
Automated Management and Analysis of
security policies using Eclipse

Marco Guarnieri, Eros Magri, Simone Mutti ?

Dipartimento di Ingegneria dell’Informazione e Metodi Matematici,
Università degli Studi di Bergamo, Italy

{marco.guarnieri,eros.magri,simone.mutti}@unibg.it

Abstract. The design of efficient and effective techniques for security
policy analysis and management is a crucial open problem in modern
information systems. The increasing complexity of current IT systems
requires new techniques for designing access control policies.

Thus, in order to ease the definition and management of access control
policies, a tool chain that lets developers defining and managing security
policies is needed. This tool chain can be used to support a model-driven
approach to the definition and implementation of access control policies,
in which the policies are refined in several steps in order to produce
concrete security configurations.

In this paper we present an extension of the PoSecCo Eclipse Policy Plug-
in (PEPP), which provides to the users three different reasoning services
for detecting anomalies in security policies. The reasoning services are
based on Semantic Web and ontology management technologies, which
offer an adequate basis for the realization of techniques able to support
conflict analysis in security policies. The three services are: (a) Policy
Incompatibility, (b) Redundancy Detection, and (c) Separation of Duty
Conflicts Detection.

1 Introduction

The widespread diffusion of information systems in the last decade has led to a
considerable growth in the capabilities and in the width of the range of services
offered. However this improvement in terms of flexibility was followed by a huge
increase both in terms of complexity and management of the systems itself. This
increase in the systems’ complexity has had an effect also on the management of
the security of the system for two reasons. Firstly, the complexity of the system
and the number of interconnections between elements of the system has increased
the attack surface of the system itself. Secondly, it has increased the complexity
of the security management process by system administrators. Recent analysis
of information security breaches has found empirical evidences which highlight
the fact that security management is a difficult and error prone task [7], [5], [4].

? The research leading to these results has received funding from the European Com-
mission Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. FP7-ICT-257129 “PoSecCo”.



The management of security requirements is, thus, a critical task that has
the goal of avoiding possible information disclosures and to show compliance
with respect to the many regulations promulgated by governments. A particular
area of security requirement management is access control management, which
focuses on defining a set of rules, called policies, that define for each user which
actions he/she can do on the resources of the information system. Thus, in order
to ease the definition and management of access control policies, a tool chain
that lets developers defining and managing security policies is needed. This tool
chain can be used to support a model-driven approach to the definition and im-
plementation of access control policies. The model-driven approach leads to the
specification of security requirements at an abstract level, then the refinement of
these requirements in several iteration and in the end to a concrete implemen-
tation. This approach guarantees that given a correct set of requirements, the
actual configuration of the system derived satisfies the requirements defined at
the beginning of the process.

In order to help security administrators in the definition of access control
policies we have developed the PoSecCo Eclipse Policy Plugin [9] that can be
used to define access control policies, to check the absence of structural errors
and to reason about the model in order to identify conflicts and inconsistencies.
Semantic Web is an extension of the current idea of Web that supports the shar-
ing of data between computers, in a way that let computers to easily understand
and reason about data. The World Wide Web Consortium (W3C) defined a set
of standards languages, protocols and technologies that can be used to partially
realize this vision, and thus let users to enable exploration and experimentation
and to support the evolution of the concepts and technology. We use the Web
Ontology Language (OWL), which is a family of knowledge representation lan-
guages based on Description Logic (DL) with a representation in RDF, to define
our model and to describe access control policies. We then use Semantic Web
technology, namely OWL-DL [1], SWRL [2] and SPARQL [3], to provide security
administrators with the following reasoning services:

1. Policy Incompatibility service (given a set of authorizations A, check
whether exist pairs of authorizations (a1,a2) such that a1 and a2 apply to
the same request and have opposite sign),

2. Redundancy Detection service (given a set of authorizations A, check
whether a subset of those authorizations R exists that is dominated by other
authorizations),

3. Separation Of Duty Satisfiability service (given a set of authorizations
A, check whether they satisfy a set of Separation of Duty (SoD) constraints).

Section 2 presents the base model that we use to describe access control
policies. Section 3 presents in detail the three reasoning services, whereas in
Section 4 we present the architecture of the tool. Section 5 reports on experi-
mental results, using as representative policies a model built over bibliographical
databases. Finally, Section 6 draws a few concluding remarks and presents future
work.



