m1) = tt. From (3) and ∆′1 = ∆1[pcu 7→ ∆1(pcu) t ∆1(e)], it follows
that ∆1(pcu) t∆1(e) v `. From this, it follows that ∆1(pcu) v ` and ∆1(e) v `. From this
and (2), it follows that

∧
v∈vars(e) m1(e) = m2(e). From this and JeK(m1) = tt, it follows that

JeK(m2) = tt. Therefore, by applying the rule F-IfTrue to 〈∆2, c2,m2, 〈s2, ctx2〉〉, we obtain
that 〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = if e then c′ else c′′, it follows

that ∆′2 = ∆2[pcu 7→ ∆2(pcu)t∆2(e)], m2 = m′2, τ2 = ε, c′2 = c′ ; set pc to ∆2(pcu), and 〈s2,
ctx2〉 = 〈s′2, ctx ′2〉. Furthermore, from ∆1(pcu) v ` and (2), it follows that ∆1(pcu) = ∆2(pcu).
Therefore, c′1 = c′2.

• Rule F-IfFalse. The proof is similar to that for the F-IfTrue case.
• Rule F-WhileTrue. The proof is similar to that for the F-IfTrue case.
• Rule F-WhileFalse. The proof is similar to that for the F-IfTrue case.
• Rule F-Expand. From the rule, it follows that c1 = x← q. From this and (4), it follows that
c2 = x← q. From 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉 and c1 = x← q, it follows

that ∆′1 = ∆1, m1 = m′1, τ1 = ε, c′1 = expand(s1, x, q, u), and 〈s1, ctx1〉 = 〈s′1, ctx ′1〉. From
〈∆2, c2,m2, 〈s2, ctx2〉〉

τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 and c2 = x ← q, it follows that ∆′2 = ∆2,

m2 = m′2, τ2 = ε, c′2 = expand(s2, x, q, u), and 〈s2, ctx2〉 = 〈s′2, ctx ′2〉. There are a number of
cases depending on q:
– q is SELECT ϕ. For SELECT queries, the result of the expansion procedure is the same for any

two database states s1 and s2. Therefore, it follows that expand(s1, x, q, u) = expand(s2,
x, q, u) and, therefore, c′1 = c′2.

– q is INSERT e INTO T . The expansion procedure relies only on the allowed and apply
procedures, which, in turn, depend only on the configuration of the database state. From
this and (1), it follows that expand(s1, x, q, u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.

– q is DELETE e FROM T . The proof of this case is similar to that of INSERT e INTO T .
– q is GRANT p TO u. The expansion procedure relies only on the allowed and apply procedures,

which, in turn, depend only on the configuration of the database state. From this and (1),
it follows that expand(s1, x, q, u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.

– q is GRANT p TO u WITH GRANT OPTION. The proof of this case is similar to that of GRANT p
TO u.

– q is REVOKE p FROM u. The proof of this case is similar to that of GRANT p TO u.
– q is a CREATE queries. For CREATE queries, the result of the expansion procedure is the

same for any two database states s1 and s2. Therefore, it follows that expand(s1, x, q,
u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.
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– q is ADD USER u′. For ADD USER queries, the result of the expansion procedure is the
same for any two database states s1 and s2. Therefore, it follows that expand(s1, x, q,
u) = expand(s2, x, q, u) and, therefore, c′1 = c′2.

Induction Step. The proof of the induction step directly follows from the induction hypothesis.

Lemma D.20 presents some results about computations involving if statements.

Lemma D.20. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1,
c′1,m

′
1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and

` ∈ L be a label. If the following conditions hold:
1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. ∆′1(pcu) 6v ` or ∆′2(pcu) 6v ` ,
5. c1 = c2,
6. first(c1) = if e then c′ else c′′,
7. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

8. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(b) JeK(m1) = ff and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(c) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,

(d) JeK(m2) = ff and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,

(e) there are 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u

〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′1 = c′′2 , and
∆′′1 (pcu) v ` and ∆′′2 (pcu) v `.

Proof. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1, c′1,m′1, 〈s′1,
ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and ` ∈ L be
a label such that:

1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. ∆′1(pcu) 6v ` or ∆′2(pcu) 6v ` ,
5. c1 = c2,
6. first(c1) = if e then c′ else c′′,
7. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

8. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

From (5) and (6), it follows that first(c2) = if e then c′ else c′′. Without loss of generality, we
assume that ∆′1(pcu) 6v `. From this, ∆′1(pcu) = ∆1(pcu)t∆1(e). From this, (3), and ∆′1(pcu) 6v `,
it follows that ∆1(e) 6v `. From this and (2), it follows that ∆2(e) 6v `. From this, (3), and
∆′2(pcu) = ∆2(pcu)t∆2(e), it follows that ∆′2(pcu) 6v `. Without loss of generality, we assume that
c1 = if e then c′ else c′′ (the proof in case c1 = if e then c′ else c′′ ; c3 is similar). There are four
cases:

• JeK(m1) = JeK(m2) = tt. From the rules F-IfTrue and F-IfFalse, it follows that c′1 = [c′ ;
set pc to ∆1(pcu)] and c2 = [c′ ; set pc to ∆1(pcu)]. There are three cases:

– For all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉,
c′′1 6= ε (i.e., c′ never terminates, produces an exception, or stucks starting from 〈∆′1, c′,
m′1, 〈s′1, ctx ′1〉〉). In this case our claim is trivially satisfied.

– For all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉,
c′′2 6= ε (i.e., c′ never terminates, produces an exception, or stucks starting from 〈∆′2, c′,
m′2, 〈s′2, ctx ′2〉〉). In this case our claim is trivially satisfied.

– There exist 〈∆′′1 , ε,m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′′2 , ε,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′1, c′,m′1, 〈s′1,

ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , ε,m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , ε,m′′2 , 〈s′′2 , ctx ′′2 〉〉.
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From this, it follows that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′′1 , [ε ; set pc to ∆1(pcu)],m′′1 ,

〈s′′1 , ctx ′′1 〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′′2 , [ε ; set pc to ∆2(pcu)],m′′2 , 〈s′′2 , ctx ′′2 〉〉.
By applying the F-ExpandedCode and the F-SeqEmpty rules, we obtain 〈∆′1, c′1,m′1,

〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′′1 , [set pc to ∆1(pcu)],m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u

〈∆′′′2 , [set pc to ∆2(pcu)],m′′2 , 〈s′′2 , ctx ′′2 〉〉. By applying the F-ExpandedCode and the

F-UpdateLabels rules, we obtain 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′′1 [pcu 7→ ∆1(pcu)], [ε],

m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′′2 [pcu 7→ ∆2(pcu)], [ε],m′′2 , 〈s′′2 , ctx ′′2 〉〉
(observe that ∆′′′1 [pcu 7→ ∆1(pcu)] = ∆′′1 and ∆′′′2 [pcu 7→ ∆2(pcu)] = ∆′′2 ). From this, it
directly follows our claim (since the code is the same in both final configurations and from
(3), it follows that the pcu is below ` in both configurations).

