
Conflict Detection in Security Policies using
Semantic Web Technology

Mario Arrigoni Neri, Marco Guarnieri, Eros Magri, Simone Mutti, Stefano Paraboschi
Dipartimento di Ingegneria dell’Informazione e Metodi Matematici,

Università degli Studi di Bergamo, Italy
Email: {mario.arrigonineri, marco.guarnieri, eros.magri, simone.mutti, parabosc}@unibg.it

Abstract—The design of efficient and effective techniques for
security policy analysis is a crucial open problem in modern
information systems. Significant attention has been dedicated
in the past to the use of logical tools for the analysis of
security policies, but this work has produced a limited impact
on enterprise information systems. Important reasons of the
limited success of past research were the difficult integration of
these approaches with the technological scenario and the limited
scalability of many proposals.

Nowadays Semantic Web tools are increasingly used in mod-
ern information systems. We show how the tools provided by
Semantic Web and ontology management technologies offer an
adequate basis for the realization of techniques able to support
conflict analysis in security policies. Based on the use of these
techniques, we propose a solution for two different variants of
conflict analysis: (a) Policy Incompatibility, and (b) Separation of
Duty Satisfiability. Experiments that test the techniques on large
security policies demonstrate the scalability of the approach.

I. INTRODUCTION

The evolution of information systems sees a continuously
increasing need of flexible and sophisticated approaches for
the management of security requirements. On one hand, sys-
tems are increasingly more integrated and present interfaces
for the invocation of services accessible through network
connections. On the other hand, system administrators have
the responsibility to guarantee that this integration and the
consequent exposure of internal resources does not introduce
vulnerabilities. The need to prove that the system correctly
manages the security requirements is not only motivated by the
increased exposure, but also by the need to show compliance
with respect to the many regulations promulgated by govern-
ments and commercial bodies. The integrated management of
security policies promises to produce significant benefits in
this area in terms of better and more efficient protection.

In a way similar to the evolution seen in the area of
software development and database design, the model-driven
engineering of security leads to the specification of security
requirements at an abstract level, with the subsequent refine-
ment of the abstract model toward a concrete implementation.
It is then guaranteed that, when the high-level representation of
the security requirements is correct, the security configuration
of the system satisfies the requirements. The application of
this approach requires the implementation of a rich collection

The research leading to these results has received funding from the Eu-
ropean Commission Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. FP7-ICT-257129 “PoSecCo”.

of tools supporting, for each of the many components in the
system, the refinement from the high-level representation of
security requirements to the concrete security configuration. A
significant investment in research and development is needed
to realize this vision, in order to manage the heterogeneous
collection of devices and security services that information and
communication technology offers to system administrators.
Still, this large investment promises to produce adequate
returns, considering the importance of the correct management
of security requirements in modern information systems.

A crucial advantage of the model-driven approach described
above is the possibility of an early identification of anomalies
in the security policy. Security policies in real systems often
exhibit conflicts, i.e., inconsistencies in the policy that can
lead to an incorrect realization of the security requirements.
The availability of a high-level and complete representation of
the security policies supports the construction of services for
the analysis of the policies able to identify these anomalies
and suggest corrections.

Although security administrators can in many cases man-
ually handle simple access control policies (ACLs), manual
approaches cannot scale well to bigger policies. For instance,
maintaining and modifying complex ACLs is not an easy
task, because it may be difficult to identify all the possi-
ble side effects of a change in the policy. Although some
current access control languages (e.g., XACML) implement
techniques that automatically solve conflicts between rules in
the policy by means of run-time conflict resolution strategies,
anomaly detection at design-time provides a valuable help
to security administrators, because it is difficult for them to
clearly understand what the results of the run-time conflict
resolution algorithm will be, at least in complex policies, and
this can lead to unexpected problems and misconfigurations.
Due to these needs, the identification of conflicts in policies
has been the subject of a significant amount of research
in the last years. Specifically, Semantic Web and ontology
management technology [9], [10] today offers a variety of
interesting solutions. In the recent past, the application of
logical models to the analysis of security policies required
to use logical tools that had no clear integration with common
information system tools; in most cases administrators were
unfamiliar to them and they perceived the risk of limited
scalability [14]. Modern Semantic Web tools are instead well
integrated with existing XML and Web technology, are used

in many scenarios to efficiently obtain solutions for several
optimization problems, and for this reason are often already
familiar to administrators. The familiarity of computer science
practitioners with Semantic Web tools is likely going to
increase, as the diffusion of these tools increases.