2 Policy model

Modeling security requirements requires a rich metamodel, in order to represent
the large number and variety of entities involved in actual enterprise scenarios,
and a rich and flexible language to express relationships between the entities. We
have chosen to represent our model by applying techniques from the Semantic
Web and knowledge representation area, which provide us with flexible and
expressive tools to specify the entities and the relationships between them. We
have represented our model in terms of OWL classes, which represent sets of
entities, and OWL properties, which represent relations between a class called
domain of the property and a class called the range of the property.

The use of OWL to define policies has several advantages that become critical
in distributed environments involving coordination across multiple organizations.
First, most policy languages define constraints over classes of targets, objects,
actions and other constraints (e.g., location). A substantial part of the develop-
ment of a policy is often devoted to the precise specification of these classes. This
is especially important if the policy is shared among multiple organizations that
must adhere to or enforce the policy even though they have their own native
schemas or data models for the domain in question. The second advantage is
that OWL’s grounding in logic facilitates the translation of policies expressed in
OWL to other formalisms, either for analysis or for execution.

Our model, which is based on Role Based Access Control (RBAC) model
[10], contains the following OWL classes:

Principal: it represents Identities and Roles. The former are composed of Sin-
gleIdentity, i.e. single users, and Group, which represents sets of users. The
latter represent specific enterprise function. In RBAC each role represents
the binding between users and permissions associated to them. In our model
users can activate roles dynamically. The property containedIn: Identity →
Group represents the hierarchy of groups and the property roleHierarchy :
Role→ Role represents the hierarchy of roles. The transitive closures of the
two properties can be used to explicitly represent the expanded hierarchy.

Resource: it represents the entitities in the information system whose access
must be regulated through security policies. We modeled a taxonomy of re-
sources and thus we can represent several kinds of resources, from files to
databases, from folders to network elements. Our model allows the represen-
tation of a resource hierarchy by means of the property resourceHierarchy :
Resource → Resource, which represents the structural containment between
two resources (e.g., a folder that contains files).

Action: it represents the types of operations over resources available to princi-
pals. The structure of the action is strictly related to the characteristics of
the underlying access control system.

Authorization: it represents the allowed and forbidden behaviors for a princi-
pal. Each authorization is characterized by its sign, represented by the prop-
erty sign : Authorization → {+,−}, and the principal (identity or role) it
is granted to, represented by the property grantedTo : Authorization →
Principal. Each authorization has only one sign (authorizations with pos-



itive sign are called PositiveAuthorization, whereas authorizations with
negative sign are called NegativeAuthorization) and it is granted to only
one principal.
We have defined two kinds of authorizations: (1) SystemAuthorization rep-
resents the fact that a principal p is allowed/disallowed to do a certain ac-
tion a on a certain resource r, depending on the sign of the authorization.
(2) RoleAuthorization represents the fact that a principal p can activate a
certain role r.

3 Reasoning Services

We have implemented the reasoning services over policies expressed using our
OWL model by means of several Semantic Web technologies. Several approaches
and techniques exist, each one specifically optimized with a focus on the trade
off between expressivity and performance on specific application scenarios. The
main reasoning techniques are:

– Description Logic (DL) reasoning is usually based on tableaux techniques.
It is highly optimized to perform consistency checks, concept classification,
instance classification and information retrieval. However, it introduces some
limitations on the types of axioms that can be used to model policies and
constraints.

– SWRL rules are a particular kind of implications, which can be expressed
using a subset of the OWL language. SWRL rules are written as antecedent
consequent pairs. In SWRL terminology, the antecedent is referred to as the
rule body and the consequent is referred to as the head. The head and body
consist of a conjunction of one or more atoms. An atom is (a) a class, (b) a
property, (c) one of the predefined built-in expressions (e.g., DifferentFrom
or SameAs), each atom can refer to individuals using variables, denoted by
a question mark as a prefix. The intended meaning is consistent with the
classical semantics that characterizes most rule paradigms: whenever the
conditions specified in the antecedent hold, then the conditions specified in
the consequent must also hold. Reasoning techniques based on SWRL rules
compute a closure of the original model and provide less restrictive graph
expressions to describe model fragments, enriched by the firing of SWRL
rules.

