
ar
X

iv
:2

01
2.

14
20

5v
1

 [
cs

.C
R

]
 2

8
D

ec
 2

02
0

Contract-Aware Secure Compilation

Marco Guarnieri
IMDEA Software Institute

Marco Patrignani
Stanford University

CISPA Helmholz Center for Information Security

1 Introduction

Microarchitectural attacks, such as Spectre [8],Meltdown [9],
Foreshadow [14], RIDL [15], and ZombieLoad [13], exploit
the abstraction gap between the Instruction Set Architec-
ture (ISA) and how instructions are actually executed by
processors to compromise the confidentiality and integrity
of a system. That is, these attacks exploit microarchitectural
side-effects resulting from processor’s optimizations, such
as speculative and out-of-order execution, and from proces-
sor’s internal buffers and caches that are invisible at the ISA
level.
To secure systems against microarchitectural attacks, pro-

grammers need to reason about and program against these
microarchitectural side-effects. There is, however, no “unique”
reference for microarchitectural side-effects. Even for a sin-
glemanufacturer, processors subtly differ in security-relevant
microarchitectural side-effects across generations. For ex-
ample, the clflush instruction for flushing caches behaves
differently across generations of Intel processors [16]. As
a result, a program might be secure when run on a pro-
cessor and insecure when run on another processor pro-
viding slightly different guarantees. However, we cannot—
and should not—expect programmers tomanually tailor pro-
grams for specific processors and their security guarantees.
Instead, we could rely on compilers (and the secure com-

pilation community), as they can play a prominent role in
bridging this gap: compilers should target specific proces-
sors microarchitectural security guarantees and they should
leverage these guarantees to produce secure code. This will
enable decoupling program-level security (say, ensuring that
secrets are not leaked under the ISA semantics), which pro-
grammers should enforce, and microarchitectural security
(say, preventing leaks of secrets due to microarchitectural
side-effects), which is the job of the compiler.
To achieve this, we outline the idea of Contract-Aware Se-

cure COmpilation (CASCO) where compilers are paramet-
ric with respect to a hardware/software security-contract,
an abstraction capturing a processor’s security guarantees.
That is, compilers will automatically leverage the guaran-
tees formalized in the contract to ensure that program-level
security properties are preserved at microarchitectural level.
For concreteness, our overview of CASCO builds on a re-

cent formulation of hardware/software contracts [6] that
focuses on data confidentiality (and therefore hypersafety
properties). We believe that CASCO is more general and it
can be applied also to other classes of security properties.

2 Contract-aware secure compilation

The CASCO framework relies on the following elements:
ISA, Hardware and Contract languages, the adversary we
consider and the notion of contract-aware compilers.

ISA language: We consider an ISA language L with a no-
tion of programs p (comprising both code and data segments)
and of architectural program states f ∈ AS. L is equipped
with an architectural semantics → : AS×AS that models the
execution of programs at the architectural level, mapping
an architectural state f to its successor f ′. Assume given
ATR (p), a function that denotes the Architectural TRaces of
p, derived from the sequence of architectural states f · . . . ·fn
that the execution of f goes through according to →.

Hardware:The execution of L-programs at the microarchi-
tectural level is formalised with a hardware semantics that
relies on hardware states � = 〈f, -〉 ∈ HS. Hardware states
consist of an architectural state f (as before) and a microar-

chitectural state -, which models the state of components
like predictors, caches, and reorder buffers. A hardware se-
mantics ⇒ : HS × HS maps hardware states � to their suc-
cessor �′.

Adversary: We consider a hardware-level adversary that
can observe parts of the microarchitectural state during ex-
ecution. Given a program p, HTR (p) denotes the Hardware
TRaces of p, that is, the sequence of hardware observations
A(-0) · . . . · A(-n) that the hardware state � of p goes
through according to⇒. Here,A(-) maps - to its attacker-
visible components (say, the cache metadata).

Contracts: A contract splits the responsibilities for pre-
venting side-channels between software and hardware, and
it provides a concise representation of a processor’s microar-
chitectural security guarantees. Following [6], a contract c

defines: (1) a notion of contract states Ξ ∈ CS that extend
f with contract-related components, (2) labels l ∈ LC rep-
resenting contract-observations, and (3) a labeled semantics
⇀ : CS × LC ×CS. Given a program p, CTRc (p) denotes the
Contract TRace of p, that is, the sequence l1, · · · , ln of labels
that the contract state Ξ of p goes through according to ⇀.
The contract traces of a program CTRc (·) capture which

architectural states are guaranteed to be indistinguishable
by a hardware attacker on any hardware platform satisfying
the contract:

Definition 1 (Hardware satisfies contract [6]). A hardware
semantics HTR (·) satisfies a contract c (denoted HTR (·) ⊢

c) if, for all programs p and p′ that only vary in the data seg-
ment, if CTRc (p) = CTRc (p