This paper will present experimental results that will con-
firm that the use of Semantic Web tools for policy analysis
permits the adoption of a variety of approaches, with a choice
that depends on the complexity of the analyzed property and
the size of the policy. A one-size-fits-all strategy cannot be
considered adequate.

Section II presents the base model. Section III illustrates
the Policy Incompatibility service. Section IV is dedicated to
the analysis of the Separation Of Duty Satisfiability service.
Section V reports on experimental results, using as represen-
tative policies a model built over bibliographical databases. In
Section VI a comparison is made with previous related work.
Section VII draws a few concluding remarks.

II. BASE MODEL

In enterprise scenarios, policy definition and management
systems are needed that provide a high level of flexibility, to
correctly represent the large number and variety of security re-
quirements. A contribution to this accomplishment is given by
the use of rich metamodels for involved entities, as well as of
a rich language to describe relationships between the entities.
Support for the representation of rich domain entities can be
obtained by applying techniques from the Semantic Web and
knowledge representation area, which offer expressivity and
the possibility to specify over the model flexible constraints
and derived information.

Our model presents four first-level concepts:

• Principal: it represents an Identity or a Role. An Identity
can be a SingleId, which represents a single user, or a
Group, which represents a group of users. Roles represent
the binding between principals and the set of permis-
sions associated with a specific enterprise function. The
Principals hierarchy is expressed by the following DL
formulas, Identity v Principal, Role v Principal,
SingleIdentity v Identity, Group v Identity and
SingleIdentity u Group v ⊥. Identities are organized
in groups by the property1 containedIn: Identity →
Group2 and its inverse contains = containedIn−1. A
Group can contain SingleIdentities and other Groups. The
roleHierarchy : Role → Role property connects each
role to its direct sub-roles. Its transitive closure canBe+:
Role → Role can be used to identify all the direct or
indirect sub-roles.

1In Description Logic terminology, role is used to denote a property. To
avoid ambiguity, in the paper we avoid this use of the term “role”.

2The notation “R : A→ B” has to be interpreted according to Description
Logic conventions. It states that A and B are respectively the domain and the
range of the property R, with no further constraints about functionality nor
completeness of R (i.e., multiple values in B can be associated with a given
instance in A, and some instances in A may not be associated with a value
in B). If necessary, functionality must be stated via a dedicated axiom.

• Resource: it represents the elements (data and services)
in the information system, whose access must be reg-
ulated through security policies. For the containment
hierarchy of resources, we introduce the property re-
courceHierarchy: Resource → Resource, which repre-
sents the containment relation between two resources.
The containsResource+ property is the transitive and
reflexive closure of the inverse of resourceHierarchy.

• Action: it represents the types of operations over re-
sources available to principals.

• Authorization: it represents the allowed and forbidden
behaviors for a principal. Each authorization is character-
ized by its sign and the Principal it is granted to. These
fundamental characteristics are represented by the two
properties sign and grantedTo:
– sign : Authorization → {+,−} assigns the sign
+ to authorizations that grant some privileges, the
sign − to those that negate them. The signs are two
different individuals. Every authorization must have
one and only one sign, in DL formulas Authorization
≡= 1.sign. For clarity, we can define two derived terms
to denote positive and negative authorizations, with the
following DL formulas:

PositiveAuthz ≡ ∃sign.{+}
NegativeAuthz ≡ ∃sign.{−}
PositiveAuthz uNegativeAuthz v ⊥

– grantedTo : Authorization → Principal connects
each authorization to the principal it is granted to. The
grantedTo relation is mandatory (in DL terminology,
serial on authorizations) and functional (with a DL
formula, Authorization ≡= 1.grantedTo).