– SPARQL is a query language that can be used to extract data from RDF
data, which is a directed and labeled graph data format for representing
information in the Web, by defining required and optional graph patterns
that the selected data should satisfies.

Semantic Web technology has made available an extensive collection of tools.
Several approaches can be adopted, relying on the tools presented above, with
different profiles in terms of abstractness and efficiency. In general, tools and
approaches are available that offer a simple and direct representation of the
policy, e.g. SWRL and SPARQL, but may present scalability problems when
applied to complex analysis tasks, and other tools may require greater effort in



the representation of the problem, but offer scalability and support the analysis
of complex properties in large-scale scenarios, e.g. OWL-DL. This paper will
present experimental results that will confirm that the use Semantic Web tools
for policy analysis permits the adoption of a variety of approaches, with a choiche
that depends on the complexity of the analyzed property and the size of the
policy. A one-size-fits-all strategy cannot be considered adequate.

Using the techniques presented above we have defined the following reasoning
services:

– The Policy Incompatibility reasoning service aims at checking whether a set
of System Authorizations contains pairs of authorizations ap ∈ PositiveAu-
thorization and an ∈ NegativeAuthorization such that ap and an apply to
the same principal, action and resource. If such a pair exists, this means that
the policy contains an inconsistency.
This kind of conflicts is usually called Modality conflict and arises when
principals are authorized to do an action a on a resource r by a positive
authorization, and forbidden to do the same action a on the resource r by
a negative authorization. In this case the two authorizations are said to be
incompatible.
A simple criteria that can be used to solve these kind of conflicts is the
“Denials take precedence”, which states that, in case of conflicts, the nega-
tive authorization always wins. A more flexible criteria is the “Most specific
Wins”, which states that, when one authorization dominates the other, the
more specific wins.
We have implemented this reasoning service using SWRL rules. For instance
one of the rules that enforce the “Most specific Wins” criterion is the fol-
lowing:

on(? a1 , ? r1 ) , toDo(? a1 , ? act ) , grantedTo (? a1 , ? pr1 ) ,
sign (? a1 , ? s1 ) , on(? a2 , ? r2 ) , toDo(? a2 , ? act ) ,
grantedTo (? a2 , ? pr2 ) , sign (? a2 , ? s2 ) ,
containsResource+(?r2 , ? r1 ) , canActAs(? pr2 , ? pr1 ) ,
DifferentFrom (? s1 , ? s2 ) −> winsVs (? a2 , ? a1 )

– The Redundancy Detection service aims at identifying and removing redun-
dancies in a given access control policy. Given two authorizations a1 and
a2 (contained in the same policy) with same action and sign, and called pi
(respectively ri) the principals (respectively resources) associated, directly
or indirectly, with ai. If p2 ⊆ p1 and r2 ⊆ r1 and a2 is not involved in any
conflict with other authorizations, then a2 is redundant with respect to a1,
and can be safely removed from the policy without modifying the behaviour
of the system. As highlighted by [8], actual policies are usually unnecessarily
complicated and contains redundancies that increase the costs of managing
and updating the policy. We have implemented the service by using both
SWRL rules and SPARQL queries. For instance the SPARQL query that
can be used to extract redundant authorizations is the following:

PREFIX rbac :
<http ://www. posecco . eu/ o n t o l o g i e s / a c c e s s c o n t r o l#>



SELECT ? auth2 WHERE { ? auth1 rbac : i m p l i e s ? auth2 .
NOT EXISTS { ? auth2 rbac : unRemovable ? auth3 . } }

– The Separation of Duty Satisfiability service aims at checking whether a pol-
icy satisfies a set of Separation of Duty (SoD) constraints. SoD constraints
follow the common best practice for which sensitive combinations of per-
missions should not be held by the same individual in order to avoid the
violation of business rules. These constraints can be implemented in RBAC
by expressing that given two roles r1 and r2, it must not exist a user u who
can activate both r1 and r2. We have implemented this service using only
DL logic. In this way the performance of this service are higher than the
performance of the other two. We express SoD constraints on Identities by
adding to the ontology an axiom in the form:

SoDConflictOnId ≡ ∃canHaveRole + .{role1} u ∃canHaveRole + .{role2}

for each RoleAuthorization auth such that sign(auth,−), grantedTo(auth,
role1), enabledRole(auth, role2). In order to enforce the SoD constraints we
simply have to add to the ontology the axiom SoDConflictOnId v ⊥.