• JeK(m1) = JeK(m2) = ff. The proof of this case is similar to that of JeK(m1) = JeK(m2) = tt.
• JeK(m1) = tt and JeK(m2) = ff. The proof of this case is similar to that of JeK(m1) = JeK(m2) =

tt.
• JeK(m1) = ff and JeK(m2) = tt. The proof of this case is similar to that of JeK(m1) = JeK(m2) =

tt.
This completes the proof of our claim.

Lemma D.20 presents some results about computations involving while statements.

Lemma D.21. Let sec0 be the policy used to initialize the monitor, 〈∆1, c1,m1, 〈s1, ctx1〉〉, 〈∆′1,
c′1,m

′
1, 〈s′1, ctx ′1〉〉, 〈∆2, c2,m2, 〈s2, ctx2〉〉, and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉 be four local configurations, and

` ∈ L be a label. If the following conditions hold:
1. s1 ≡cfg s2,
2. 〈∆1, c1,m1, 〈s1, ctx1〉〉 ≈` 〈∆2, c2,m2, 〈s2, ctx2〉〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. ∆′1(pcu) 6v ` or ∆′2(pcu) 6v ` ,
5. c1 = c2,
6. first(c1) = while e do c′,
7. 〈∆1, c1,m1, 〈s1, ctx1〉〉

τ1
u 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉,

8. 〈∆2, c2,m2, 〈s2, ctx2〉〉
τ2
u 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(b) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,

(c) there are 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′1, c′1,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u

〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 and 〈∆′2, c′2,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′1 = c′′2 , and
∆′′1 (pcu) v ` and ∆′′2 (pcu) v `.

Proof. The proof is similar to that of Lemma D.20.

D.3.7 Lemmas about the global semantics
Here we present some auxiliary results about the global semantics of our enforcement mechanism.
Lemma D.22 states that, under appropriate conditions, performing a step of (global) execution

in two `-equivalent states with the same initial code and scheduler results in configurations with the
same code and scheduler.

Lemma D.22. Let sec0 be the policy used to initialize the monitor, 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉,
〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉, 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉, and 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 be four global
configurations, ` ∈ L be a label, n′ be the first value in S, n = (n′ mod |C1|) + 1, and u be the user
associated with the n-th program in C1. If the following conditions hold:

1. s1 ≡cfg s2,
2. 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉 ≈` 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. ∆′1(pcu) v ` and ∆′2(pcu) v `,
5. C1 = C2,
6. S1 = S2,
7. 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉

τ1
u 〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉,
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8. 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉
τ2
u 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉,

then C′1 = C′2 and S ′1 = S ′2.

Proof. The claim directly follows from (4), (5), and Lemma D.19 (together with (1) and (3)).

Lemma D.23 states some properties of the execution of if statements in the global semantics.

Lemma D.23. Let sec0 be the policy used to initialize the monitor, 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉,
〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉, 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉, and 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 be four global
configurations, and ` ∈ L be a label, n′ be the first value in S, n = (n′ mod |C1|) + 1, and u be the
user associated with the n-th program in C1. If the following conditions hold:

1. s1 ≡cfg s2,
2. 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉 ≈` 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. ∆′1(pcu) 6v ` or ∆′2(pcu) 6v `,
5. C1 = C2,
6. first(C1(n)) = if e then c′ else c′′,
7. S1 = S2,
8. 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉

τ1
u 〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉,

9. 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉
τ2
u 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(b) JeK(m1) = ff and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(c) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,

(d) JeK(m2) = ff and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,

(e) there are 〈∆′′1 , C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉 and 〈∆′′2 , C′′2 ,M ′′2 , 〈s′′2 , ctx ′′2 〉,S ′′2 〉 such that 〈∆′1, C′1,M ′1, 〈s′1,

ctx ′1〉,S ′1〉
τ ′1
∗

u 〈∆′′1 , C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉 and 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉
τ ′2
∗

u 〈∆′′2 , C′′2 ,M ′′2 ,
〈s′′2 , ctx ′′2 〉,S ′′2 〉, C′′1 = C′′2 , S ′′1 = S ′′2 , and ∆′′1 (pcu) v ` and ∆′′2 (pcu) v `.

Proof. From (6) and the rules F-IfTrue and F-IfFalse, it follows that the only applicable rule
in the global semantics is F-Atomic-Statement. Our claim directly follows from this, (3), (4),
Lemma D.20, and the fact that the F-Atomic-Statement rule does not modify the scheduler.

Lemma D.24 states some properties of the execution of while statements in the global semantics.

Lemma D.24. Let sec0 be the policy used to initialize the monitor, 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉,
〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉, 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉, and 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 be four global
configurations, and ` ∈ L be a label, n′ be the first value in S, n = (n′ mod |C1|) + 1, and u be the
user associated with the n-th program in C1. If the following conditions hold:

1. s1 ≡cfg s2,
2. 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉 ≈` 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉,
3. ∆1(pcu) v ` and ∆2(pcu) v `,
4. ∆′1(pcu) 6v ` or ∆′2(pcu) 6v `,
5. C1 = C2,
6. first(C1(n)) = while e do c′,
7. S1 = S2,
8. 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉

τ1
u 〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉,

9. 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉
τ2
u 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉,

then one of the following conditions hold:

(a) JeK(m1) = tt and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(b) JeK(m1) = ff and for all 〈∆′′1 , c′′1 ,m′′1 , 〈s′′1 , ctx ′′1 〉〉 such that 〈∆′1, c′′,m′1, 〈s′1, ctx ′1〉〉
τ ′1
∗

u 〈∆′′1 , c′′1 ,
m′′1 , 〈s′′1 , ctx ′′1 〉〉, c′′1 6= ε,

(c) JeK(m2) = tt and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,
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(d) JeK(m2) = ff and for all 〈∆′′2 , c′′2 ,m′′2 , 〈s′′2 , ctx ′′2 〉〉 such that 〈∆′2, c′′,m′2, 〈s′2, ctx ′2〉〉
τ ′2
∗

u 〈∆′′2 , c′′2 ,
m′′2 , 〈s′′2 , ctx ′′2 〉〉, c′′2 6= ε,

(e) there are 〈∆′′1 , C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉 and 〈∆′′2 , C′′2 ,M ′′2 , 〈s′′2 , ctx ′′2 〉,S ′′2 〉 such that 〈∆′1, C′1,M ′1, 〈s′1,

ctx ′1〉,S ′1〉
τ ′1
∗

u 〈∆′′1 , C′′1 ,M ′′1 , 〈s′′1 , ctx ′′1 〉,S ′′1 〉 and 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉
τ ′2
∗

u 〈∆′′2 , C′′2 ,M ′′2 ,
〈s′′2 , ctx ′′2 〉,S ′′2 〉, C′′1 = C′′2 , S ′′1 = S ′′2 , and ∆′′1 (pcu) v ` and ∆′′2 (pcu) v `.

Proof. From (6) and the rules F-WhileTrue and F-WhileFalse, it follows that the only applicable
rule in the global semantics is F-Atomic-Statement. Our claim directly follows from this, (3), (4),
Lemma D.21, and the fact that the F-Atomic-Statement rule does not modify the schedulers.