Consistently with modern Role-Based Access Control mod-
els [15], authorizations are used to describe the direct privilege
to act in the system and the ability to activate a role. For this
reason, authorizations are refined in two subclasses:

• System authorization: it describes the allowed/forbidden
action and the involved resource. In DL formulas, Sys-
temAuthorization v Authorization, toDo : SystemAutho-
rization → Action, SystemAuthorization ≡= 1.toDo, on
: SystemAuthorization → Resource, SystemAuthorization
≡= 1.on.

• Role authorization : it specializes Authorization with the
specification of the role that the principal is allowed or
forbidden to assume. In DL formulas, we write RoleAu-
thorization ≡ Authorization u¬ SystemAuthorization, en-
abledRole : RoleAuthorization→ Role, RoleAuthorization
≡= 1.enabledRole.
Positive Role authorizations grant the ability to activate
roles. For simplicity’s sake, we introduce the property
canHaveRole+: Identity→ Role to represent the roles that
each identity can activate, directly or indirectly, thanks to
the presence of positive role authorizations.
To compute the values of the canHaveRole+ property,
which represents direct and indirect user-role assignment,

we add the following axioms to the ontology grant-
edTo−1 ◦ isPositiveAuth ◦ enabledRole v canHaveRole+,
grantedTo−1 ◦ isPositiveAuth ◦ enabledRole ◦ canBe+
v canHaveRole+, containedIn ◦ canHaveRole+ v can-
HaveRole+, where isPositiveAuth is the characteristic
property of PositiveAuthorization3.

In the remainder of this work, the sign of an authorization will
be managed in different way for system authorizations and
role authorizations. For the first, sign conflicts can be checked
for conflict analysis and policy minimization. Positive role
authorizations between roles correspond to role – super-role
relationships, while negative role authorizations are used as a
constraint, to be verified during Separation of Duty checks.
Without loss of generality, we will assume that no negative
role authorization is assigned to Identities.

III. POLICY INCOMPATIBILITY

Current space applications support a large number of users
and resources, with the need to create large sets of permissions.
This large size, combined with a policy model supporting both
positive and negative permissions, supported by our model as
by most modern access control models, makes the automatic
identification of conflicts between authorizations extremely
beneficial. The Policy Incompatibility reasoning service aims
at checking whether a set of System Authorizations contains
inconsistencies.

Given a policy that contains a set A = {a1, . . . , an} of
System Authorizations, we define: 1) pi the set of Principals
the authorization ai is granted to, directly or indirectly, 2) acti
the Action associated with the authorization ai, 3) ri the set
of Resources to which the enabled permission can be applied,
directly or indirectly. An inconsistency in the policy may arise
when there exists, at least, ai, aj ∈ A, such that sign(ai) 6=
sign(aj) ∧ pi∩pj 6= ∅ ∧ acti = actj ∧ ri∩rj 6= ∅. This kind
of conflict is usually called Modality conflict and arises when
principals are authorized to do an action on a resource by a
positive authorization, and forbidden to do the same action on
the same resource by a negative authorization. In this case the
two authorizations are said to be incompatible.

The management of Modality conflicts first requires to
detect them. Then, when a conflict is detected, a choice has
to be made about how the conflict can be solved, deciding
between the positive and negative authorization which is the
one that is going to hold. We note that it is usually impractical
to simply remove the “weaker” authorization and to replace the
policy with one that does not present modality conflicts. Even
in a scenario like the one considered in this paper, where the
containment structure of principals, actions, and resources is
static, this step may lead to an excessive growth of the policy.
The common approach consists in identifying a criterion to
use in the resolution of conflicts, and applying it every time a
modality conflict is detected.

3The characteristic property indicates if a node belongs to a given class.
In our case it can be defined using the following axioms: isPositiveAuth:
PositiveAuthz → PositiveAuthz, > v≤ 1.isPositiveAuth, PositiveAuthz ≡
∃self isPositiveAuth

In the literature and in systems, several criteria have been
proposed and implemented to solve this kind of conflict [13]. A
simple criterion is the “Denials take precedence”, which states
that, in case of conflicts, the Negative Authorization always
wins. The “Denials take precedence” criterion is a special case
of techniques based on explicit priority assignments, i.e., in
which negative authorizations have the highest priority. Our
approach can be easily extended to handle explicit priorities by
using SWRL built-ins. A more flexible criterion is the “Most
specific Wins”, which states that, when one authorization is
less specific than the other, the more specific one wins (i.e.
the authorization that applies to the smaller set of individuals
in our model wins).