4 Architecture

Model driven approaches for the definition and management of the security con-
figurations of IT systems may be an effective way of handling the increasing
complexity of those systems and may also reduce the impact of security mis-
configurations. In these approaches, as a first step the administrator defines
a high-level security policy which is close to the business requirements. Then
he/she refines the policy in several steps, by adding details about the system.
During this refinement process the administrator can execute automated analy-
sis tools over the policy, in order to detect conflicts and anomalies in the policy
itself. The results of the analysis can lead to further modifications to the policy,
which require to adapt the current policy to the changes. Finally, the admin-
istrator can derive and deploy, in a semi-automated way, the concrete security
configuration of the system.

Our tool aims at allowing security administrators to define, manage and
analyze security policies through several refinement steps. We have chosen to
implement it on the basis of the Eclipse framework for four main reasons:

1. Eclipse is by now one of the de-facto standard in terms of IDEs and has
several plugins related to model driven engineering and thus, in our opinion,
the Eclipse framework is flexible enough to support our needs,

2. it provides several useful characteristics that ease the definition of the GUI
of the tool,

3. it can be easily integrated with Semantic Web tools by using the OWLAPI
Java library,

4. by defining a new extension point it lets us defining an extensible and flexible
way to handle the integration and customization of the reasoning services in
the architecture.



Fig. 1. Architecture of the Tool

The architecture of the tool is shown in Figure 1, it consists of four main
components.

PoSecCo Eclipse Policy Plugin: It is the main component of the architecture,
and it is presented more in detail in [9]. It contains the GUI and represents the
component that manages all the interaction with the user. Its main task is to
provide to the user a form-based interface that can be used to define a high level
representation of the security policy and to refine this policy through several
steps. The policies can be stored in XMI format and in XACML format. It is
implemented by following the Model-View-Controller (MVC) pattern:

– Controller module. The Controller module represents the core of the entire
plugin. It instantiates each module at start time, receives the command from
the user (through the View module) and executes the related action on the
data. It also invokes the reasoning services when needed.

– Model module. The Model module permits to maintain a dynamic represen-
tation of the IT Policy. The model is a collection of Java classes that keep
updated the information about the IT Policy.

– View module. The View module provides the functionalities to show on the
screen the information.

The PoSecCo Eclipse Policy Plugin defines an extension point, called Reason-
ingService, that allows other plugins to contribute to the global architecture
with dedicated reasoning services. In this way we can decouple the definition
of the reasoning services from the tool. This solution ease the definition of new
reasoning services without modifications to the PoSecCo Eclipse Policy Plugin
component.

The extension point, which definition is presented in Listing 1.1, has two
attributes: (1) name represents the name of the reasoning service, (2) class



represents the class that implements the reasoning service, which has to extend
the IReasoningService interface.

<element name=”ReasoningService”>
<complexType>
<attribute name=”class” type=”string” use=”required”>

<meta.attribute kind=”java” basedOn=”:IReasoningService”/>
</attribute>
<attribute name=”name” type=”string” use=”required”/>

</complexType>
</element>

Listing 1.1. Definition of ReasoningService Extension Point

The IReasoningService interface has three methods:

– boolean isConsistent(Policy p): it takes as input a policy and, by us-
ing reasoning, checks whether it is consistent or if it contains one or more
conflicts, and returns an adequate boolean value.

– List <Explanation> getExplanation(Policy p): it takes as input the
policy and, in case p is not consistent, returns a list of explanations that
tries to identify the inconsistencies.

– List <Fix> getRepair(Policy p): it takes as input the policy and, in case
p is not consistent, it returns a list of fixes that can remove the identified
inconsistencies.

Policy Incompatibility Service: it is the component that implements the
Policy Incompatibility reasoning service. It defines the PolicyIncompatibility ex-
tension for the ReasoningService extension point. An example of the extension
is shown in Listing 1.2.