D.3.8 Bisimulations
Here we introduce bisimulations for our setting, and we prove some key results about them.
We first introduce some machinery. Let σ1 = 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉 and σ2 = 〈∆2, C2,M2,

〈s2, ctx2〉,S2〉 be two global configurations and i ∈ N be an integer. We say that σ2 is reachable
in at most i steps from σ1, denoted reachi(σ1, σ2), iff there exists an i′ ≤ i such that σ1

τ i
′

σ2.
The current program in σ1, denoted currPrg(σ1), is c and the current memory currMem(σ1) is m,
where n′ is the first element in S1, n = (n′ mod|C1|) + 1, C1(n) = 〈u, c〉, and M(n) = 〈u, c〉.
Furthermore, the current pc in σ1, denoted currPc(σ1), is ∆1(pcu), where n′ is the first element in
S1, n = (n′ mod|C1|) + 1, and C1(n) = 〈u, c〉. Finally, the current user in σ1, denoted currUsr(σ1),
is u, where currPrg(σ1) = 〈u, c〉. Given a local configuration σ and a user u, term(σ, u) = > iff there
exists a 〈∆, c,m, 〈s, ctx〉〉 such that σ τ ∗

u 〈∆, c,m, 〈s, ctx〉〉 and c = ε. Given a label ` and a user
u, we denote by notBelow(σ, `, u) = > iff for all 〈∆, c,m, 〈s, ctx〉〉 such that σ τ ∗

u 〈∆, c,m, 〈s, ctx〉〉,
then ∆(pcu) 6v `.

We are now ready to formalize bisimulations.

Definition D.4. Let σ1 = 〈∆1, C1,M1, 〈s1, ctx1〉,S1〉 and σ2 = 〈∆2, C2,M2, 〈s2, ctx2〉,S2〉 be two
global configurations, i, j ∈ N be integers, and ` ∈ L be a label. Furthermore, let R be a binary
relation over global configurations. We say that R is a (σ1, σ2, i, j, `)-bisimulation iff for all σ′1 =
〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉 and σ′2 = 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 such that σ′1Rσ′2, then the following
conditions hold:

1. reachi(σ1, σ
′
1) and reachj(σ2, σ

′
2).

2. σ′1 ≈` σ′2.
3. σ′1 ≡cfg σ′2.
4. C′1 = C′2.
5. S ′1 = S ′2.
6. currPc(σ1) v ` and currPc(σ2) v `.

7. If σ′1
τ ′1

σ′′1 , σ′2
τ ′2

σ′′2 , reachi(σ1, σ
′′
1 ), reachj(σ2, σ

′′
2 ), and currPc(σ′′1 ) v ` ∧ currPc(σ′′2 ) v `,

then σ′′1Rσ′′2 .

8. If σ′1
τ ′1

σ′′1 , σ′2
τ ′2

σ′′2 , reachi(σ1, σ
′′
1 ), reachj(σ2, σ

′′
2 ), and currPc(σ′′1 ) 6v ` ∨ currPc(σ′′2 ) 6v `,

then one of the following conditions hold:

(a) for all σ′′1 and σ′′2 such that σ′1
τ ′′1
∗

σ′′1 , σ′2
τ ′′2
∗

σ′′2 , reachi(σ1, σ
′′
1 ), reachj(σ2, σ

′′
2 ),

currPc(σ1) 6v ` or currPc(σ2) 6v `, or

(b) there are σ′′1 and σ′′2 such that σ′1
τ ′′1
∗

σ′′1 , σ′2
τ ′′2
∗

σ′′2 , reachi(σ1, σ
′′
1 ), reachj(σ2, σ

′′
2 ), and

σ′′1Rσ
′′
2 . �

Lemmas D.25 and D.26 state that, under certain conditions, we can construct bisimulations.

Lemma D.25. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx0
1〉,S0

1 〉,
σ0

2 = 〈∆0
2, C

0
2 ,M

0
2 , 〈s0

2, ctx0
2〉,S0

2 〉, σ1
1 = 〈∆1

1, C
1
1 ,M

1
1 , 〈s1

1, ctx1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx1
2〉,S1

2 〉
be four global configurations, τ1, τ2 be two traces, u be a user, and ` ∈ L be a label. If the following
conditions hold:

1. σ0
1
τ1

σ1
1,

2. σ0
2
τ2

σ1
2,

3. σ0
1 ≈` σ0

2,
4. σ0

1 ≡cfg σ0
2,

5. C0
1 = C0

2 ,
6. S0

1 = S0
2 ,

7. currPc(σ0
1) v ` and currPc(σ0

2) v `,
8. currPc(σ1

1) v ` and currPc(σ1
2) v `,

9. cl(auth(sec0,ATK)) v `,
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then {(σ0
1 , σ

0
2), (σ1

1 , σ
1
2)} is a (σ0

1 , σ
0
2 , 1, 1, `)-bisimulation.

Proof. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx0
1〉,S0

1 〉, σ0
2 =

〈∆0
2, C

0
2 ,M

0
2 , 〈s0

2, ctx0
2〉,S0

2 〉, σ1
1 = 〈∆1

1, C
1
1 ,M

1
1 , 〈s1

1, ctx1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx1
2〉,S1

2 〉 be
four global configurations, τ1, τ2 be two traces, u be a user, and ` ∈ L be a label. Furthermore, we
assume that following conditions hold:

1. σ0
1
τ1

σ1
1 ,

2. σ0
2
τ2

σ1
2 ,

3. σ0
1 ≈` σ0

2 ,
4. σ0

1 ≡cfg σ0
2 ,

5. C0
1 = C0

2 ,
6. S0

1 = S0
2 ,

7. currPc(σ0
1) v ` and currPc(σ0

2) v `,
8. currPc(σ1

1) v ` and currPc(σ1
2) v `,

9. cl(auth(sec0,ATK)) v `.
We now show that {(σ0

1 , σ
0
2), (σ1

1 , σ
1
2)} is a (σ0

1 , σ
0
2 , 1, 1, `)-bisimulation. We first need to show that

for all σ′1 = 〈∆′1, C′1,M ′1, 〈s′1, ctx ′1〉,S ′1〉 and σ′2 = 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 such that σ′1Rσ′2, the
following conditions hold: (a) reach1(σ0

1 , σ
′
1) and reach1(σ0

2 , σ
′
2), (b) σ′1 ≈` σ′2, (c) σ′1 ≡cfg σ′2, (d) C′1 =

C′2, (e) S ′1 = S ′2, (f) currPc(σ1) v ` and currPc(σ2) v `. There are two cases:
• (σ′1, σ′2) = (σ0

1 , σ
0
2). Then, (a) trivially follows since reach1(σ, σ) always holds. Moreover, (b)–(f)

directly follow from (3)–(7).
• (σ′1, σ′2) = (σ1

1 , σ
1
2). Then, (a) directly follows from (1) and (2). There are two cases:

– (1) is obtained by applying the M-Eval-End rule. From this and (5), it follows that also
(2) is obtained using the M-Eval-End rule. From this, (5), and the rule, we eliminate in
both run the same components. From this and (3)–(7), it directly follows that (b)–(f) are
satisfied.