For simplicity we introduce the property canActAs to take
into account the different ways a principal can activate the
profile of another principal. canActAs: Principal → Principal
is a transitive and reflexive property such that containedIn v
canActAs, canBe+ v canActAs and canHaveRole v canActAs.
canActAs(p1, p2) means that p1 is more specific than p2.

We have also introduced the property winVs: SystemAutho-
rization → SystemAuthorization which can be used to express
the fact that the conflict involving the authorizations a1 and
a2 is solved by applying a1.

In order to identify the modality conflicts in a policy, we use
SWRL rules. SWRL rules are a particular kind of implication,
which can be expressed using a subset of the OWL language.
A SWRL rule is composed by an antecedent and a consequent,
and each of them is composed by zero or more atoms, i.e.,
OWL properties, classes or predefined built-in expressions.
Each atom can refer to individuals using variables, denoted
by a question mark as a prefix. The semantics is that when
the antecedent of the rule is true, then also its consequent must
be true.

We can detect modality conflicts and compose them follow-
ing the “Most specific wins” criterion, using SWRL rules like
the following:

on (? a1 , ? r1) , toDo (? a1 , ? a c t) ,
grantedTo (? a1 , ? pr1) , s i g n (? a1 , ? s1) ,
on (? a2 , ? r2) , toDo (? a2 , ? a c t) ,
grantedTo (? a2 , ? pr2) , s i g n (? a2 , ? s2) ,
conta insResource +(? r2 , ? r1) ,
canActAs (? pr2 , ? pr1) ,
DifferentFrom (? s1 , ? s2) ,
DifferentFrom (? pr1 , ? pr2) −>
winsVs (? a2 , ? a1)

When the conflict involves two policies that have the same
specificity level, we apply the “Denials take precedence”
criterion, with the following rule:

P o s i t i v e A u t h z (? a1) , SystemAuthor izat ion (? a1) ,
on (? a1 , ? r) , toDo (? a1 , ? a c t) ,
grantedTo (? a1 , ? p r) , NegativeAuthz (? a2) ,
SystemAuthor izat ion (? a2) , on (? a2 , ? r) ,
toDo (? a2 , ? a c t) , grantedTo (? a2 , ? p r) −>
winsVs (? a2 , ? a1)

However, not all the conflicts can be solved using these
criteria, because in some conflicts we can not find a policy

that is more specific than the other one (e.g., one has a higher
level in the resources and the other in the principals). To
detect these cases, which we assume have to be notified to the
security administrator responsible for the design of the policy,
we defined a new symmetric property unsolvableConflict:
SystemAuthorization → SystemAuthorization, which contains
all the pairs of policies involved in conflicts that are not
solvable using the criteria presented above.

The Policy Incompatibility service produces three sets of
authorizations: 1) a set of authorizations that does not contain
any conflict, 2) a set of conflicting authorizations, in which
all the conflicts are solved using the “Most specific wins”
and “Denials take precedence” criteria, 3) a set of unsolved
conflicts.

IV. SEPARATION OF DUTY

A common class of constraints represented in security
policies is Separation of Duty (SoD). These constraints follow
the common best practice for which sensitive combinations
of permissions should not be held by the same individual
in order to avoid the violation of business rules. Role Based
Access Control is particularly well-suited to express this kind
of constraints, because the role hierarchy permits an easy
mapping of real world business rules to the access control
model. In the following, we primarily consider Role-based
Static SoD. Given two roles role1 and role2, the Static SoD
between these two roles means that there must not exist a user
u who can activate both role1 and role2. We focus on the Static
SoD, but the model can be immediately extended to support
also Dynamic SoD constraints, where it is required to check
that a user does not concurrently activate conflicting roles (it
is sufficient to assume that the model provides the concept of
active role). The aim of the SoD Satisfiability service is to
check whether a set of authorizations satisfies a set of SoD
constraints.