<extension id=”services” point=”ReasoningService”>
<service class=”PolicyIncompatibilityService”

name=”Policy Incompatibility Reasoning Service” />
</extension>

Listing 1.2. Definition of PolicyIncompatibility reasoning service Extension

Redundancy Detection Service: it is the component that implements the
Redundancy Detection reasoning service. It defines the RedundancyDetection
extension for the ReasoningService extension point.
SoD Conflict Detection Service: it is the component that implements the
SoD Conflict Detection reasoning service. It defines the SoDConflictDetection
extension for the ReasoningService extension point.
Harmonization Core: it is the component that contains all the functionali-
ties shared by the reasoning services. It contains the classes that manage the
ontology by using the OWL-API Java library (enriched by the use of SWRL
and SPARQL). It allows the definition of an ontological representation of the
IT Policy. OWL-API through OWLDataFactory objects permits to instantiate



all classes, properties and axioms of the ontology. This component is a depen-
dency of the reasoning service components presented above, because all these
components use core functionalities. The dedicated functionalities of a specific
reasoning service, e.g. a particular reasoner or a set of SWRL rules, are included
only in the specific component.

5 Case Study

(a) Policy Incompatibility performance. (b) Redundancy Detection performance.

(c) Separation of Duty analysis performance. (d) Policy Incompatibility as Separation of
Duty.

Fig. 2. Experimental results

For the purpose of evaluating our approach on use cases, since there are
no freely available large datasets of real security policies we chose to test our
prototype against policies built according to an interpretation of the data in
bibliographic databases. We used randomly selected subsets of PubMed Central1

(PMC), well known in the medical sciences, and DBLP2, well known in the
computer science community. Each of them provides a rich set of attributes and
relationships that represent real and extensive social networks. PMC has rich
information about journals, with a description of editorships and the funding of

1 http://www.ncbi.nlm.nih.gov/pmc/
2 http://dblp.uni-trier.de/



papers. DBLP has a rich description of conferences. The two databases support
different experiments.

The Policy Incompatibility service solves the problem about the incompati-
bility between policies, presented in Section 3. It receives as input a policy and
produces as output a list of authorizations involved in conflicts that are not solv-
able using the “Most specific wins” or “Denials takes precedence” criteria. For
this experiment we use randomly generated subsets of the bibliographic database
PubMed Central.

We created instances of principals in the following way: (a) for each author
or editor of a paper, we add a SingleIdentity, (b) for each group of authors that
have written a paper together, we create a Group containing the SingleIdentity,
(c) for each group of editors of a conference or a journal, we create a Group
containing the SingleIdentity, (d) for each journal issue (and conference for the
DBLP case) , we create an “editor” Role and an “author” Role. We then created
the following authorizations:

– for each paper author we create the positive authorizations to read and write
the paper and the negative authorization to review the paper;

– for each editor of the issue of the journal containing the paper we add the
positive authorizations to read and review the paper and the negative au-
thorization to write the paper;

– for each author that receives funding from the same grant that funded the
paper, we add a negative authorization to review the paper and a positive
authorization to read the paper;

– for each group containing all the authors belonging to the institution to
which the author is affiliated, we add the authorization to read the paper;

– for each member of the editorial board of the journal that published the
paper we add the positive authorizations to read and review the paper and
the negative authorization to write the paper;

– for the group of authors of the paper, we add the positive authorizations to
read and write the paper and the negative authorization to review the paper
(these are redundant authorizations);

– for the group of editors of the paper we add the positive authorizations to
read and review the paper and the negative authorization to write the paper
(these are also redundant authorizations).

With this model we are able to create a rich set of authorizations that has a
clear motivation and is associated with the structure of a concrete application.
The conflicts detected would correspond to anomalies that relate with possible
conflicts of interest.

The Redundancy Detection service identifies redundant authorizations in a
policy. The service receives as input a policy and produces as output a list
of redundant authorizations. The approach proposed in Section 3 shows how
SWRL and SPARQL can be used to find redundant policies. We tested our
service with authorizations produced starting from randomly selected subsets of
the bibliographic database PubMed Central, with the same model used for Policy
Incompatibility.



The Separation of Duty Conflicts Detection (SoD) service solves the prob-
lem presented in Section 3. In this case, the service receives as input a policy
containing negative role authorizations and produces as output a list of users
that break the SoD constraints. We tested our service using a model that is
built from a randomly selected subset of conferences in the DBLP bibliographic
database. We enforced the SoD constraints on author and editor roles for the
same conference/journal issue.