– (1) is obtained by applying the M-Eval-Step or M-Atomic-Statement rules. From this,
(5), and (6), it follows that we perform one step of the local semantics for the same program
in both runs. From this and (6), (e) directly follows. From (3)–(10), Lemmas D.17, D.18,
and D.19, conditions (b)–(d) follow. Finally, condition (f) immediately follows from (8).

Therefore, the fact that R is a bisimulation directly follows from (i) the fact that (a)–(f) hold for
(σ0

1 , σ
0
2) and (σ1

1 , σ
1
2), (ii) assumptions (1), (2), and R = {(σ0

1 , σ
0
2), (σ1

1 , σ
1
2)}, and (3) there are no

configurations that are reachable in 1 step from σ0
1 and σ0

2 other than σ1
1 and σ1

2 .

Lemma D.26. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx0
1〉,S0

1 〉,
σ0

2 = 〈∆0
2, C

0
2 ,M

0
2 , 〈s0

2, ctx0
2〉,S0

2 〉, σ1
1 = 〈∆1

1, C
1
1 ,M

1
1 , 〈s1

1, ctx1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx1
2〉,S1

2 〉
be four global configurations, τ1, τ2 be two traces, u = currUsr(σ1

1) be a user, and ` ∈ L be a label. If
the following conditions hold:

1. σ0
1
τ1

σ1
1,

2. σ0
2
τ2

σ1
2,

3. σ0
1 ≈` σ0

2,
4. σ0

1 ≡cfg σ0
2,

5. C0
1 = C0

2 ,
6. S0

1 = S0
2 ,

7. currPc(σ0
1) v ` and currPc(σ0

2) v `,
8. currPc(σ1

1) 6v ` or currPc(σ1
2) 6v `,

9. cl(auth(sec0,ATK)) v `,
10. for all users u′ 6= currUsr(σ0

1), ∆0
1(pcu′) v ` and ∆0

2(pcu′) v `,
11. whenever first(currPrg(σ0

1)) = if e then c′ else c′′ and JeK(M0
1 ) = tt, then term(〈∆1

1, c
′,

currMem(σ1
1), 〈s1

1, ctx1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx1

1〉〉, `, u) = >,
12. whenever first(currPrg(σ0

1)) = if e then c′ else c′′ and JeK(M0
1 ) = ff, then term(〈∆1

1, c
′′,

currMem(σ1
1), 〈s1

1, ctx1
1〉〉, u) = > and notBelow(〈∆1

1, c
′′, currMem(σ1

1), 〈s1
1, ctx1

1〉〉, `, u) = >,
13. whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2 ) = tt, then term(〈∆1

2, c
′,

currMem(σ1
2), 〈s1

2, ctx1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx1

2〉〉, `, u) = >,
14. whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2 ) = ff, then term(〈∆1

2, c
′′,

currMem(σ1
2), 〈s1

2, ctx1
2〉〉, u) = > and notBelow(〈∆1

2, c
′′, currMem(σ1

2), 〈s1
2, ctx1

2〉〉, `, u) = >,
15. whenever first(currPrg(σ0

1)) = while e do c′ and JeK(M0
1 ) = tt, then term(〈∆1

1, c
′;while e do c′,

currMem(σ1
1), 〈s1

1, ctx1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx1

1〉〉, `, u) = >,
16. whenever first(currPrg(σ0

2)) = while e do c′ and JeK(M0
2 ) = tt, then term(〈∆1

2, c
′;while e do c′,

currMem(σ1
2), 〈s1

2, ctx1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx1

2〉〉, `, u) = >,
17. whenever first(currPrg(σ0

1)) = set pc to `′, `′ v currPc(σ0
1),
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then there are i, j such that σ0
1

π1 i
σi1, σ0

2
π2 j

σj2, and {(σ0
1 , σ

0
2), (σi1, σj2)} is a (σ0

1 , σ
0
2 , i, j, `)-

bisimulation.

Proof. Let sec0 be the policy used to initialize the monitor, σ0
1 = 〈∆0

1, C
0
1 ,M

0
1 , 〈s0

1, ctx0
1〉,S0

1 〉, σ0
2 =

〈∆0
2, C

0
2 ,M

0
2 , 〈s0

2, ctx0
2〉,S0

2 〉, σ1
1 = 〈∆1

1, C
1
1 ,M

1
1 , 〈s1

1, ctx1
1〉,S1

1 〉, σ1
2 = 〈∆1

2, C
1
2 ,M

1
2 , 〈s1

2, ctx1
2〉,S1

2 〉 be
four global configurations, τ1, τ2 be two traces, u = currUsr(σ1

1) be a user, and ` ∈ L be a label.
Furthermore, we assume the following conditions hold:

1. σ0
1
τ1

σ1
1 ,

2. σ0
2
τ2

σ1
2 ,

3. σ0
1 ≈` σ0

2 ,
4. σ0

1 ≡cfg σ0
2 ,

5. C0
1 = C0

2 ,
6. S0

1 = S0
2 ,

7. currPc(σ0
1) v ` and currPc(σ0

2) v `,
8. currPc(σ1

1) 6v ` or currPc(σ1
2) 6v `,

9. cl(auth(sec0,ATK)) v `,
10. for all users u′ 6= currUsr(σ0

1), ∆0
1(pcu′) v ` and ∆0

2(pcu′) v `,
11. whenever first(currPrg(σ0

1)) = if e then c′ else c′′ and JeK(M0
1 ) = tt, then term(〈∆1

1, c
′,

currMem(σ1
1), 〈s1

1, ctx1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx1

1〉〉, `, u) = >,
12. whenever first(currPrg(σ0

1)) = if e then c′ else c′′ and JeK(M0
1 ) = ff, then term(〈∆1

1, c
′′,

currMem(σ1
1), 〈s1

1, ctx1
1〉〉, u) = > and notBelow(〈∆1

1, c
′′, currMem(σ1

1), 〈s1
1, ctx1

1〉〉, `, u) = >,
13. whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2 ) = tt, then term(〈∆1

2, c
′,

currMem(σ1
2), 〈s1

2, ctx1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx1

2〉〉, `, u) = >,
14. whenever first(currPrg(σ0

2)) = if e then c′ else c′′ and JeK(M0
2 ) = ff, then term(〈∆1

2, c
′′,

currMem(σ1
2), 〈s1

2, ctx1
2〉〉, u) = > and notBelow(〈∆1

2, c
′′, currMem(σ1

2), 〈s1
2, ctx1

2〉〉, `, u) = >,
15. whenever first(currPrg(σ0

1)) = while e do c′ and JeK(M0
1 ) = tt, then term(〈∆1

1, c
′;while e do c′,

currMem(σ1
1), 〈s1

1, ctx1
1〉〉, u) = > and notBelow(〈∆1

1, c
′, currMem(σ1

1), 〈s1
1, ctx1

1〉〉, `, u) = >,
16. whenever first(currPrg(σ0

2)) = while e do c′ and JeK(M0
2 ) = tt, then term(〈∆1

2, c
′;while e do c′,

currMem(σ1
2), 〈s1

2, ctx1
2〉〉, u) = > and notBelow(〈∆1

2, c
′, currMem(σ1

2), 〈s1
2, ctx1

2〉〉, `, u) = >,
17. whenever first(currPrg(σ0

1)) = set pc to `′, `′ v currPc(σ0
1).