In our model the roles are represented as individuals of the
class Role, the role hierarchy is expressed using the property
roleHierarchy, and the user-role assignments are represented
using the Role Authorizations introduced in Section II, which
allow a user to enable a specific role.

We can express a SoD constraint between the role role1 and
the role role2 by using a negative role authorization auth1,
such that enabledRole(auth1,role1), grantedTo(auth1,role2).
The authorization auth1 denies role2 to activate role1 and
role1 to activate role2. Before analyzing a policy to detect
SoD conflicts we execute a normalization step, which replaces
all the role authorizations between roles with semantically
equivalent roleHierarchy properties in order to simplify the
analysis. A role authorization that assigns a role role2 to
a role role1 is equivalent, for SoD satisfiability analysis, to
a super-role relation between role1 and role2 and, thus, to
roleHierarchy(role1,role2).

Separation of duty constraints have to be enforced both at
role hierarchy level, in this way we directly prevent that a role
role1 is declared super-role of another role role2 such that role1
and role2 are in a SoD constraint, and at user hierarchy level,

to avoid that to a user are assigned, directly or indirectly, two
roles role1 and role2 that are involved in a SoD constraint.
In order to keep track of all SoD conflicts on Roles, we have
defined a class SoDConflictOnRole v Role. Separation of duty
constraints on the role hierarchy can be expressed adding to
the ontology an axiom in the form:

SoDConflictOnRole ≡ ∃canBe+ .{role1}u
∃canBe+ .{role2}

for each RoleAuthorization auth such that sign(auth,−),
grantedTo(auth, role1), enabledRole(auth, role2). We can
thus enforce the SoD at role hierarchy level simply adding the
axiom SoDConflictOnRole v ⊥ to the ontology.

In a similar way to what we have done for the identification
of SoD conflicts at role hierarchy level, we defined a class
SoDConflictOnId v Identity that keeps track of the conflicts
on the user hierarchy. We express SoD constraints by adding
to the ontology an axiom in the form:

SoDConflictOnId ≡ ∃canHaveRole+ .{role1}u
∃canHaveRole+ .{role2}

for each RoleAuthorization auth such that sign(auth,−),
grantedTo(auth, role1), enabledRole(auth, role2). In order
to enforce the SoD constraints we simply have to add to the
ontology the axiom SoDConflictOnId v ⊥.

Our approach can be easily extended to handle other kinds
of SoD constraints, such as Permission-based SoD (which
requires that no user is allowed to do both actions a1 and a2)
or Object-based SoD (which requires that no user can access
both resources res1 and res2), as shown in [7].

V. IMPLEMENTATION AND EXPERIMENTS

We implemented a prototype for the evaluation of the
performance of the techniques presented in this paper. The
prototype consists of two Java modules that invoke the Policy
Incompatibility, and Separation of Duty Satisfiability services.
The prototype uses the API provided by the OWL API library
[8] to access both the ontology and the SWRL rules and it uses
Hermit [16] as reasoner. There are no freely available large
datasets of real security policies, neither for space applications
nor for generic information systems. For this reason, we chose
to test our prototype against policies built according to an
interpretation of the data in bibliographic databases. We used
randomly selected subsets of PubMed Central4 (PMC), well
known in the medical sciences, and DBLP5, well known in
the computer science community. Each of them provides a
rich set of attributes and relationships that represent real and
extensive social networks (as a parallel to space applications,
we can consider a single paper/resource to correspond to the
description of sensor data about a specific region or a specific
sensor, with a number of users interested in accessing it and
responsible for manipulating that information). PMC has rich
information about journals, with a description of editorships

4http://www.ncbi.nlm.nih.gov/pmc/
5http://dblp.uni-trier.de/

and the funding of papers. DBLP has a rich description of
conferences. The two databases support different experiments.

For the experiment on the Policy Incompatibility service, we
use randomly generated subsets of the bibliographic database
PubMed Central. We consider 3 actions: write, review, and
read.