′), then HTR (p) = HTR (p′).
1

http://arxiv.org/abs/2012.14205v1

Contract-awarecompilers:Contract-aware compilers ((|·|))
are parametric with respect to a contract c ∈ ℭ, which for-
malizes a processor’s security guarantees. The target pro-
gram (|c, p|) depends on the source p and on the contract c.
Contract-aware compilers can be constructed to preserve

many security properties (e.g., cryptographic constant-time
and absence of speculative leaks), so long as these proper-
ties are expressible in the contract semantics (fortunately,
this is often the case [6]). Depending on the property of in-
terest, we then choose different secure compilation criteria
and instantiate them with the ISA and contract semantics.
Proving that a contract-aware compiler upholds such a cri-
terion demonstrates that the criterion is preserved for all
contracts in c ∈ ℭ, which determine the target language’s
semantics.
As an example, consider the security property of interest

being the prevention of all microarchitectural leaks of infor-
mation not exposed by ISA observations (captured by the
architectural traces ATR (·)); this can ensure, for instance,
the absence of leaks of transiently accessed data [11]. We
therefore choose the secure compilation criterion preserv-
ing 2-hypersafety properties [1, 2]. An instantiation of that
criterion is found Definition 2 below. That informally tells
that the compiler translates ISA-equivalent programs into
contract-equivalent ones, so there is no more leakage at the
contract level than what expressable in the ISA.

Definition 2 (Compiler satisfies contract). We say that a
compiler (|·|) is secure for all contracts of ℭ (denoted as
(|·|) ⊢ ℭ) if for all contracts c ∈ ℭ and programs p, p′ that
only differ in the data segment, if ATR (p) = ATR (p′), then
CTRc

(

(|c, p|)
)

= CTRc
(

(|c, p′ |)
)

.

Theorem 1 illustrates the overarching benefits of using
CASCO. It is sufficient to show that both the hardware and
the compiler satisfy a contract (Definition 1 andDefinition 2)
to derive that any ISA program pwill produce hardware ex-
ecutions that will not be vulnerable to attacks when run on
hardware satisfying the contract. Notably, proofs of Defini-
tion 1 and Definition 2 can be done separately and by dif-
ferent parties: hardware developers can provide contracts
and proving Definition 1 independently of specific compiler
criteria, while developers of secure compilers can focus on
proving Definition 2 ignoring most of the hardware details
(except those captured by contracts).

Theorem 1. If (|·|) ⊢ ℭ, c ∈ ℭ, and HTR (·) ⊢ c, then for

all programs p and p′ that only differ in the data segment, if

ATR (p) = ATR (p′), then HTR
(

(|c, p|)
)

= HTR
(

(|c, p′ |)
)

.

3 CASCO for secure speculation

To illustrate the benefits of CASCO, we focus on speculative
execution attacks (Spectre) as an example due to the avail-
ability of compiler-level countermeasures [11] and security
contracts [6]. CASCO, however, is more general and it can

be applied to all settings where microarchitectural attacks
are prevented by compiler-inserted countermeasures.
Consider the classical Spectre v1 attack [8]. There, an atta�er

poisons the bran� predictor (which exists at the hardware

level and not at the ISA) to trigger speculative execution and
encode speculatively accessed data (otherwise unaccessible)
into the ca�e, so the attacker can later retrieve them by
probing the ca�e.
There exist four different contracts that serve as specifi-

cations of processors’ microarchitectural security guaran-
tees [6] and that compilers can use as security specification.

Contract c
seq
ct : This contract exposes the program counter

and the locations of memory accesses on sequential, non-
speculative paths. c

seq
ct is often used to formalize constant-

time programming [3, 4], and it is satisfied (in the sense of
Definition 1) by in-order, non-speculative processors [6].
Contract c

spec
ct : This contract additionally exposes the pro-

gram counter and the locations of all memory accesses on
speculatively executed paths [5]. Simple speculative out-of-
order processors satisfy c

spec
ct [6].

Contract c
seq

arch
: This contract, which guarantees the confi-

dentiality of data that is only transiently loaded, exposes the
program counter, the location of all loads and stores, and
the values of all data loaded from memory on standard, i.e.,
non-speculative, program paths. Processors implementing
speculative taint tracking [17, 18] satisfy c

seq

arch
[6].

Contract c
seq−spec
ct−pc : This contract exposes program counter

and addresses of loads during sequential execution, and only
the program counter during speculative execution. Proces-
sorswith load-delay countermeasures [12] satisfy c

seq−spec
ct−pc [6].

A possible countermeasure against Spectre v1 attacks, im-
plemented in the Microsoft Visual C++ and Intel ICC com-
pilers [7, 10], is the insertion of lfence instructions (which
stop speculation). The countermeasure has been developed
to work against speculative, out-of-order processors (con-
tract c

spec
ct), and it injects an lfence instruction after all branch

instructions, preventing the attack described before. How-
ever, a contract-aware compiler can rely on the contract in-
formation to know the underlying processor’s security guar-
antees and optimise its code, avoiding the injection of un-
necessary lfences. For example, consider processors that
implement load-delay (contract c

seq−spec
ct−pc) or speculative taint-

tracking countermeasures (contract c
seq

arch
). A contract-aware

compiler targeting those processors can avoid inserting lfences
after branches since there, the speculative memory leaks are
prevented by the hardware.

