
Model-Driven Testing for Web Applications using

Abstract State Machines

Francesco Bolis1, Angelo Gargantini1, Marco Guarnieri1, Eros Magri1, and
Lorenzo Musto2 ?

1 Dip. di Ing. dell'Informazione e Metodi Matematici, Università di Bergamo, Italy
{francesco.bolis,angelo.gargantini,marco.guarnieri,eros.magri}@unibg.it

2 Optics Division Alcatel-Lucent, Vimercate, Italy
lorenzo.musto@alcatel-lucent.com

Abstract. The increasing di�usion and importance of Web Applica-
tions has led to strict requirements in terms of continuity of the service,
because their unavailability can lead to severe economic losses. Tech-
niques to assure the quality of these applications are thus needed in
order to identify in advance possible faults. Model-driven approaches to
the testing of Web Applications can provide developers with a way of
checking the conformance of the actual Web Application with respect to
the model built from the requirements. These approaches can be used
to automatically generate from the model a set of test cases satisfying
certain coverage criteria, and thus can be integrated in a classical test
driven development process. In this paper we present an automated tech-
nique for Web Application testing using a model-driven approach. We
present a way of modeling Web Applications by Abstract State Machines
(ASMs), and a process for generating automatically from the model a
concrete test suite that is executed on the Web Application under test in
order to check the conformance between the application and the model.

1 Introduction

The wide di�usion of Internet combined with mobile technologies has produced
a signi�cant growth in the demand of Web Applications with an increasing re-
quest for e�cient techniques tailored for their validation [8]. Researchers and
practitioners are still trying to �nd viable approaches in order to validate Web
Applications. A possible approach is to apply Model-driven or model-based test-
ing (MBT)[16] to Web Applications. Since software testing is a costly and time-
consuming activity, speci�cation-based (or model-based) testing permits to con-
siderably reduce the testing costs. MBT consists in building an abstract model
of a Web Application and using the model instead of the code to derive tests (in-
cluding the oracles) and to de�ne adequacy of the testing e�ort with respect to
the requirements. The model of the Web Application does not need to include all
the details of the implementation, but it should be precise enough to guarantee
that the test cases represent actual use scenarios of the Web Application.

? This work has been partially supported by the project Ricerca Applicata per il
Territorio - Berg. II - Regione Lombardia and Alcatel-Lucent Spa

Having an abstract model that represents a Web Application is no longer an
unrealistic hypothesis for three reasons. Firstly, several model-driven techniques
for the development of Web Applications have been developed in the last decade
[12] and thus by using these techniques models are easily available as a result
of the development process. Secondly, techniques for extracting abstract models
from existing Web Applications have been developed [2] and have been already
used in several approaches to Web Application testing [1]. Thirdly, designers
often manually build an abstract model from the requirements and this model
is used to check whether the Web Application satis�es the requirements.

MBT can be integrated in an agile development process [14], by helping
the developers to automatically derive tests and execute them. Our approach,
that belongs to the third alternative presented before, assumes that initially the
designer develops a model of the Web Application (in a model-driven classi-
cal view), derives some tests cases from it, and executes these tests against an
empty implementation (in a test-driven development - TDD). He/she then im-
plements the Web Application and automatically runs the tests until they pass.
Any change in the code that does not require a modi�cation of the model is
checked again by the original test cases. Some modi�cations of the code may
cause a failure of the tests because the model must be updated. In this case,
the designer does not update the test cases (di�erently from a classical agile
development) but he/she modi�es the model and extracts the test cases again.

MBT can be used also in the other two scenarios presented above: (a) if the
Web Application is developed by using a model-driven technique, our approach
can be applied to check the correctness of the model-to-code transformations;
(b) if the model is automatically built from the application, then our approach
can be used to generate test suites for regression testing.

This development process works better than the classical TDD if maintaining
the model, deriving the abstract test cases, and transforming them in concrete
test cases is easier than maintaining the test suite. To this aim, the following
features of the proposed process are critical: (1) the model must be written in a
notation powerful enough to express any behavior of the Web Application, and
at the same time abstract enough to ease the process of model de�nition; (2) it
must be possible to automatically analyze and execute the models in order to �nd
faults in them and to gain con�dence that they capture the intended behavior
of the application; (3) the test generation process must be automatized; (4) the
concretization of the abstract tests must be automatized and the resulting tests
must be automatically executed.

In this paper we propose a model-based approach to Web Application testing
that uses sequential nets of ASMs and satis�es all the features listed above. Sec-
tion 2 presents some background about ASMs, whereas in Section 3 we present
our model based approach including a technique to model Web Applications by
ASMs and how to generate and execute tests for Web Applications. In Section
4 we present an example of our approach. Section 5 presents the related work,
whereas in Section 6 we draw some conclusions and present future work.