Let c1 = currPrg(σ0
1), u1 = currUsr(σ0

1), c2 = currPrg(σ0
2), and u2 = currUsr(σ0

2). From (5) and
(6), it follows that 〈u1, c1〉 = 〈u2, c2〉. In the following, we denote u1 and u2 using u and c1 and
c2 using c. Furthermore, we denote by n the value such that C0

1 (n) = 〈currUsr(σ0
1), currPrg(σ0

1)〉.
From Lemma D.12 and (17), there are only two cases:

• first(c1) = if e then c′ else c′′. We assume that c1 = if e then c′ else c′′; c3, where c3 can
be an empty program (the proof for the other cases is almost identical). From this and the
F-IfTrue and F-IfFalse rules, it follows that currPrg(σ1

1) = [c∗1; set pc to ∆0
1(pcu)]; c3 and

currPrg(σ1
2) = [c∗2; set pc to ∆0

2(pcu)]; c3, where c∗1 ∈ {c′, c′′}, and c∗2 ∈ {c′, c′′}. Further-
more, from (3) and (7), it follows that ∆0

1(pcu) = ∆0
2(pcu) = `′. Therefore, currPrg(σ1

1) =
[c∗1; set pc to `′]; c3 and currPrg(σ1

2) = [c∗2; set pc to `′]; c3, where c∗1 ∈ {c′, c′′}, and c∗2 ∈ {c′,
c′′}. From this and (11)–(14), it follows that there are 〈∆i

1, [ε]; c3,mi
1, 〈si1, ctxi1〉〉 and 〈∆j

2, [ε]; c3,
mj

2, 〈s
j
2, ctxj2〉〉 such that 〈∆0

1, [c∗1; set pc to `′]; c3, currMem(σ0
1), 〈s0

1, ctx0
1〉〉 τ i

u 〈∆i
1, ε; c3,mi

1,

〈si1, ctxi1〉〉 and 〈∆0
2, [c∗2; set pc to `′]; c3, currMem(σ0

2), 〈s0
2, ctx0

2〉〉
τ ′
j

u 〈∆j
2, ε; c3,m

j
2, 〈s

j
2, ctxj2〉〉,

where ∆i
1(pcu) = `′ and ∆i

2(pcu) = `′. From (11)–(14), it follows that during both computa-
tions pcu is never below ` before executing the last set pc to `′ statement. From this and (8),
it follows that ∆i′

1 (pcu) 6v ` and ∆j′

2 (pcu) 6v ` for all 1 ≤ i′ ≤ i − 1 and 1 ≤ j′ ≤ j − 1. By
repeatedly applying Lemma D.13 and Lemma D.14 and ∆i′

1 (pcu) 6v ` and ∆j′

2 (pcu) 6v ` for all
1 ≤ i′ ≤ i− 1 and 1 ≤ j′ ≤ j− 1, we obtain that 〈∆i′

1 , c
i′
1 ,m

i′
1 , 〈si

′
1 , ctxi′1 〉〉 ≈` 〈∆j′

2 , c
j′

2 ,m
j′

2 , 〈s
j′

2 ,

ctxj
′

2 〉〉 for all 1 ≤ i′ ≤ i− 1 and 1 ≤ j′ ≤ j − 1. From this and the fact that in the last step of
the execution we set pcu to `′ in both runs, 〈∆i

1, c
i
1,m

i
1, 〈si1, ctxi1〉〉 ≈` 〈∆j

2, c
j
2,m

j
2, 〈s

j
2, ctxj2〉〉.

Similarly, by repeatedly applying Lemma D.15, we obtain that 〈∆i
1, c

i
1,m

i
1, 〈si1, ctxi1〉〉 ≡cfg 〈∆j

2,
cj2,m

j
2, 〈s

j
2, ctxj2〉〉. By repeatedly applying the F-Atomic-Statement rule both to σ0

1 and

σ0
2 , we obtain that σ0

1
τ i 〈∆i

1, C
i
1,M

i
1, 〈si1, ctxi1〉,S0

1 〉 and σ0
2

τ ′
i

〈∆j
2, C

j
2 ,M

j
2 , 〈s

j
2, ctxj2〉,S0

2 〉,
where Ci1 = Ci1(1)· . . . ·Ci1(n−1)·〈u, [ε]; c3〉·Ci1(n+1) . . . ·Ci1(|Ci1|), Ci2 = Ci2(1)· . . . ·Ci2(n−1)·〈u,
[ε]; c3〉·Ci2(n+ 1) . . . ·Ci2(|Ci2|), M i

1 = M i
1(1)· . . . ·M i

1(n−1)·〈u,mi
1〉·M i

1(n+ 1) . . . ·M i
1(|M i

1|), and
M i

2 = M i
2(1)· . . . ·M i

2(n−1)·〈u,mi
2〉·M i

2(n+1) . . . ·M i
2(|M i

2|). In the following, let σi1 = 〈∆i
1, C

i
1,

M i
1, 〈si1, ctxi1〉,S0

1 〉 and σj2 = 〈∆j
2, C

j
2 ,M

j
2 , 〈s

j
2, ctxj2〉,S0

2 〉. We now show that R = {(σ0
1 , σ

0
2), (σi1,

σj2)} is a (σ0
1 , σ

0
2 , i, j, `)-bisimulation. We first need to show that for all σ′1 = 〈∆′1, C′1,M ′1, 〈s′1,

ctx ′1〉,S ′1〉 and σ′2 = 〈∆′2, C′2,M ′2, 〈s′2, ctx ′2〉,S ′2〉 such that σ′1Rσ′2, the following conditions hold:
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(a) reachi(σ0
1 , σ
′
1) and reachj(σ0

2 , σ
′
2), (b) σ′1 ≈` σ′2, (c) σ′1 ≡cfg σ′2, (d) C′1 = C′2, (e) S ′1 = S ′2,

(f) currPc(σ′1) v ` and currPc(σ′2) v `. There are two cases:
– (σ′1, σ′2) = (σ0

1 , σ
0
2). Then, (a) trivially follows since reachk(σ, σ) always holds for all k > 0

and both i, j > 0. Morever, (b)–(f) directly follow from (3)–(7).

– (σ′1, σ′2) = (σi1, σj2). Then, (a) directly follows from σ0
1

τ i
σi1 and σ0

2
τ ′
i

σj2. Condition
(b) follows from (3), 〈∆i

1, c
i
1,m

i
1, 〈si1, ctxi1〉〉 ≈` 〈∆j

2, c
j
2,m

j
2, 〈s

j
2, ctxj2〉〉, and ∆i

1(pcu) =
∆j

2(pcu) = `′. Condition (c) follows from 〈∆i
1, c

i
1,m

i
1, 〈si1, ctxi1〉〉 ≡cfg 〈∆j

2, c
j
2,m

j
2, 〈s

j
2,

ctxj2〉〉. Condition (d) follows from (6), Si1 = S0
1 , and Sj2 = S0

2 . Condition (e) follows
from (5) and the fact that we applied only the F-AtomicStatement rule, which does not
modify the scheduler. Condition (f) follows from (7), ∆i

1(pcu) = ∆0
1(pcu), and ∆i

2(pcu) =
∆0

2(pcu).
Therefore, the fact that R is a bisimulation directly follows from (i) the fact that (a)–(f) hold
for (σ0

1 , σ
0
2) and (σ1

1 , σ
1
2), (ii) assumptions (1), (2), and {(σ0

1 , σ
0
2), (σ1

1 , σ
1
2)}, and (3) there are no

configurations that are reachable in i steps from σ0
1 and j steps from σ0

2 other than σi1 and σj2.
• first(c1) = while e do c′. The proof of this case is similar to that of first(c1) = if e then c′ else c′′.