4 Future directions

We believe CASCO provides foundations for designing and
proving the correctness of compilers that automatically lever-
age hardware-level security guarantees, formalized using
security contracts, to prevent microarchitectural leaks. For

2

this, we will need (1) formal languages for modeling inter-
esting classes of contracts; (2)ways of formalizing compilers
that use contract information to optimise code; and (3) new
proof techniques that account for contract parametricity and
composability (to simplify proofs across similar contracts).

Acknowledgements: This work was partially supported by

the German Federal Ministry of Education and Research (BMBF)

through funding for the CISPA-Stanford Center for Cybersecurity

(FKZ: 13N1S0762), by a grant from Intel Corporation, Juan de la

Cierva-Formación grant FJC2018-036513-I, Spanish project RTI2018-

102043-B-I00 SCUM, and Madrid regional project S2018/TCS-4339

BLOQUES.

References
[1] Carmine Abate, Roberto Blanco, Stefan Ciobaca, Alexandre Durier,

Deepak Garg, Cătălin Hriţcu, Marco Patrignani, , Eric Tanter, and

Jérémy Thibault. 2020. Trace-Relating Compiler Correctness and Se-

cure Compilation. In ESOP 2020.

[2] Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco

Patrignani, and Jérémy Thibault. 2019. Journey Beyond Full Abstrac-

tion: Exploring Robust Property Preservation for Secure Compilation.

In CSF 2019.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-

pressoir, and Michael Emmi. 2016. Verifying Constant-Time Imple-

mentations. In Proceedings of the 26th USENIX Security Symposium

(USENIX Security’16). USENIX Association.

[4] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna.

2019. System-Level Non-interference of Constant-Time Cryptogra-

phy. Part I: Model. Journal of Automatic Reasoning 63, 1 (2019).

[5] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés

Sánchez. 2020. Spectector: Principled detection of speculative infor-

mation flows. In Proceedings of the 41st IEEE Symposium on Security

and Privacy (S&P’20). IEEE.

[6] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2020. Hard-

ware/Software Contracts for Secure Speculation. In Proceedings of the

42nd IEEE Symposium on Security and Privacy (S&P’21). IEEE.

[7] Intel. 2018. Using Intel Compilers to Mitigate Speculative Execution

Side-Channel Issues. https://software.intel.com/en-us/articles/using-

intel-compilers-to-mitigate-speculative-execution-side-channel-

issues.

[8] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:

Exploiting Speculative Execution. In Proceedings of the 40th IEEE Sym-

posium on Security and Privacy (S&P’19). IEEE.

[9] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,

Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:

Reading Kernel Memory from User Space. In Proceedings of the 27th

USENIX Security Symposium (USENIX Security’18). USENIX Associa-

tion.

[10] Andrew Pardoe. 2018. Spectre mitigations in MSVC.

https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-

mitigations-in-msvc/.

[11] Marco Patrignani and Marco Guarnieri. 2019. Exorcising Spectres

with Secure Compilers. CoRR abs/1910.08607 (2019).

[12] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,

and Magnus Själander. 2019. Efficient Invisible Speculative Execu-

tion Through Selective Delay and Value Prediction. In Proceedings of

the 46th International Symposium on Computer Architecture (ISCA’19).

ACM.

[13] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian

Stecklina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad:

Cross-Privilege-Boundary Data Sampling. In Proceedings of the 26th

ACM SIGSAC Conference on Computer and Communications Security

(CCS’19). ACM.

[14] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris

Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval

Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the Keys

to the Intel SGX Kingdom with Transient Out-of-Order Execution.

In Proceedings of the 27th USENIX Security Symposium (USENIX Se-

curity’18). USENIX Association.

[15] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro

Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano

Giuffrida. 2019. RIDL: Rogue In-flight Data Load. In Proceedings of the

40th IEEE Symposium on Security and Privacy (S&P’19). IEEE.

[16] Pepe Vila, Andreas Abel, Marco Guarnieri, Boris Köpf, and Jan

Reineke. 2020. Flushgeist: Cache Leaks from Beyond the Flush. CoRR

abs/2005.13853 (2020).

[17] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris

Kasikci. 2019. NDA: Preventing Speculative Execution Attacks at

Their Source. In Proceedings of the 52nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO-52). IEEE/ACM.

[18] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Tor-

rellas, and Christopher W. Fletcher. 2019. Speculative Taint Tracking

(STT): A Comprehensive Protection for Speculatively Accessed Data.

In Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO-52). IEEE/ACM.

3

	1 Introduction
	2 Contract-aware secure compilation
	3 CASCO for secure speculation
	4 Future directions
	References