2

2 Background

Abstract State Machines. ASMs, whose complete presentation can be found
in [5], are an extension of Finite State Machines (FSM), where unstructured
control states are replaced by states with arbitrary complex data. The states

of an ASM are multi-sorted �rst-order structures, i.e. domains of objects with
functions and predicates de�ned on them. ASM states are modi�ed by transition
relations speci�ed by �rules� describing the modi�cation of the function inter-
pretations from one state to the next one. There is a limited but powerful set of
rule constructors that allow to express guarded actions (if-then), simultaneous
parallel actions (par) or sequential actions (seq).

An ASM state is a set of locations, namely pairs (function-name, list-of-
parameter-values). Locations represent the abstract ASM concept of basic object
containers (memory units). Location updates represent the basic units of state
change and they are given as assignments, each of the form loc := v, where loc
is a location and v its new value.

Functions may be static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modi�ed by the environment), and controlled (read and written by the machine).

A computation of an ASM is a �nite or in�nite sequence s0, s1, . . . , sn, . . . of
states of the machine, where s0 is an initial state and each sn+1 is obtained from
sn by �ring the (unique) main rule which represents the starting point of the
computation. An ASM can have more than one initial state. Listing 1 reports a
fragment of the ASM speci�cation of a Web Application.

asm index
import Pages
signature: // Declarations

enum domain States = { EMPTY | PASSWORD | USERNAME | USERPASSW }
enum domain Events = { SUBMIT_SUBMIT | RESET_RESET | TEXT_USERNAME |
TEXT_PASSWORD | TEXTDEL_USERNAME | TEXTDEL_PASSWORD | LINK_PREV }

dynamic controlled currentPage : Pages
dynamic controlled currentState : States
dynamic monitored event : Events

de�nitions: // De�nitions
macro rule r_Reset =
event = RESET_RESET then
if currentState != EMPTY then
currentState := EMPTY

endif
macro rule r_UsernameText = ...
...
main rule r_Index =
if currentPage = INDEX then
par
r_Reset[]
r_UsernameText[]
...

endpar endif
default init initial_state : // Initial values
function currentState = EMPTY
function currentPage = INDEX

Listing 1: AsmetaL code of Index page

3

The ASM methodology has been successfully applied in di�erent �elds [5]
as: de�nition of programming and modeling languages, modeling e-commerce
and web services, design and analysis of protocols, architectural design, and
veri�cation of compilation schemes and compiler back-ends.

The ASMETA toolset [4] supports designers and developers of ASMs. They
can assist the user in developing speci�cations and proving model correctness by
checking state invariants and temporal logic properties. A number of tools helps
the designer also during the validation phase by means of a model reviewer, a
simulator, and a scenario-based validator. Among the ASMETA tools, ATGT is
the test generation tool.

Model-based testing for ASMs. By using ASMs in MBT, we assume that
a test sequence or test is a �nite sequence of states, whose �rst element is an
initial state, and each state follows the previous by applying the transition rules.

Several coverage criteria have been de�ned for ASMs [9]. For instance, one
basic criterion is the rule coverage which requires that, for every rule ri, there
exists at least one state in a test sequence in which ri �res and there exists at
least a state in a test sequence in which ri does not �re.

Starting from the de�nition of coverage criteria, several approaches have
been de�ned in order to build test suites. ATGT uses a technique based on the
capability of the model checker SPIN [11] to produce counterexamples [10]. A
recent work [3] in this area, improves considerably the scalabilty of the approach
and extends the concept of ASM to sequential nets of ASMs.

3 Model-based Testing for Web Application by ASM

Assuming the existence of an abstract model of the Web Application, we can
use model-based techniques in order to compute an adequate test suite for the
Web Application under test (AUT) in order to check whether it conforms to the
model or not.

We have chosen to use ASMs to represent the model because they are a good
compromise between abstraction and expressive power. For instance, they are
more �exible than FSMs, and they can also handle shared variables that can
represent session data, which are vital for testing dynamic Web Applications.

Figure 1 shows the testing process we have devised. It takes as inputs the
abstract model and the AUT. By giving the ASM model as input to the ATGT
tool, we generate a set of tests according to several coverage criteria, for instance
a basic criterion is the Rule Coverage whereas a more advanced one is the Mod-

i�ed Condition Decision Coverage [9]. The ATGT tool produces as output the
Abstract Test Suite (ATS) which is a high level representation of the resulting
test sequence.

Since we are testing Web Applications, we have chosen to represent our test
suites in terms of the interactions that a user can do with the AUT, and thus, in
order to model concrete tests and to automate their execution, we have chosen to
use Sahi3, a capture and replay tool that lets users express test cases using scripts
and then it executes them. A translation is needed in order to map the ATS to a

3 Sahi Web Automation and Testing Tool - http://sahi.co.in/

4

Fig. 1: Testing Process

concrete set of Sahi scripts that can be executed on the Web Application under
test, further details on the translation process are given below.