This completes the proof of our claim.

Finally, Lemma D.27 states a composition result for bisimulations.
Lemma D.27. Let R1 be a (σ0

0 , σ
0
1 , i, j, `)-bisimulation and R2 be a (ρ0

0, ρ
0
1, x, y, `

′)-bisimulation. If
the following conditions hold:

1. (σ0
0 , σ

0
1) ∈ R1,

2. (ρ0
0, ρ

0
1) ∈ R1 ∩R2,

3. ` = `′,
4. σ0

0
τ i
ρ0

0, and
5. σ0

1
τ j

ρ0
1,

then R1 ∪R2 is a (σ0
0 , σ

0
1 , i+ x, j + y, `)-bisimulation.

Proof. Let R1 be a (σ0
0 , σ

0
1 , i, j, `)-bisimulation and R2 be a (ρ0

0, ρ
0
1, x, y, `

′)-bisimulation. Assume, for
contradiction’s sake, that R1 ∪R2 is not a (σ0

0 , σ
0
1 , i+x, j+ y, `)-bisimulation. This happens iff there

is a (ν0, ν1) ∈ R1 ∪R2 that violates one of the following constraints:
1. ¬reachi+x(σ0

0 , ν0) or ¬reachj+y(σ0
1 , ν

1). Without loss of generality, we assume that reachi+x(σ0
0 ,

ν0) does not hold. If (ν0, ν1) ∈ R1, then reachi(σ0
0 , ν0) holds and reachi+x(σ0

0 , ν0) follows,
leading to a contradiction. If (ν0, ν1) ∈ R2 \ R1, then from σ0

0
τ i

ρ0
0 and reachx(ρ0

0, ν0), it
follows that reachi+x(σ0

0 , ν0), leading to a contradiction.
2. ν0 6≈` ν1. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
3. ν0 6≡cfg ν1. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
4. C0 6= C1, where C0 is the code in ν0 and C1 is the code in ν1. This contradicts (ν0, ν1) ∈ R1 or

(ν0, ν1) ∈ R2.
5. S0 6= S1, where S0 is the scheduler in ν0 and S1 is the scheduler in ν1. This contradicts

(ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
6. currPc(ν0) 6v ` or currPc(ν1) 6v `. This contradicts (ν0, ν1) ∈ R1 or (ν0, ν1) ∈ R2.
7. ν0

τ0
ν′0, ν1

τ1
ν′1, reachi+x(σ0

0 , ν
′
0), reachj+y(σ0

1 , ν
′
1), and currPc(ν′0) v `, but (ν′0, ν′1) 6∈

R1 ∪R2. There are three cases:
• (ν0, ν1) ∈ R0, reachi(σ0

0 , ν
′
0), and reachj(σ0

1 , ν
′
1). From this and R1 is a (σ0

0 , σ
0
1 , i, j, `)-

bisimulation, it follows that (ν′0, ν′1) ∈ R1. Hence, (ν′0, ν′1) ∈ R1 ∪R2, leading to a contra-
diction.

• (ν0, ν1) ∈ R1, reachx(ρ0
0, ν
′
0), and reachy(ρ0

1, ν
′
1). From this and R2 is a (ρ0

0, ρ
0
1, x, y, `)-

bisimulation, it follows that (ν′0, ν′1) ∈ R2. Hence, (ν′0, ν′1) ∈ R1 ∪R2, leading to a contra-
diction.

• (ν0, ν1) ∈ R0, reachi+x(σ0
0 , ν
′
0), reachj+y(σ0

1 , ν
′
1), but ¬reachi(σ0

0 , ν
′
0) or ¬reachj(σ0

1 , ν
′
1).

This happens iff (ν0, ν1) = (ρ0, ρ1). From this, (ρ0, ρ1) ∈ R1 ∩ R2, σ0
0

τ i
ρ0

0, σ0
1

τ j
ρ0

1,
reachi+x(σ0

0 , ν
′
0), and reachj+y(σ0

1 , ν
′
1), it follows that reachx(ρ0

0, ν
′
0) and reachy(ρ0

1, ν
′
1).

From this and R2 is a (ρ0
0, ρ

0
1, x, y, `)-bisimulation, it follows that (ν′0, ν′1) ∈ R2. Hence,

(ν′0, ν′1) ∈ R1 ∪R2, leading to a contradiction.
8. ν0

τ0
ν′0, ν1

τ1
ν′1, reachi+x(σ0

0 , ν
′
0), reachj+y(σ0

1 , ν
′
1), currPc(ν′0) 6v `, and there are ν′′0

and ν′′1 such that ν0
τ ′0
∗

ν′′0 , ν1
τ ′1
∗

ν′′1 , reachi+x(σ0
0 , ν
′′
0 ), reachj+y(σ0

1 , ν
′′
1 ), currPc(ν′′0 ) v `,

currPc(ν′′1 ) v `, and (ν′′0 , ν′′1 ) 6∈ R1∪R2. If reachi(σ0
0 , ν
′′
0 ) and reachj(σ0

1 , ν
′′
1 ), then (ν′′0 , ν′′1 ) ∈ R1

and, therefore, (ν′′0 , ν′′1 ) ∈ R1 ∪R2, leading to a contradiction. If reachx(ρ0
0, ν
′′
0 ) and reachy(ρ0

1,
ν′′1 ), then (ν′′0 , ν′′1 ) ∈ R2 and, therefore, (ν′′0 , ν′′1 ) ∈ R1 ∪ R2, leading to a contradiction. Note
that from (ρ0, ρ1) ∈ R1 ∩R2, it follows that the above cases are the only possible.

Since all cases lead to a contradiction, this completes the proof of our claim.
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D.3.9 Proof of the main result
We are now ready to prove the main result of Section 7.6, namely that our mechanism provides

security with respect to an external attacker ATK .

Theorem D.7. For all programs C = c1· . . . ·ck ∈ Comk
UID, scheduler S, memoriesM = m1· . . . ·mk ∈

Memk
UID, and initial runtime state s, whenever r = 〈∆0, C,M, 〈s, ε〉,S〉 τ n 〈∆′, C′,M ′, 〈s′, ctx′〉,

S ′〉, then for all 1 ≤ i ≤ n, K ATK (〈M, s〉, C,S, trace(ri−1)) ∩ AATK,sec(M, s) ⊆ K ATK (〈M, s〉, C,S,
trace(ri)), where the database in r’s (i − 1)-th configuration is 〈db, U, sec, T, V 〉 and K ATK refers to
Definition 7.3 with  as the underlying evaluation relation.