We create a SingleIdentity for each author/editor and a
Group for each group of authors/editors in a paper/journal.
For each journal issue/conference, we create an “editor” Role
and an “author” Role. We also create the role authorizations
that assign to each author/editor the proper role. We then
created the following authorizations with identities as prin-
cipals: (a) for each paper author we create the authorizations
to read and write the paper and the negative authorization to
review the paper, (b) for each editor of the issue of the journal
containing the paper we add the authorizations to read and
review the paper and the negative authorization to write the
paper, (c) for each author that receives funding from the same
grant that funded the paper, we add a negative authorization to
review the paper and an authorization to read the paper, (d) for
each group representing the institution to which the author is
affiliated, we add the authorization to read the paper, (e) for
each group representing the editorial board of the journal that
published the paper we add the authorizations to read and
review the paper and the negative authorization to write the
paper.

With this model we are able to create a rich set of authoriza-
tions that is associated with the structure of a concrete appli-
cation. The conflicts detected would correspond to anomalies
that relate with possible conflicts of interest.

Finally, the Separation of Duty (SoD) service solves the
problem presented in Section IV. We enforced the Separation
of Duty constraint on author and editor roles for the same
conference/journal issue.

A. Experimental results

Experiments have been run on a PC with two Intel Xeon
2.0GHz/L3-4MB processors, 8GB RAM, four 1-Tbyte disks
and Linux operating system. The results of the experiments
are reported in the charts in Figure 1. Each observation is the
average of the execution of ten runs.

The first set of experiments aimed at evaluating how the
performance of the Policy Incompatibility service evolves
with the increase in the number of authorizations. Figure
1(a) reports the observed performance. It is clear that this
solution is applicable for policies with a relatively small
number of authorizations. For large policies, the simplicity
in the definition of the verification rules is associated with a
large computational cost.

For the largest policies considered in our experiments, a
significant benefit can be obtained from the use of tools, like
the reasoners able to efficiently process DL structures, which
require a different and more complicated representation of the
problem. In [7] we present how the Policy Incompatibility
service can be mapped to the Separation of Duty service, thus
using efficient DL structures.

(a) Policy Incompatibility performance.

(b) Separation of Duty analysis performance.

Figure 1. Experimental results

The second experiment aimed at evaluating the performance
of the Separation of Duty service. We found that, on average,
0.77% of the role authorizations in a policy break the SoD
constraints.

In Figure 1(b) we can see how the performance evolves
with the increase of the number of role authorizations. Even
for extremely large policies (more than 35,000 role authoriza-
tions), the response time remains adequate for the profile of
the security design activity, which operates offline in sessions
that have long duration.

VI. RELATED WORK

The management of security policies for space applications
has not been considered explicitly in past literature and we
have to refer to classical work on the analysis of security
policies, which saw a variety of approaches (e.g., outside of
the Semantic Web scenario we note [3], [4]). A few works
have considered the application of Semantic Web technologies
for policy analysis, in order to obtain advantages from the
use of reasoners [6], [11]. An important observation is that
the works on the use of Semantic Web Technology for

policies rarely show empirical results going beyond simple
toy examples. Only in [11] appears an analysis of a small
set of ontologies, still without reaching the policy sizes we
consider in our experiments. The approach that builds a policy
starting form the consideration of bibliographic databases has
been successfully applied in previous work [5], leading to the
realization of representative large security policies.

Finin et al. [6] use OWL to formalize Role Based Ac-
cess Control (RBAC). They propose two approaches: 1) the
representation of roles by means of OWL classes, 2) the
representation of roles as values, in a similar way to our
approach. In the first approach they enforce SoD constraints
by means of the owl:disjointWith property, while in the second
approach they express constraints by means of N3 rules. Their
work offers only the SoD Satisfiability service, while our work
considers a richer collection of services. They do not show
experimental results over large policies; since N3 rules are
similar to SWRL rules, based on our experience we expect that
their approach, which considers roles as individuals, would
probably show poor scalabity. Their approach also supports
attribute based access control (ABAC); the similarity with our
base model makes us confident that our approach can be easily
extended to handle ABAC.