Then we execute the generated concrete test suite using the Sahi runner.
Using the oracles automatically inserted in the scripts we can check whether the
application under test conforms with the model or not.

Modeling Web Applications by using ASMs We have de�ned an approach
that builds an ASM model for each page in the Web Application, and then the
entire Web Application is represented by a net of ASMs. To be more precise, in
order to avoid the problem of the combinatorial explosion in the number of states
of the ASM, we have used the technique based on hierarchical decomposition
presented in [3] that introduces the sequential nets of ASMs. The modeling of
one web page is done in the following way:

1. We de�ne a shared domain, called Pages, that contains a value for each
page in the application and a controlled variable currentPage of domain Pages.

2. We de�ne a domain called States, local to each page, that contains an
adequate number of states in order to represent the behavior of the page. We
de�ne a controlled variable currentState of domain States.

3. For each input element e in the web page and for each event associated
with e, we de�ne a constant in the Events enumerative domain. Each constant
identi�er re�ects the kind and name of the event and the input element. We de�ne
a monitored variable event of domain Events. The kinds of the input elements
are: (a) links, (b) buttons, (c) submit buttons, (d) reset buttons, (e) text �elds
and text areas, (f) password �elds, (g) �le dialogs, (h) checkboxes, (i) radio
buttons, and (j) select lists.

4. For each input element e we write a rule that handles the events associated
with e by either updating the current state of the page or executing the transition
to another page, represented by another ASM.

5

error_b
,,
indexoo ,,

page1oo &&,,
page2oo

jj
// end

xx
error_akk

Fig. 2: Web-based application case study

A2C: Translating Abstract Tests to Concrete Tests The A2C module
is a general purpose translator from an abstract test sequence into a concrete
script in a selected scripting language. The application scans the abstract test
sequence in order to extract the value of the event variable and it generates the
concrete script according to this value.

The module uses a template in order to describe the rules that guide the
translation process; in this way if we want to extend the A2C tool in order to
support a particular scripting language we only have to de�ne a new template
�le. For instance, the Sahi transformation rule for a click event is as follows:

SUBMIT(name) ::= �_click(_submit("name"));�

4 Case Study

As a case study we have chosen a simple PHP Web Application, already pre-
sented in [13], that is composed by six di�erent pages:

index.php is the login and initial page that requires to the user the username
and the password in order to access to the other pages. It contains a Reset

button and a Submit button that opens up the page1.php page.
error_b.php is an error page opened up if any information in index.php is

missing or wrong.
page1.php contains several input elements, such as a link, a �le dialog that can

be activated by clicking on the Browse button, a textbox, a checkbox and
the button Submit that activates the page2.php page.

error_a.php is an error page opened if any �eld in page1.php is missing.
page2.php contains two link, one to index.php and the other one to page1.php,

a drop-down menu, radio buttons and a Submit button that activates the
end.php page.

end.php contains a link to index.php or the option of closing the browser.

By following the process presented in Section 3, we have modeled each page
using an ASM and then we have built a sequential net of ASMs, which is shown
in Figure 2. Using the technique presented in [3] allowed us to avoid the explosion
in the number of states in the model.

Once we have de�ned the model, we have used it in order to generate the
test cases, which have been translated in Sahi scripts. Listing 2 shows a snippet
of an ATS generated by ATGT from the ASM presented in Listing 2, whereas
Listing 3 shows the corresponding Sahi scripts generated by the A2C tool.

ATGT has generated 212 test cases that achieved a 100% coverage of the PHP
source code. We have used XDebug4 and PHP-Coverage5 in order to compute
the coverage achieved by the test suite.

4 XDebug, Debugger and Pro�ler Tool for PHP - http://xdebug.org/
5 PHPCoverage, code coverage tool for PHP - http://phpcoverage.sourceforge.net/

6

[currentState=EMPTY
currentPage=INDEX
event=TEXT_USERNAME]

[currentState=USERNAME
event=TEXT_PASSWORD]

[currentState=USERPASSW
event=SUBMIT_SUBMIT]

[currentState=EMPTY
currentPage=MAIN]

Listing 2: ATS Example

_navigateTo("index.php");

_setValue(_textbox("username"),"admin");

_setValue(_textbox("password"),"admin");

_click(_submit("submit"));

_assertEqual("page1.php",top.location.href);

Listing 3: CTS Example

5 Related Work

An approach quite similar to ours is the one presented by Andrews et al. [2].
They developed FSMWeb, a tool that can be used to test Web Applications.
They model the Web Application by a hierarchy of FSMs, where a FSM repre-
sents either a logical web page, i.e. the model of a subsystem of the AUT, or a
top level FSM, i.e. an aggregate of logical pages. In our opinion modeling Web
Applications with ASMs o�ers a higher degree of expressiveness w.r.t. the FSMs.
They propose also a way of automating the de�nition of the model from the Web
Application under test. However, their tool does not implement this feature and
thus they are tied to a manual implementation of the model as in our approach.