Proof. Let k ∈ N, C0 = c1· . . . ·ck ∈ Comk
UID be WhileSql programs, S0 be a scheduler, M0 =

m1· . . . ·mk ∈ Memk
UID be memories, s0 be a database state, σ0 be the global state 〈∆0, C0,M0,

〈s0, ε〉,S0〉. Let σ1 be a global state and n be a value in N such that r = σ0
τ n

σ1. Assume,
for contradiction’s sake, that our claim does not hold. Namely, there exists a value 1 ≤ i ≤ n
such that K ATK (〈M0, s0〉, C0,S0, trace(ri−1)) ∩ AATK,sec(M0, s0) 6⊆ K ATK (〈M0, s0〉, C0,S, trace(ri)),
where sec is the security policy in the (i − 1)-th configuration in r. From this, it follows that there
is a state 〈M1, s1〉 such that 〈M1, s1〉 ∈ K ATK (〈M0, s0〉, C0,S0, trace(ri−1)) ∩ AATK,sec(M0, s0) and
〈M1, s1〉 6∈ K ATK (〈M0, s0〉, C0,S, trace(ri)). From 〈M1, s1〉 ∈ K ATK (〈M0, s0〉, C0,S0, trace(ri−1)), it
follows that s0 ≈ATK s1, M0 ≈ATK M1, and for all ctx ′, ∆′, τ ′, C′, M ′, s′, S ′ such that 〈∆0, C0,

M1, 〈s1, ε〉,S0〉 τ ′
∗
〈∆′, C′,M ′, 〈s′, ctx ′〉,S ′〉, trace(ri−1) ∼ATK τ ′. From 〈M1, s1〉 ∈ AATK,sec(M, s),

it follows that s1 ≈sec,ATK s and M1 ≈ATK M . Finally, from 〈M1, s1〉 6∈ K ATK (〈M0, s0〉, C0,S,
trace(ri)), it follows that s0 6≈ATK s1, M0 6≈ATK M1, or there are ctx ′, ∆′, τ ′, C′, M ′, s′, S ′

such that 〈∆0, C0,M1, 〈s1, ε〉,S0〉 τ ′
∗
〈∆′, C′,M ′, 〈s′, ctx ′〉,S ′〉 and trace(ri) 6∼ATK τ ′. Note that

only the last case is interesting (since s0 6≈ATK s1 and M0 6≈ATK M1 immediately contradict 〈M1,
s1〉 ∈ K ATK (〈M0, s0〉, C0,S, trace(ri−1))). Therefore, the following conditions hold:

1. s1 ≈ATK s0,
2. s1 ≈sec,ATK s0,
3. M1 ≈ATK M0,
4. there are j, ctxj1, ∆j

1, τ
j
1 , C

j
1 , M

j
1 , s

j
1, S

j
1 such that:

(a) 〈∆0, C0,M1, 〈s1, ε〉,S0〉
τ ′−→

j

〈∆j
1, C

j
1 ,M

j
1 , 〈s

j
1, ctxj1〉,S

j
1〉,

(b) trace(ri−1) ∼ATK τ ′, and
(c) trace(ri) 6∼ATK τ ′.

In the following, let sec0 be the policy in the state s0 (which, from s1 ≈ATK s0, is the same as in s1),
sec be the policy in the (i−1)-th configuration in r, and VarsATK be the variables occurring in ATK ’s
program. Furthermore, let ` be the label cl(auth(sec0,ATK)∪ auth(sec,ATK)∪

⋃
x∈VarsATK

MEMx)
(observe that cl(auth(sec0,ATK)) v ` holds), σi−1

0 = 〈∆i−1
0 , Ci−1

0 ,M i−1
0 , 〈si−1

0 , ctxi−1
0 〉,Si−1

0 〉 be
(i− 1)-th configuration in r, and σj−1

1 be the configuration 〈∆j−1
1 , Cj−1

1 ,M j−1
1 , 〈sj−1

1 , ctxj−1
1 〉,Sj−1

1 〉.
From (4.b) and (4.c), it follows that the only interesting cases are those for which trace(ri)�ATK =
trace(ri−1)�ATK ·obs0 (since if trace(ri)�ATK = trace(ri−1)�ATK , then (4.b) and (4.c) are contradictory
statements), where obs1 is an observation. Therefore, there is a non-empty trace π1 such that
trace(ri−1)�ATK = π1 and trace(ri)�ATK = π1·obs1. Let σi0 and σi−1

0 be the last global states
in ri and ri−1. From trace(ri)�ATK = trace(ri−1)�ATK ·obs0, it follows that σi−1

0
obs0

σi0. From
trace(ri−1) ∼ATK τ ′, trace(ri) 6∼ATK τ ′, and trace(ri)�u = trace(ri−1)�u·obs0, it follows that τ ′�ATK =
π1·obs1·π4, where obs1 is an observation different from obs0 (it this is not the case, this would
contradict (4.b) and (4.c) since this would imply trace(ri) ∼ATK τ ′). Without loss of generality, we

assume that π4 = ε and that obs1 is produced in the last step of 〈∆0, C0,M1, 〈s1, ε〉,S0〉
τ ′−→

j

〈∆j
1,

Cj1 ,M
j
1 , 〈s

j
1, ctxj1〉,S

j
1〉, i.e., σ

j−1
1

obs1
σj1. We claim that that (1) σi−1

0 ≈` σj−1
1 , (2) Ci−1

0 = Cj−1
1 ,

(3) Si−1
0 = Sj−1

1 , (4) si−1
0 ≡cfg sj−1

1 . Furthermore, we also claim that currPc(σi−1
0 ) v ` and LU (si−1

0 ,
ATK) v `. From (1) and currPc(σi−1

0 ) v `, it follows that currPc(σj−1
1 ) v `. From (4) and

LU (si−1
0 ,ATK) v `, it follows that LU (sj−1

1 ,ATK) v `. From this and Lemma D.16, it follows that
obs0 = obs1, leading to a contradiction.