In [11] Kolovski et al. tackle the fact that complex XACML
policies are hard to understand and evaluate manually, and,
thus, automated tools are needed. They propose to map
XACML to DL, to benefit from off-the-shelf DL reasoners.
They identify several reasoning services on policies: (1) Con-
straint Analysis, (2) Policy Comparison, (3) Policy Verification,
(4) Policy Incompatibility, (5) Policy Redundancy, (6) Policy
Querying. Compared to this approach, our work provides an
implementation of the most significant of those services using
Semantic Web technology, and this allows us to use a larger
set of tools, such as SWRL or SPARQL, which offer a more
direct and easy realization of the services. Another difference
is that our model can express user and resource hierarchies
and, thus, it can represent more complicated scenarios.

Some works extend standard access control models by
adding new kinds of policies, i.e. resiliency policies [12] and
obligations [2]. Although these kinds of policy are interesting
from a research point of view, they are not currently imple-
mented in industrial solutions. This is the main reason why
our tool does not yet handle them. We plan to extend our
approach in order to support these policies.

Detection of anomalies in ACLs is an interesting topic also
in firewall configurations and management. Although several
works [1], [17] recognize the importance of anomaly detection
in order to increase the performance of firewalls and reduce
the errors in the security configuration, the models used in
these works are simple, they usually have only two actions,
i.e. accept and deny, and they consider only the hierarchy of
IP addresses, and thus cannot be directly compared with ap-
proaches that consider more complex access control models.

VII. CONCLUSIONS

Information systems are becoming increasingly difficult
to manage, with the integration of resources controlled by
different actors, and access offered to a large variety of users.
Service oriented architectures facilitate this evolution. We
presented approaches that enhance the management of security
policies in these scenarios. The techniques we described are
built on several of the tools provided by the Semantic Web.
A trade-off has been identified between simple solutions that
use a direct model and rely on SWRL rules, with limited
scalability, and approaches that require a little effort to adapt
the models to the application of reasoners like HermiT, offer-
ing good performance and scalability. Optimizations prove to
contribute a significant benefit. In general, the work presented
offers a demonstration that the Semantic Web can have an
important role in the construction of techniques for security
policy analysis in large and integrated information system. In
general, the work presented offers a demonstration that the
Semantic Web can have an important role in the construction of
techniques for security policy analysis in large and integrated
systems.

REFERENCES

[1] E. Al-Shaer and H. Hamed. Modeling and management of firewall
policies. IEEE Trans. on Network and Service Management (TNSM),
1(1), 2004.

[2] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and
obligations in policy management and security applications. In Proc. of
VLDB 2002.

[3] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Para-
boschi, and P. Samarati. Combining fragmentation and encryption to
protect privacy in data storage. ACM Trans. on Information and System
Security (TISSEC), 13(3), 2010.

[4] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Assessing query privileges via safe and efficient permission
composition. In Proc. of CCS 2008.

[5] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Encryption policies for regulating access to outsourced data.
ACM Trans. on Database Systems (TODS), 35(2), 2010.

[6] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and
B. Thuraisingham. R OWL BAC: representing role based access control
in OWL. In Proc. of SACMAT 2008. ACM.

[7] M. Guarnieri and E. Magri. Techniques for conflict detection and
minimization for access control policies, Master Thesis, Università degli
Studi di Bergamo, 2012.

[8] M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL
ontologies. Semantic Web, 2(1):11–21, 2011.

[9] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. Journal of Web Semantics, 2004.

[10] W. C. . http://www.w3.org/TR/owl ref/. OWL Web Ontology Reference.
[11] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access control

policies. In Proc. of WWW 2007. ACM.
[12] N. Li, M. V. Tripunitara, and Q. Wang. Resiliency policies in access

control. In Proc. of CCS 2006. ACM.
[13] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems

management. IEEE Trans. on Software Engineering (TSE), 25(6), 1999.
[14] P. Samarati and S. De Capitani di Vimercati. Access control: Policies,

models, and mechanisms. In Foundations of Security Analysis and
Design, volume 2171, pages 137–196. Springer, 2001.

[15] R. Sandhu. Role-based access control. Advances in computers, 46, 1998.
[16] R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient OWL

reasoner. In OWLED, 2008.
[17] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and P. Mohapatra.

FIREMAN: a toolkit for firewall modeling and analysis. In Proc. of
IEEE S&P, 2006.