Deutsch at al. [7] present an approach that models data-driven Web Appli-
cations by means of Abstract State Machine transducers. They represent in the
ASM+ model the transitions between pages, determined by the input provided
to the application. Our approach can be applied to a wider range of Web Appli-
cations, i.e. actually it works with any Web Application for which exists an ASM
model. In our opinion handling the testing of events by linear or branching-time
temporal logics leads to complex models that can made the integration with ag-
ile development too hard, although it can discover more subtle errors. Another
advantage of our approach is that we can use all the features provided by the
ASMETA tool set, including a simulator, a model checker and a model advisor.

Tonella and Ricca [15] propose a technique to automatically generate and
execute test cases starting from a UML model of the Web Application. Their
approach requires a manual intervention in several phases, i.e. in the UML mod-
eling phase and in the test re�nement phase (their tool requires that the user �lls
in the input values in each URL), whereas our approach requires the intervention
of the user only in the model de�nition phase. This is an advantage primarily
because if we are in a situation in which the model already exists, the testing
process can be executed without any intervention from the user.

6 Conclusion and Future Work

We have presented our ongoing work on using MBT for Web Application in
an Agile context. Our approach provides the designers with an expressive but
abstract language, an automatic generator of tests and a translator to concrete
tests, and an automatic executor of the tests over the AUT.

A crucial activity in the application of our approach, is building an abstract
model of the AUT. We plan to provide some help during this phase by generating

7

automatically part of the ASM model from the AUT. We also plan to extend
our approach with a model-to-model transformation tool which takes as input
WebML [6] models, i.e. only Navigation and Composition models, and translates
them into ASMs. Given the fact that WebML is a well-known Web application
modeling language, its use could ease the de�nition of ASMs.

We also plan to study how our approach behaves on a real Web Application,
i.e. the web interface ZIC (Zero-Installation Craft) integrated in some of the
Alcatel-Lucent devices. ZIC terminal is a web based application for local man-
agement of single network elements providing ITU-compliant Information Model
Interface to the Network Element itself. The Network Element (NE) provides the
web server while the user only needs to start a standard available web browser
to access the ZIC application.

References

1. M. Alal�, J. Cordy, and T. Dean. Modelling methods for web application veri�ca-
tion and testing: state of the art. Softw. Test, Verif. Reliab, 19(4), 2009.

2. A. Andrews, J. O�utt, and R. Alexander. Testing web applications by modeling
with FSMs. Software and Systems Modeling, 4:326�345, 2005.

3. P. Arcaini, F. Bolis, and A. Gargantini. Test generation for sequential nets of
abstract state machines. In Proc. of ABZ, number 7316 in LNCS, 2012.

4. P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra. A model-driven process
for engineering a toolset for a formal method. Softw., Pract. Exper., 41(2), 2011.

5. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer, 2003.
6. S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (WebML): a mod-

eling language for designing web sites. 2000.
7. A. Deutsch, L. Sui, and V. Vianu. Speci�cation and veri�cation of data-driven web

applications. J. Comput. Syst. Sci., 73(3), 2007.
8. G.A. Di Lucca and A.R. Fasolino. Testing web-based applications: The state of

the art and future trends. Information and Software Technology, 48(12), 2006.
9. A. Gargantini and E. Riccobene. ASM-Based Testing: Coverage Criteria and Au-

tomatic Test Sequence Generation. Journal of Universal Computer Science, 2001.
10. A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to Generate Tests from

ASM Speci�cations. In Proc. of ASM, number 2589 in LNCS, 2003.
11. G. Holzmann. Spin model checker, the: primer and reference manual. Addison-

Wesley, 2003.
12. I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali. Model-driven

design and deployment of service-enabled web applications. ACM Trans. Internet

Technol., 5(3), 2005.
13. A. Memon and O. Akinmade. Automated Model-Based Testing of Web Applica-

tions. In Google Test Automation Conference 2008, 2008.
14. O. Puolitaival. Adapting model-based testing to agile context. VTT, 2008.
15. F. Ricca and P. Tonella. Analysis and testing of web applications. In Proc. of

ICSE 2001. IEEE.
16. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.

Morgan-Kaufmann, 2006.

8

	Model-Driven Testing for Web Applications using Abstract State Machines