Below, we prove our claims together with other intermediate facts.
Fact 1. We now prove that σ0

0 ≈` σ0
1 , where σ0

0 = 〈∆0, C0,M0, 〈s0, ε〉,S0〉, σ0
1 = 〈∆0, C0,M1,

〈s1, ε〉,S0〉, s0 = 〈db0, U0, sec0, T0, V0〉, and s1 = 〈db1, U1, sec1, T1, V1〉. To do so, we need to show
that:

• For all queries q ∈ RC such that LQ(∆0, q) v `, [q]db0 = [q]db1 . From ` = cl(auth(sec0,
ATK) ∪ auth(sec,ATK) ∪

⋃
x∈VarsATK

MEMx) and q is a query (i.e., it does not refer to
MEMx for any x), it follows that LQ(∆0, q) v cl(auth(sec0,ATK) ∪ auth(sec,ATK)). From
LQ’s definition, it follows that LQ(∆0, q) =

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆0(q′). From this and ∆0’s
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definition, it follows that ∆0(q) = cl(q) for all q ∈ RC pred . From this and LQ(∆0, q) =⊔
Q∈suppD,Γ(q)

⊔
q′∈Q ∆0(q′), it follows that LQ(∆0, q) =

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q cl(q′). From this

and LQ(∆0, q) v cl(auth(sec0,ATK)∪auth(sec,ATK)), it follows
⊔
Q∈suppD,Γ(q)

⊔
q′∈Q cl(q′) v

cl(auth(sec0,ATK) ∪ auth(sec,ATK)). Furthermore, from the definition of suppD,Γ(q), it fol-
lows that cl(q) v

⊔
Q∈suppD,Γ(q)

⊔
q′∈Q cl(q′). Therefore, the tables and views in auth(sec0,

ATK) ∪ auth(sec,ATK) determine the values of the queries in suppD,Γ(q), which in turn de-
termine the value of q, i.e., cl(q) v cl(auth(sec0,ATK) ∪ auth(sec,ATK)). From s1 ≈ATK s0,
it follows that the content of all tables and views in auth(sec0,ATK) is the same in s0 and s1.
From s1 ≈sec,ATK s0, it follows that the content of all tables and views in auth(sec,ATK) is
the same in s0 and s1. From this and cl(q) v cl(auth(sec0,ATK) ∪ auth(sec,ATK)), it follows
that [q]db0 = [q]db1 .

• For all variables x ∈ Vars such that ∆0(x) v `, JM0K(x) = JM1K(x). From ` = cl(auth(sec0,
ATK) ∪ auth(sec,ATK) ∪

⋃
x∈VarsATK

MEMx), it follows that ∆0(x) v cl(auth(sec0,ATK) ∪
auth(sec,ATK) ∪

⋃
x∈VarsATK

MEMx). From this and ∆0(x) = > if x 6∈ VarsATK and ∆0(x) =
MEMx otherwise, it follows that ∆0(x) = MEMx. From this, it follows that x ∈ VarsATK .
From this and s1 ≈ATK s0, it follows that JM0K(x) = JM1K(x).

These facts together with the fact that the monitor state is the same in σ0
0 and σ0

1 , leads to σ0
0 ≈` σ0

1 .
Fact 2. We now prove that s0 ≡cfg s1. Let s0 = 〈db0, U0, S0, T0, V0〉 and s1 = 〈db1, U1, S1, T1, V1〉.
From s1 ≈ATK s0 and ≈ATK ’s definition, it follows that U0 = U1, S0 = S1, T0 = T1, and V0 = V1.
From this and ≡cfg’s definition, it follows that s0 ≡cfg s1.
Fact 3. We now show that currPc(σi−1

0 ) v ` and LU (si−1
0 ,ATK) v `. From ` = cl(auth(sec0,

ATK)∪auth(sec,ATK)∪
⋃
x∈VarsATK

MEMx) and sec is the policy in σi−1
0 , it immediately follows that

LU (si−1
0 ,ATK) v `. Assume, for contradiction’s sake, that currPc(σi−1

0 ) 6v `. From σi−1
0

obs0
σi0 and

obs0 6= ε, it follows that the executed rule produced an event. In the following, let currUsr(σi−1
0 ) = u.

Observe that ∆i−1
0 (pcu) = currPc(σi−1

0 ). There are two cases:
• Rule F-Eval-Step. From the rule, it follows that 〈∆i−1

0 , ci−1
0 ,mi−1

0 , 〈si−1
0 , ctxi−1

0 〉〉 obs0
u

〈∆i
0, c

i
0,m

i
0, 〈si0, ctxi0〉〉 (which we denote r). From this and Lemma D.11, it follows that

∆i−1
0 (deps(obs0, r))t∆i−1

0 (pcu) v LU (si−1
0 , user(obs0)). From this, it follows that ∆i−1

0 (pcu) v
LU (si−1

0 , user(obs0)). Furthermore, since trace(ri)�ATK = trace(ri−1)�ATK ·obs0, it follows
that user(obs0) = ATK . From this and ∆i−1

0 (pcu) v LU (si−1
0 , user(obs0)), it follows that

∆i−1
0 (pcu) v LU (si−1

0 ,ATK). From this and LU (si−1
0 ,ATK) v `, it follows that ∆i−1

0 (pcu) v `,
leading to a contradiction.

• Rule F-Atomic-Statement. The proof is similar to that of F-Eval-Step.
Since all cases lead to a contradiction, this completes the proof of Fact 3.

Fact 4. We prove that si−1
0 ≡cfg sj−1

1 . From σ0
0
τ0 ∗

σi−1
0

obs0
σi0, σ0

1
τ1 ∗

σj−1
1

obs1
σj1, τ0�ATK =

τ1�ATK , all configuration changes are associated with public events, and the code produced by the
expansion process either terminates or gets stuck, it follows that the configuration has been modified
in the same way in σ0

0
τ0 ∗

σi−1
0 and σ0

1
τ1 ∗

σj−1
1 . Therefore, si−1

0 ≡cfg sj−1
1 .

Fact 5. We now prove that currPc(σj−1
1 ) v `. From σj−1

1
obs1

σj1, there are two cases:
1. We applied the F-Out rule. From the rule, it follows that currPc(σj−1

1 ) v LU (sj−1
1 , u′).

Furthermore, since obs1 is visible to ATK , it follows that u′ = ATK . Hence, currPc(σj−1
1 ) v

LU (sj−1
1 ,ATK). From this and si−1

0 ≡cfg sj−1
1 (Fact 4), it follows that currPc(σj−1

1 ) v LU (si−1
0 ,

ATK). From this and LU (si−1
0 ,ATK) v ` (Fact 3), it follows that currPc(σj−1

1 ) v `
2. We applied the F-DbOut rule. The proof of this case is similar to that of the F-Out rule.

Fact 6. We now prove that (1) σi−1
0 ≈` σj−1

1 , (2) Ci−1
0 = Cj−1

1 , and (3) Si−1
0 = Sj−1

1 . From
Facts 1 and 2, it follows that initially σ0

0 ≈` σ0
1 , C0

0 = C0
1 , S0

0 = S0
1 , and s0

0 ≡cfg s0
1. Furthermore,

currPc(σ0
0) = currPc(σ0

1) = ⊥ given that both runs start from the initial monitor state ∆0. Therefore,
we can repeatedly apply Lemmas D.25 and D.26 (depending on whether we are in a low or high context
given `) to construct bisimulations among states in the two runs and use Lemma D.27 to compose
the various bisimulations in a unique bisimulation R. We remark that during the construction of the
bisimulation we can always apply either Lemma D.25 or Lemma D.26. In particular, currPc(σi−1

0 ) v `
(Fact 3) and currPc(σj−1

1 ) v ` (Fact 5) ensure that the execution of branching statements leading to
high contexts with respect to ` always terminates before σj−1

0 and σj−1
1 . Finally, observe that {(σ0

0 ,
σ1

0), (σi−1
0 , σj−1

1 )} ⊆ R by construction. From this, σi−1
0 ≈` σj−1

1 , Ci−1
0 = Cj−1

1 , and Si−1
0 = Sj−1

1
directly follow.
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