We have run Policy Incompatibility and Redundancy Detection services on
random samples of the PMC dataset, while we have run the Separation of Duty
service on random samples of the DBLP dataset. Experiments have been run on
a PC with two Intel Xeon 2.0GHz/L3-4MB processors, 12GB RAM, four 1-Tbyte
disks and Linux operating system. The results of the experiments are reported
in the charts in Figure 2. Each observation is the average of the execution of ten
runs.

The first set of experiments aimed at evaluating how the performance of the
Policy Incompatibility service evolves with the increase in the number of au-
thorizations. Figure 2(a) reports the observed performance. It is clear that this
solution is applicable for policies with a relatively small number of authoriza-
tions. For large policies, the simplicity in the definition of the verification rules
is associated with a large computational cost.

The second set of experiments aimed at evaluating the response time of the
Redundancy Detection service with the increase of the number of authorizations.
Figure 2(b) reports the results of these experiments, which exhibit response times
for the same policies that are significantly larger than those observed in the pre-
vious experiments. The specific test case is characterized by a large number of
redundant authorizations and in general the analysis required for the identifi-
cation of redundant rules requires to produce a large number of derivations. As
presented in [8], policies are often unnecessarily complicated due to redundancies
and for the cases typically considered in these analyses the number of authoriza-
tions is relatively small and this makes our approach acceptable. However, for
the largest policies considered in our experiments, a significant benefit can be
obtained from the use of tools, like the reasoners able to efficiently process DL
structures, which require a different and more complicated representation of the
problem.

The third experiment aimed at evaluating the performance of the Separa-
tion of Duty service. Furthermore, Figure 3 depicts the results produced by the
Separation of Duty service.

In Figure 2(c) we can see how the performance evolves with the increase of
the number of role authorizations. Even for extremely large policies (more than
35,000 role authorizations), the response times remain adequate for the profile of
the security design activity, which operates in sessions that have long duration.

The pruning algorithm presented in [6] can provide a significant contribution
to performance improvement. As demonstrated in [6], the approach used for
the management of Separation of Duty constraints can be adapted to solve the
Policy Incompatibility problem. Figure 2(d) reports the performance observed



Fig. 3. An example of the Separation of Duty service output.

using this approach, offering a remarkable performance increase compared to the
normal approach depicted in Figure 2(a).

6 Conclusions

Information systems are becoming more difficult to manage, with the intention
of resources of different owners, and access offered to a larger variety of users.
Service oriented architectures facilitate this evolution. We presented approaches
that enhance the management of security policies in these scenarios. We de-
scribed the relationship between the PoSecCo security model and OWL and
showed how the Eclipse framework provides a powerful environment for tool
integration and already makes available a large number of functions that are
commonly required in the construction of such systems.

The work described in this paper testifies that Eclipse can also have an
important role in the construction of modern environments for the management
of security policies in large and integrated information systems.

References

1. OWL Web Ontology Language Reference. Technical report, W3C,
http://www.w3.org/TR/owl-ref/, 2004.

2. SWRL: A semantic web rule language combining OWL and ruleML. Technical
report, W3C, http://www.w3.org/Submission/SWRL/, 2004.

3. SPARQL Query Language for RDF. Technical report, W3C,
http://www.w3.org/TR/rdf-sparql-query/, 2008.

4. Data breach investigations report. Technical report, Verizon Business, 2009.
5. 7safe. Uk security breach investigations report. Technical report, 2010.
6. M. Guarnieri and E. Magri. Techniques for conflict detection and minimization for

access control policies, Master Thesis, Università degli Studi di Bergamo, 2012.
7. J. Langevin, M. McCaul, S. Charney, and H. Raduege. Securing cyberspace for

the 44th presidency. Technical report, DTIC Document, 2008.
8. I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo. Mining

roles with multiple objectives. ACM Trans. Inf. Syst. Secur., Dec. 2010.
9. S. Mutti, M. A. Neri, and S. Paraboschi. An eclipse plug-in for specifying security

policies in modern information systems. In Proc. of ECLIPSE-IT 2011, 2011.
10. R. Sandhu. Role-based access control. Advances in computers, 46, 1998.


	Automated Management and Analysis of security policies using Eclipse

